1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Freescale MPC85xx, MPC83xx DMA Engine support
5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
8 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
9 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
12 * DMA engine driver for Freescale MPC8540 DMA controller, which is
13 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
14 * The support for MPC8349 DMA controller is also added.
16 * This driver instructs the DMA controller to issue the PCI Read Multiple
17 * command for PCI read operations, instead of using the default PCI Read Line
18 * command. Please be aware that this setting may result in read pre-fetching
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/dmaengine.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/fsldma.h>
35 #include "dmaengine.h"
38 #define chan_dbg(chan, fmt, arg...) \
39 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
40 #define chan_err(chan, fmt, arg...) \
41 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
43 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 static void set_sr(struct fsldma_chan *chan, u32 val)
51 FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
54 static u32 get_sr(struct fsldma_chan *chan)
56 return FSL_DMA_IN(chan, &chan->regs->sr, 32);
59 static void set_mr(struct fsldma_chan *chan, u32 val)
61 FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
64 static u32 get_mr(struct fsldma_chan *chan)
66 return FSL_DMA_IN(chan, &chan->regs->mr, 32);
69 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
71 FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
74 static dma_addr_t get_cdar(struct fsldma_chan *chan)
76 return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
79 static void set_bcr(struct fsldma_chan *chan, u32 val)
81 FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
84 static u32 get_bcr(struct fsldma_chan *chan)
86 return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
93 static void set_desc_cnt(struct fsldma_chan *chan,
94 struct fsl_dma_ld_hw *hw, u32 count)
96 hw->count = CPU_TO_DMA(chan, count, 32);
99 static void set_desc_src(struct fsldma_chan *chan,
100 struct fsl_dma_ld_hw *hw, dma_addr_t src)
104 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
105 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
106 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
109 static void set_desc_dst(struct fsldma_chan *chan,
110 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
114 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
115 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
116 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
119 static void set_desc_next(struct fsldma_chan *chan,
120 struct fsl_dma_ld_hw *hw, dma_addr_t next)
124 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
126 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
129 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
133 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
136 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
137 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
142 * DMA Engine Hardware Control Helpers
145 static void dma_init(struct fsldma_chan *chan)
147 /* Reset the channel */
150 switch (chan->feature & FSL_DMA_IP_MASK) {
151 case FSL_DMA_IP_85XX:
152 /* Set the channel to below modes:
153 * EIE - Error interrupt enable
154 * EOLNIE - End of links interrupt enable
155 * BWC - Bandwidth sharing among channels
157 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
158 | FSL_DMA_MR_EOLNIE);
160 case FSL_DMA_IP_83XX:
161 /* Set the channel to below modes:
162 * EOTIE - End-of-transfer interrupt enable
163 * PRC_RM - PCI read multiple
165 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
170 static int dma_is_idle(struct fsldma_chan *chan)
172 u32 sr = get_sr(chan);
173 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
177 * Start the DMA controller
180 * - the CDAR register must point to the start descriptor
181 * - the MRn[CS] bit must be cleared
183 static void dma_start(struct fsldma_chan *chan)
189 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
191 mode |= FSL_DMA_MR_EMP_EN;
193 mode &= ~FSL_DMA_MR_EMP_EN;
196 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
197 mode |= FSL_DMA_MR_EMS_EN;
199 mode &= ~FSL_DMA_MR_EMS_EN;
200 mode |= FSL_DMA_MR_CS;
206 static void dma_halt(struct fsldma_chan *chan)
211 /* read the mode register */
215 * The 85xx controller supports channel abort, which will stop
216 * the current transfer. On 83xx, this bit is the transfer error
217 * mask bit, which should not be changed.
219 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
220 mode |= FSL_DMA_MR_CA;
223 mode &= ~FSL_DMA_MR_CA;
226 /* stop the DMA controller */
227 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
230 /* wait for the DMA controller to become idle */
231 for (i = 0; i < 100; i++) {
232 if (dma_is_idle(chan))
238 if (!dma_is_idle(chan))
239 chan_err(chan, "DMA halt timeout!\n");
243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
244 * @chan : Freescale DMA channel
245 * @size : Address loop size, 0 for disable loop
247 * The set source address hold transfer size. The source
248 * address hold or loop transfer size is when the DMA transfer
249 * data from source address (SA), if the loop size is 4, the DMA will
250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
251 * SA + 1 ... and so on.
253 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
261 mode &= ~FSL_DMA_MR_SAHE;
267 mode &= ~FSL_DMA_MR_SAHTS_MASK;
268 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
277 * @chan : Freescale DMA channel
278 * @size : Address loop size, 0 for disable loop
280 * The set destination address hold transfer size. The destination
281 * address hold or loop transfer size is when the DMA transfer
282 * data to destination address (TA), if the loop size is 4, the DMA will
283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
284 * TA + 1 ... and so on.
286 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
294 mode &= ~FSL_DMA_MR_DAHE;
300 mode &= ~FSL_DMA_MR_DAHTS_MASK;
301 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
309 * fsl_chan_set_request_count - Set DMA Request Count for external control
310 * @chan : Freescale DMA channel
311 * @size : Number of bytes to transfer in a single request
313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
314 * The DMA request count is how many bytes are allowed to transfer before
315 * pausing the channel, after which a new assertion of DREQ# resumes channel
318 * A size of 0 disables external pause control. The maximum size is 1024.
320 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
327 mode &= ~FSL_DMA_MR_BWC_MASK;
328 mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
335 * @chan : Freescale DMA channel
336 * @enable : 0 is disabled, 1 is enabled.
338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
339 * The DMA Request Count feature should be used in addition to this feature
340 * to set the number of bytes to transfer before pausing the channel.
342 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
347 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
351 * fsl_chan_toggle_ext_start - Toggle channel external start status
352 * @chan : Freescale DMA channel
353 * @enable : 0 is disabled, 1 is enabled.
355 * If enable the external start, the channel can be started by an
356 * external DMA start pin. So the dma_start() does not start the
357 * transfer immediately. The DMA channel will wait for the
358 * control pin asserted.
360 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 chan->feature |= FSL_DMA_CHAN_START_EXT;
365 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
370 struct fsldma_chan *chan;
375 chan = to_fsl_chan(dchan);
377 fsl_chan_toggle_ext_start(chan, enable);
380 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
382 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
384 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
386 if (list_empty(&chan->ld_pending))
390 * Add the hardware descriptor to the chain of hardware descriptors
391 * that already exists in memory.
393 * This will un-set the EOL bit of the existing transaction, and the
394 * last link in this transaction will become the EOL descriptor.
396 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
399 * Add the software descriptor and all children to the list
400 * of pending transactions
403 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
406 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
408 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
409 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
410 struct fsl_desc_sw *child;
411 dma_cookie_t cookie = -EINVAL;
413 spin_lock_bh(&chan->desc_lock);
416 if (unlikely(chan->pm_state != RUNNING)) {
417 chan_dbg(chan, "cannot submit due to suspend\n");
418 spin_unlock_bh(&chan->desc_lock);
424 * assign cookies to all of the software descriptors
425 * that make up this transaction
427 list_for_each_entry(child, &desc->tx_list, node) {
428 cookie = dma_cookie_assign(&child->async_tx);
431 /* put this transaction onto the tail of the pending queue */
432 append_ld_queue(chan, desc);
434 spin_unlock_bh(&chan->desc_lock);
440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
441 * @chan : Freescale DMA channel
442 * @desc: descriptor to be freed
444 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
445 struct fsl_desc_sw *desc)
447 list_del(&desc->node);
448 chan_dbg(chan, "LD %p free\n", desc);
449 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
454 * @chan : Freescale DMA channel
456 * Return - The descriptor allocated. NULL for failed.
458 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
460 struct fsl_desc_sw *desc;
463 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
465 chan_dbg(chan, "out of memory for link descriptor\n");
469 INIT_LIST_HEAD(&desc->tx_list);
470 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
471 desc->async_tx.tx_submit = fsl_dma_tx_submit;
472 desc->async_tx.phys = pdesc;
474 chan_dbg(chan, "LD %p allocated\n", desc);
480 * fsldma_clean_completed_descriptor - free all descriptors which
481 * has been completed and acked
482 * @chan: Freescale DMA channel
484 * This function is used on all completed and acked descriptors.
485 * All descriptors should only be freed in this function.
487 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
489 struct fsl_desc_sw *desc, *_desc;
491 /* Run the callback for each descriptor, in order */
492 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
493 if (async_tx_test_ack(&desc->async_tx))
494 fsl_dma_free_descriptor(chan, desc);
498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
499 * @chan: Freescale DMA channel
500 * @desc: descriptor to cleanup and free
501 * @cookie: Freescale DMA transaction identifier
503 * This function is used on a descriptor which has been executed by the DMA
504 * controller. It will run any callbacks, submit any dependencies.
506 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
507 struct fsl_desc_sw *desc, dma_cookie_t cookie)
509 struct dma_async_tx_descriptor *txd = &desc->async_tx;
510 dma_cookie_t ret = cookie;
512 BUG_ON(txd->cookie < 0);
514 if (txd->cookie > 0) {
517 dma_descriptor_unmap(txd);
518 /* Run the link descriptor callback function */
519 dmaengine_desc_get_callback_invoke(txd, NULL);
522 /* Run any dependencies */
523 dma_run_dependencies(txd);
529 * fsldma_clean_running_descriptor - move the completed descriptor from
530 * ld_running to ld_completed
531 * @chan: Freescale DMA channel
532 * @desc: the descriptor which is completed
534 * Free the descriptor directly if acked by async_tx api, or move it to
535 * queue ld_completed.
537 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
538 struct fsl_desc_sw *desc)
540 /* Remove from the list of transactions */
541 list_del(&desc->node);
544 * the client is allowed to attach dependent operations
547 if (!async_tx_test_ack(&desc->async_tx)) {
549 * Move this descriptor to the list of descriptors which is
550 * completed, but still awaiting the 'ack' bit to be set.
552 list_add_tail(&desc->node, &chan->ld_completed);
556 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
561 * @chan : Freescale DMA channel
563 * HARDWARE STATE: idle
564 * LOCKING: must hold chan->desc_lock
566 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
568 struct fsl_desc_sw *desc;
571 * If the list of pending descriptors is empty, then we
572 * don't need to do any work at all
574 if (list_empty(&chan->ld_pending)) {
575 chan_dbg(chan, "no pending LDs\n");
580 * The DMA controller is not idle, which means that the interrupt
581 * handler will start any queued transactions when it runs after
582 * this transaction finishes
585 chan_dbg(chan, "DMA controller still busy\n");
590 * If there are some link descriptors which have not been
591 * transferred, we need to start the controller
595 * Move all elements from the queue of pending transactions
596 * onto the list of running transactions
598 chan_dbg(chan, "idle, starting controller\n");
599 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
600 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
603 * The 85xx DMA controller doesn't clear the channel start bit
604 * automatically at the end of a transfer. Therefore we must clear
605 * it in software before starting the transfer.
607 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
611 mode &= ~FSL_DMA_MR_CS;
616 * Program the descriptor's address into the DMA controller,
617 * then start the DMA transaction
619 set_cdar(chan, desc->async_tx.phys);
627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
628 * and move them to ld_completed to free until flag 'ack' is set
629 * @chan: Freescale DMA channel
631 * This function is used on descriptors which have been executed by the DMA
632 * controller. It will run any callbacks, submit any dependencies, then
633 * free these descriptors if flag 'ack' is set.
635 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
637 struct fsl_desc_sw *desc, *_desc;
638 dma_cookie_t cookie = 0;
639 dma_addr_t curr_phys = get_cdar(chan);
640 int seen_current = 0;
642 fsldma_clean_completed_descriptor(chan);
644 /* Run the callback for each descriptor, in order */
645 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
647 * do not advance past the current descriptor loaded into the
648 * hardware channel, subsequent descriptors are either in
649 * process or have not been submitted
655 * stop the search if we reach the current descriptor and the
658 if (desc->async_tx.phys == curr_phys) {
660 if (!dma_is_idle(chan))
664 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
666 fsldma_clean_running_descriptor(chan, desc);
670 * Start any pending transactions automatically
672 * In the ideal case, we keep the DMA controller busy while we go
673 * ahead and free the descriptors below.
675 fsl_chan_xfer_ld_queue(chan);
678 chan->common.completed_cookie = cookie;
682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
683 * @chan : Freescale DMA channel
685 * This function will create a dma pool for descriptor allocation.
687 * Return - The number of descriptors allocated.
689 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
691 struct fsldma_chan *chan = to_fsl_chan(dchan);
693 /* Has this channel already been allocated? */
698 * We need the descriptor to be aligned to 32bytes
699 * for meeting FSL DMA specification requirement.
701 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
702 sizeof(struct fsl_desc_sw),
703 __alignof__(struct fsl_desc_sw), 0);
704 if (!chan->desc_pool) {
705 chan_err(chan, "unable to allocate descriptor pool\n");
709 /* there is at least one descriptor free to be allocated */
714 * fsldma_free_desc_list - Free all descriptors in a queue
715 * @chan: Freescae DMA channel
716 * @list: the list to free
718 * LOCKING: must hold chan->desc_lock
720 static void fsldma_free_desc_list(struct fsldma_chan *chan,
721 struct list_head *list)
723 struct fsl_desc_sw *desc, *_desc;
725 list_for_each_entry_safe(desc, _desc, list, node)
726 fsl_dma_free_descriptor(chan, desc);
729 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
730 struct list_head *list)
732 struct fsl_desc_sw *desc, *_desc;
734 list_for_each_entry_safe_reverse(desc, _desc, list, node)
735 fsl_dma_free_descriptor(chan, desc);
739 * fsl_dma_free_chan_resources - Free all resources of the channel.
740 * @chan : Freescale DMA channel
742 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
744 struct fsldma_chan *chan = to_fsl_chan(dchan);
746 chan_dbg(chan, "free all channel resources\n");
747 spin_lock_bh(&chan->desc_lock);
748 fsldma_cleanup_descriptors(chan);
749 fsldma_free_desc_list(chan, &chan->ld_pending);
750 fsldma_free_desc_list(chan, &chan->ld_running);
751 fsldma_free_desc_list(chan, &chan->ld_completed);
752 spin_unlock_bh(&chan->desc_lock);
754 dma_pool_destroy(chan->desc_pool);
755 chan->desc_pool = NULL;
758 static struct dma_async_tx_descriptor *
759 fsl_dma_prep_memcpy(struct dma_chan *dchan,
760 dma_addr_t dma_dst, dma_addr_t dma_src,
761 size_t len, unsigned long flags)
763 struct fsldma_chan *chan;
764 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
773 chan = to_fsl_chan(dchan);
777 /* Allocate the link descriptor from DMA pool */
778 new = fsl_dma_alloc_descriptor(chan);
780 chan_err(chan, "%s\n", msg_ld_oom);
784 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
786 set_desc_cnt(chan, &new->hw, copy);
787 set_desc_src(chan, &new->hw, dma_src);
788 set_desc_dst(chan, &new->hw, dma_dst);
793 set_desc_next(chan, &prev->hw, new->async_tx.phys);
795 new->async_tx.cookie = 0;
796 async_tx_ack(&new->async_tx);
803 /* Insert the link descriptor to the LD ring */
804 list_add_tail(&new->node, &first->tx_list);
807 new->async_tx.flags = flags; /* client is in control of this ack */
808 new->async_tx.cookie = -EBUSY;
810 /* Set End-of-link to the last link descriptor of new list */
811 set_ld_eol(chan, new);
813 return &first->async_tx;
819 fsldma_free_desc_list_reverse(chan, &first->tx_list);
823 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
825 struct fsldma_chan *chan;
830 chan = to_fsl_chan(dchan);
832 spin_lock_bh(&chan->desc_lock);
834 /* Halt the DMA engine */
837 /* Remove and free all of the descriptors in the LD queue */
838 fsldma_free_desc_list(chan, &chan->ld_pending);
839 fsldma_free_desc_list(chan, &chan->ld_running);
840 fsldma_free_desc_list(chan, &chan->ld_completed);
843 spin_unlock_bh(&chan->desc_lock);
847 static int fsl_dma_device_config(struct dma_chan *dchan,
848 struct dma_slave_config *config)
850 struct fsldma_chan *chan;
856 chan = to_fsl_chan(dchan);
858 /* make sure the channel supports setting burst size */
859 if (!chan->set_request_count)
862 /* we set the controller burst size depending on direction */
863 if (config->direction == DMA_MEM_TO_DEV)
864 size = config->dst_addr_width * config->dst_maxburst;
866 size = config->src_addr_width * config->src_maxburst;
868 chan->set_request_count(chan, size);
874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
875 * @chan : Freescale DMA channel
877 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
879 struct fsldma_chan *chan = to_fsl_chan(dchan);
881 spin_lock_bh(&chan->desc_lock);
882 fsl_chan_xfer_ld_queue(chan);
883 spin_unlock_bh(&chan->desc_lock);
887 * fsl_tx_status - Determine the DMA status
888 * @chan : Freescale DMA channel
890 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
892 struct dma_tx_state *txstate)
894 struct fsldma_chan *chan = to_fsl_chan(dchan);
897 ret = dma_cookie_status(dchan, cookie, txstate);
898 if (ret == DMA_COMPLETE)
901 spin_lock_bh(&chan->desc_lock);
902 fsldma_cleanup_descriptors(chan);
903 spin_unlock_bh(&chan->desc_lock);
905 return dma_cookie_status(dchan, cookie, txstate);
908 /*----------------------------------------------------------------------------*/
909 /* Interrupt Handling */
910 /*----------------------------------------------------------------------------*/
912 static irqreturn_t fsldma_chan_irq(int irq, void *data)
914 struct fsldma_chan *chan = data;
917 /* save and clear the status register */
920 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
922 /* check that this was really our device */
923 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
927 if (stat & FSL_DMA_SR_TE)
928 chan_err(chan, "Transfer Error!\n");
932 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
933 * trigger a PE interrupt.
935 if (stat & FSL_DMA_SR_PE) {
936 chan_dbg(chan, "irq: Programming Error INT\n");
937 stat &= ~FSL_DMA_SR_PE;
938 if (get_bcr(chan) != 0)
939 chan_err(chan, "Programming Error!\n");
943 * For MPC8349, EOCDI event need to update cookie
944 * and start the next transfer if it exist.
946 if (stat & FSL_DMA_SR_EOCDI) {
947 chan_dbg(chan, "irq: End-of-Chain link INT\n");
948 stat &= ~FSL_DMA_SR_EOCDI;
952 * If it current transfer is the end-of-transfer,
953 * we should clear the Channel Start bit for
954 * prepare next transfer.
956 if (stat & FSL_DMA_SR_EOLNI) {
957 chan_dbg(chan, "irq: End-of-link INT\n");
958 stat &= ~FSL_DMA_SR_EOLNI;
961 /* check that the DMA controller is really idle */
962 if (!dma_is_idle(chan))
963 chan_err(chan, "irq: controller not idle!\n");
965 /* check that we handled all of the bits */
967 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
970 * Schedule the tasklet to handle all cleanup of the current
971 * transaction. It will start a new transaction if there is
974 tasklet_schedule(&chan->tasklet);
975 chan_dbg(chan, "irq: Exit\n");
979 static void dma_do_tasklet(struct tasklet_struct *t)
981 struct fsldma_chan *chan = from_tasklet(chan, t, tasklet);
983 chan_dbg(chan, "tasklet entry\n");
985 spin_lock(&chan->desc_lock);
987 /* the hardware is now idle and ready for more */
990 /* Run all cleanup for descriptors which have been completed */
991 fsldma_cleanup_descriptors(chan);
993 spin_unlock(&chan->desc_lock);
995 chan_dbg(chan, "tasklet exit\n");
998 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1000 struct fsldma_device *fdev = data;
1001 struct fsldma_chan *chan;
1002 unsigned int handled = 0;
1006 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1007 : in_le32(fdev->regs);
1009 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1011 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1012 chan = fdev->chan[i];
1017 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1018 fsldma_chan_irq(irq, chan);
1026 return IRQ_RETVAL(handled);
1029 static void fsldma_free_irqs(struct fsldma_device *fdev)
1031 struct fsldma_chan *chan;
1035 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1036 free_irq(fdev->irq, fdev);
1040 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1041 chan = fdev->chan[i];
1042 if (chan && chan->irq) {
1043 chan_dbg(chan, "free per-channel IRQ\n");
1044 free_irq(chan->irq, chan);
1049 static int fsldma_request_irqs(struct fsldma_device *fdev)
1051 struct fsldma_chan *chan;
1055 /* if we have a per-controller IRQ, use that */
1057 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1058 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1059 "fsldma-controller", fdev);
1063 /* no per-controller IRQ, use the per-channel IRQs */
1064 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1065 chan = fdev->chan[i];
1070 chan_err(chan, "interrupts property missing in device tree\n");
1075 chan_dbg(chan, "request per-channel IRQ\n");
1076 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1077 "fsldma-chan", chan);
1079 chan_err(chan, "unable to request per-channel IRQ\n");
1087 for (/* none */; i >= 0; i--) {
1088 chan = fdev->chan[i];
1095 free_irq(chan->irq, chan);
1101 /*----------------------------------------------------------------------------*/
1102 /* OpenFirmware Subsystem */
1103 /*----------------------------------------------------------------------------*/
1105 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1106 struct device_node *node, u32 feature, const char *compatible)
1108 struct fsldma_chan *chan;
1109 struct resource res;
1113 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1119 /* ioremap registers for use */
1120 chan->regs = of_iomap(node, 0);
1122 dev_err(fdev->dev, "unable to ioremap registers\n");
1127 err = of_address_to_resource(node, 0, &res);
1129 dev_err(fdev->dev, "unable to find 'reg' property\n");
1130 goto out_iounmap_regs;
1133 chan->feature = feature;
1135 fdev->feature = chan->feature;
1138 * If the DMA device's feature is different than the feature
1139 * of its channels, report the bug
1141 WARN_ON(fdev->feature != chan->feature);
1143 chan->dev = fdev->dev;
1144 chan->id = (res.start & 0xfff) < 0x300 ?
1145 ((res.start - 0x100) & 0xfff) >> 7 :
1146 ((res.start - 0x200) & 0xfff) >> 7;
1147 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1148 dev_err(fdev->dev, "too many channels for device\n");
1150 goto out_iounmap_regs;
1153 fdev->chan[chan->id] = chan;
1154 tasklet_setup(&chan->tasklet, dma_do_tasklet);
1155 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1157 /* Initialize the channel */
1160 /* Clear cdar registers */
1163 switch (chan->feature & FSL_DMA_IP_MASK) {
1164 case FSL_DMA_IP_85XX:
1165 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1167 case FSL_DMA_IP_83XX:
1168 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1169 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1170 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1171 chan->set_request_count = fsl_chan_set_request_count;
1174 spin_lock_init(&chan->desc_lock);
1175 INIT_LIST_HEAD(&chan->ld_pending);
1176 INIT_LIST_HEAD(&chan->ld_running);
1177 INIT_LIST_HEAD(&chan->ld_completed);
1180 chan->pm_state = RUNNING;
1183 chan->common.device = &fdev->common;
1184 dma_cookie_init(&chan->common);
1186 /* find the IRQ line, if it exists in the device tree */
1187 chan->irq = irq_of_parse_and_map(node, 0);
1189 /* Add the channel to DMA device channel list */
1190 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1192 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1193 chan->irq ? chan->irq : fdev->irq);
1198 iounmap(chan->regs);
1205 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1207 irq_dispose_mapping(chan->irq);
1208 list_del(&chan->common.device_node);
1209 iounmap(chan->regs);
1213 static int fsldma_of_probe(struct platform_device *op)
1215 struct fsldma_device *fdev;
1216 struct device_node *child;
1220 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1226 fdev->dev = &op->dev;
1227 INIT_LIST_HEAD(&fdev->common.channels);
1229 /* ioremap the registers for use */
1230 fdev->regs = of_iomap(op->dev.of_node, 0);
1232 dev_err(&op->dev, "unable to ioremap registers\n");
1237 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1238 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1240 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1241 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1242 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1243 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1244 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1245 fdev->common.device_tx_status = fsl_tx_status;
1246 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1247 fdev->common.device_config = fsl_dma_device_config;
1248 fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1249 fdev->common.dev = &op->dev;
1251 fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1252 fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1253 fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1254 fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1256 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1258 platform_set_drvdata(op, fdev);
1261 * We cannot use of_platform_bus_probe() because there is no
1262 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1265 for_each_child_of_node(op->dev.of_node, child) {
1266 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1267 fsl_dma_chan_probe(fdev, child,
1268 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1269 "fsl,eloplus-dma-channel");
1272 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1273 fsl_dma_chan_probe(fdev, child,
1274 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1275 "fsl,elo-dma-channel");
1280 * Hookup the IRQ handler(s)
1282 * If we have a per-controller interrupt, we prefer that to the
1283 * per-channel interrupts to reduce the number of shared interrupt
1284 * handlers on the same IRQ line
1286 err = fsldma_request_irqs(fdev);
1288 dev_err(fdev->dev, "unable to request IRQs\n");
1292 dma_async_device_register(&fdev->common);
1296 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1298 fsl_dma_chan_remove(fdev->chan[i]);
1300 irq_dispose_mapping(fdev->irq);
1301 iounmap(fdev->regs);
1308 static int fsldma_of_remove(struct platform_device *op)
1310 struct fsldma_device *fdev;
1313 fdev = platform_get_drvdata(op);
1314 dma_async_device_unregister(&fdev->common);
1316 fsldma_free_irqs(fdev);
1318 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1320 fsl_dma_chan_remove(fdev->chan[i]);
1322 irq_dispose_mapping(fdev->irq);
1324 iounmap(fdev->regs);
1331 static int fsldma_suspend_late(struct device *dev)
1333 struct fsldma_device *fdev = dev_get_drvdata(dev);
1334 struct fsldma_chan *chan;
1337 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1338 chan = fdev->chan[i];
1342 spin_lock_bh(&chan->desc_lock);
1343 if (unlikely(!chan->idle))
1345 chan->regs_save.mr = get_mr(chan);
1346 chan->pm_state = SUSPENDED;
1347 spin_unlock_bh(&chan->desc_lock);
1352 for (; i >= 0; i--) {
1353 chan = fdev->chan[i];
1356 chan->pm_state = RUNNING;
1357 spin_unlock_bh(&chan->desc_lock);
1362 static int fsldma_resume_early(struct device *dev)
1364 struct fsldma_device *fdev = dev_get_drvdata(dev);
1365 struct fsldma_chan *chan;
1369 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1370 chan = fdev->chan[i];
1374 spin_lock_bh(&chan->desc_lock);
1375 mode = chan->regs_save.mr
1376 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1378 chan->pm_state = RUNNING;
1379 spin_unlock_bh(&chan->desc_lock);
1385 static const struct dev_pm_ops fsldma_pm_ops = {
1386 .suspend_late = fsldma_suspend_late,
1387 .resume_early = fsldma_resume_early,
1391 static const struct of_device_id fsldma_of_ids[] = {
1392 { .compatible = "fsl,elo3-dma", },
1393 { .compatible = "fsl,eloplus-dma", },
1394 { .compatible = "fsl,elo-dma", },
1397 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1399 static struct platform_driver fsldma_of_driver = {
1401 .name = "fsl-elo-dma",
1402 .of_match_table = fsldma_of_ids,
1404 .pm = &fsldma_pm_ops,
1407 .probe = fsldma_of_probe,
1408 .remove = fsldma_of_remove,
1411 /*----------------------------------------------------------------------------*/
1412 /* Module Init / Exit */
1413 /*----------------------------------------------------------------------------*/
1415 static __init int fsldma_init(void)
1417 pr_info("Freescale Elo series DMA driver\n");
1418 return platform_driver_register(&fsldma_of_driver);
1421 static void __exit fsldma_exit(void)
1423 platform_driver_unregister(&fsldma_of_driver);
1426 subsys_initcall(fsldma_init);
1427 module_exit(fsldma_exit);
1429 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1430 MODULE_LICENSE("GPL");