2 * drivers/dma/fsl_raid.c
4 * Freescale RAID Engine device driver
7 * Harninder Rai <harninder.rai@freescale.com>
8 * Naveen Burmi <naveenburmi@freescale.com>
11 * Xuelin Shi <xuelin.shi@freescale.com>
13 * Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions are met:
17 * * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * * Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * * Neither the name of Freescale Semiconductor nor the
23 * names of its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written permission.
26 * ALTERNATIVELY, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") as published by the Free Software
28 * Foundation, either version 2 of that License or (at your option) any
31 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
34 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
40 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 * Theory of operation:
44 * General capabilities:
45 * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
46 * calculations required in RAID5 and RAID6 operations. RE driver
47 * registers with Linux's ASYNC layer as dma driver. RE hardware
48 * maintains strict ordering of the requests through chained
52 * Software RAID layer of Linux (MD layer) maintains RAID partitions,
53 * strips, stripes etc. It sends requests to the underlying ASYNC layer
54 * which further passes it to RE driver. ASYNC layer decides which request
55 * goes to which job ring of RE hardware. For every request processed by
56 * RAID Engine, driver gets an interrupt unless coalescing is set. The
57 * per job ring interrupt handler checks the status register for errors,
58 * clears the interrupt and leave the post interrupt processing to the irq
61 #include <linux/interrupt.h>
62 #include <linux/module.h>
64 #include <linux/of_irq.h>
65 #include <linux/of_platform.h>
66 #include <linux/platform_device.h>
67 #include <linux/dma-mapping.h>
68 #include <linux/dmapool.h>
69 #include <linux/dmaengine.h>
71 #include <linux/spinlock.h>
72 #include <linux/slab.h>
74 #include "dmaengine.h"
77 #define FSL_RE_MAX_XOR_SRCS 16
78 #define FSL_RE_MAX_PQ_SRCS 16
79 #define FSL_RE_MIN_DESCS 256
80 #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS)
81 #define FSL_RE_FRAME_FORMAT 0x1
82 #define FSL_RE_MAX_DATA_LEN (1024*1024)
84 #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
86 /* Add descriptors into per chan software queue - submit_q */
87 static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
89 struct fsl_re_desc *desc;
90 struct fsl_re_chan *re_chan;
94 desc = to_fsl_re_dma_desc(tx);
95 re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
97 spin_lock_irqsave(&re_chan->desc_lock, flags);
98 cookie = dma_cookie_assign(tx);
99 list_add_tail(&desc->node, &re_chan->submit_q);
100 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
105 /* Copy descriptor from per chan software queue into hardware job ring */
106 static void fsl_re_issue_pending(struct dma_chan *chan)
108 struct fsl_re_chan *re_chan;
110 struct fsl_re_desc *desc, *_desc;
113 re_chan = container_of(chan, struct fsl_re_chan, chan);
115 spin_lock_irqsave(&re_chan->desc_lock, flags);
116 avail = FSL_RE_SLOT_AVAIL(
117 in_be32(&re_chan->jrregs->inbring_slot_avail));
119 list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
123 list_move_tail(&desc->node, &re_chan->active_q);
125 memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
126 &desc->hwdesc, sizeof(struct fsl_re_hw_desc));
128 re_chan->inb_count = (re_chan->inb_count + 1) &
129 FSL_RE_RING_SIZE_MASK;
130 out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
133 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
136 static void fsl_re_desc_done(struct fsl_re_desc *desc)
138 dma_cookie_complete(&desc->async_tx);
139 dma_descriptor_unmap(&desc->async_tx);
140 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
143 static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
145 struct fsl_re_desc *desc, *_desc;
148 spin_lock_irqsave(&re_chan->desc_lock, flags);
149 list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
150 if (async_tx_test_ack(&desc->async_tx))
151 list_move_tail(&desc->node, &re_chan->free_q);
153 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
155 fsl_re_issue_pending(&re_chan->chan);
158 static void fsl_re_dequeue(struct tasklet_struct *t)
160 struct fsl_re_chan *re_chan = from_tasklet(re_chan, t, irqtask);
161 struct fsl_re_desc *desc, *_desc;
162 struct fsl_re_hw_desc *hwdesc;
164 unsigned int count, oub_count;
167 fsl_re_cleanup_descs(re_chan);
169 spin_lock_irqsave(&re_chan->desc_lock, flags);
170 count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
173 hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
174 list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
176 /* compare the hw dma addr to find the completed */
177 if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
178 desc->hwdesc.addr_low == hwdesc->addr_low) {
185 fsl_re_desc_done(desc);
186 list_move_tail(&desc->node, &re_chan->ack_q);
188 dev_err(re_chan->dev,
189 "found hwdesc not in sw queue, discard it\n");
192 oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
193 re_chan->oub_count = oub_count;
195 out_be32(&re_chan->jrregs->oubring_job_rmvd,
198 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
201 /* Per Job Ring interrupt handler */
202 static irqreturn_t fsl_re_isr(int irq, void *data)
204 struct fsl_re_chan *re_chan;
205 u32 irqstate, status;
207 re_chan = dev_get_drvdata((struct device *)data);
209 irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
214 * There's no way in upper layer (read MD layer) to recover from
215 * error conditions except restart everything. In long term we
216 * need to do something more than just crashing
218 if (irqstate & FSL_RE_ERROR) {
219 status = in_be32(&re_chan->jrregs->jr_status);
220 dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
224 /* Clear interrupt */
225 out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
227 tasklet_schedule(&re_chan->irqtask);
232 static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
234 struct dma_tx_state *txstate)
236 return dma_cookie_status(chan, cookie, txstate);
239 static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
240 size_t length, dma_addr_t addr, bool final)
242 u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
244 efrl |= final << FSL_RE_CF_FINAL_SHIFT;
245 cf[index].efrl32 = efrl;
246 cf[index].addr_high = upper_32_bits(addr);
247 cf[index].addr_low = lower_32_bits(addr);
250 static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
251 struct fsl_re_desc *desc,
252 void *cf, dma_addr_t paddr)
254 desc->re_chan = re_chan;
255 desc->async_tx.tx_submit = fsl_re_tx_submit;
256 dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
257 INIT_LIST_HEAD(&desc->node);
259 desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
260 desc->hwdesc.lbea32 = upper_32_bits(paddr);
261 desc->hwdesc.addr_low = lower_32_bits(paddr);
263 desc->cf_paddr = paddr;
265 desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
266 desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
271 static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
274 struct fsl_re_desc *desc = NULL;
277 unsigned long lock_flag;
279 fsl_re_cleanup_descs(re_chan);
281 spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
282 if (!list_empty(&re_chan->free_q)) {
283 /* take one desc from free_q */
284 desc = list_first_entry(&re_chan->free_q,
285 struct fsl_re_desc, node);
286 list_del(&desc->node);
288 desc->async_tx.flags = flags;
290 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
293 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
297 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
304 desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
305 desc->async_tx.flags = flags;
307 spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
308 re_chan->alloc_count++;
309 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
315 static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
316 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
317 unsigned int src_cnt, const unsigned char *scf, size_t len,
320 struct fsl_re_chan *re_chan;
321 struct fsl_re_desc *desc;
322 struct fsl_re_xor_cdb *xor;
323 struct fsl_re_cmpnd_frame *cf;
326 unsigned int save_src_cnt = src_cnt;
329 re_chan = container_of(chan, struct fsl_re_chan, chan);
330 if (len > FSL_RE_MAX_DATA_LEN) {
331 dev_err(re_chan->dev, "genq tx length %zu, max length %d\n",
332 len, FSL_RE_MAX_DATA_LEN);
336 desc = fsl_re_chan_alloc_desc(re_chan, flags);
340 if (scf && (flags & DMA_PREP_CONTINUE)) {
345 /* Filling xor CDB */
346 cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
347 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
348 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
349 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
350 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
351 xor = desc->cdb_addr;
355 /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
356 for (i = 0; i < save_src_cnt; i++)
357 xor->gfm[i] = scf[i];
361 /* compute P, that is XOR all srcs */
362 for (i = 0; i < src_cnt; i++)
366 /* Filling frame 0 of compound frame descriptor with CDB */
368 fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
370 /* Fill CFD's 1st frame with dest buffer */
371 fill_cfd_frame(cf, 1, len, dest, 0);
373 /* Fill CFD's rest of the frames with source buffers */
374 for (i = 2, j = 0; j < save_src_cnt; i++, j++)
375 fill_cfd_frame(cf, i, len, src[j], 0);
378 fill_cfd_frame(cf, i++, len, dest, 0);
380 /* Setting the final bit in the last source buffer frame in CFD */
381 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
383 return &desc->async_tx;
387 * Prep function for P parity calculation.In RAID Engine terminology,
388 * XOR calculation is called GenQ calculation done through GenQ command
390 static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
391 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
392 unsigned int src_cnt, size_t len, unsigned long flags)
394 /* NULL let genq take all coef as 1 */
395 return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
399 * Prep function for P/Q parity calculation.In RAID Engine terminology,
400 * P/Q calculation is called GenQQ done through GenQQ command
402 static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
403 struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
404 unsigned int src_cnt, const unsigned char *scf, size_t len,
407 struct fsl_re_chan *re_chan;
408 struct fsl_re_desc *desc;
409 struct fsl_re_pq_cdb *pq;
410 struct fsl_re_cmpnd_frame *cf;
414 unsigned int save_src_cnt = src_cnt;
416 re_chan = container_of(chan, struct fsl_re_chan, chan);
417 if (len > FSL_RE_MAX_DATA_LEN) {
418 dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n",
419 len, FSL_RE_MAX_DATA_LEN);
424 * RE requires at least 2 sources, if given only one source, we pass the
425 * second source same as the first one.
426 * With only one source, generating P is meaningless, only generate Q.
429 struct dma_async_tx_descriptor *tx;
430 dma_addr_t dma_src[2];
431 unsigned char coef[2];
437 tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
440 desc = to_fsl_re_dma_desc(tx);
446 * During RAID6 array creation, Linux's MD layer gets P and Q
447 * calculated separately in two steps. But our RAID Engine has
448 * the capability to calculate both P and Q with a single command
449 * Hence to merge well with MD layer, we need to provide a hook
450 * here and call re_jq_prep_dma_genq() function
453 if (flags & DMA_PREP_PQ_DISABLE_P)
454 return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
457 if (flags & DMA_PREP_CONTINUE)
460 desc = fsl_re_chan_alloc_desc(re_chan, flags);
464 /* Filling GenQQ CDB */
465 cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
466 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
467 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
468 cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
469 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
476 for (i = 0; i < src_cnt; i++)
479 /* Align gfm[] to 32bit */
480 gfmq_len = ALIGN(src_cnt, 4);
484 for (i = 0; i < src_cnt; i++)
487 /* Filling frame 0 of compound frame descriptor with CDB */
489 fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
491 /* Fill CFD's 1st & 2nd frame with dest buffers */
492 for (i = 1, j = 0; i < 3; i++, j++)
493 fill_cfd_frame(cf, i, len, dest[j], 0);
495 /* Fill CFD's rest of the frames with source buffers */
496 for (i = 3, j = 0; j < save_src_cnt; i++, j++)
497 fill_cfd_frame(cf, i, len, src[j], 0);
499 /* PQ computation continuation */
500 if (flags & DMA_PREP_CONTINUE) {
501 if (src_cnt - save_src_cnt == 3) {
503 p[save_src_cnt + 1] = 0;
504 p[save_src_cnt + 2] = 1;
505 fill_cfd_frame(cf, i++, len, dest[0], 0);
506 fill_cfd_frame(cf, i++, len, dest[1], 0);
507 fill_cfd_frame(cf, i++, len, dest[1], 0);
509 dev_err(re_chan->dev, "PQ tx continuation error!\n");
514 /* Setting the final bit in the last source buffer frame in CFD */
515 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
517 return &desc->async_tx;
521 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
522 * command. Logic of this function will need to be modified once multipage
523 * support is added in Linux's MD/ASYNC Layer
525 static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
526 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
527 size_t len, unsigned long flags)
529 struct fsl_re_chan *re_chan;
530 struct fsl_re_desc *desc;
532 struct fsl_re_cmpnd_frame *cf;
533 struct fsl_re_move_cdb *move;
536 re_chan = container_of(chan, struct fsl_re_chan, chan);
538 if (len > FSL_RE_MAX_DATA_LEN) {
539 dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n",
540 len, FSL_RE_MAX_DATA_LEN);
544 desc = fsl_re_chan_alloc_desc(re_chan, flags);
548 /* Filling move CDB */
549 cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
550 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
551 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
552 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
554 move = desc->cdb_addr;
557 /* Filling frame 0 of CFD with move CDB */
559 fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
561 length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
563 /* Fill CFD's 1st frame with dest buffer */
564 fill_cfd_frame(cf, 1, length, dest, 0);
566 /* Fill CFD's 2nd frame with src buffer */
567 fill_cfd_frame(cf, 2, length, src, 1);
569 return &desc->async_tx;
572 static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
574 struct fsl_re_chan *re_chan;
575 struct fsl_re_desc *desc;
580 re_chan = container_of(chan, struct fsl_re_chan, chan);
581 for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
582 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
586 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
593 INIT_LIST_HEAD(&desc->node);
594 fsl_re_init_desc(re_chan, desc, cf, paddr);
596 list_add_tail(&desc->node, &re_chan->free_q);
597 re_chan->alloc_count++;
599 return re_chan->alloc_count;
602 static void fsl_re_free_chan_resources(struct dma_chan *chan)
604 struct fsl_re_chan *re_chan;
605 struct fsl_re_desc *desc;
607 re_chan = container_of(chan, struct fsl_re_chan, chan);
608 while (re_chan->alloc_count--) {
609 desc = list_first_entry(&re_chan->free_q,
613 list_del(&desc->node);
614 dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
619 if (!list_empty(&re_chan->free_q))
620 dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
623 static int fsl_re_chan_probe(struct platform_device *ofdev,
624 struct device_node *np, u8 q, u32 off)
626 struct device *dev, *chandev;
627 struct fsl_re_drv_private *re_priv;
628 struct fsl_re_chan *chan;
629 struct dma_device *dma_dev;
633 struct platform_device *chan_ofdev;
636 re_priv = dev_get_drvdata(dev);
637 dma_dev = &re_priv->dma_dev;
639 chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
643 /* create platform device for chan node */
644 chan_ofdev = of_platform_device_create(np, NULL, dev);
646 dev_err(dev, "Not able to create ofdev for jr %d\n", q);
651 /* read reg property from dts */
652 rc = of_property_read_u32(np, "reg", &ptr);
654 dev_err(dev, "Reg property not found in jr %d\n", q);
659 chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
662 /* read irq property from dts */
663 chan->irq = irq_of_parse_and_map(np, 0);
665 dev_err(dev, "No IRQ defined for JR %d\n", q);
670 snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
672 chandev = &chan_ofdev->dev;
673 tasklet_setup(&chan->irqtask, fsl_re_dequeue);
675 ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
677 dev_err(dev, "Unable to register interrupt for JR %d\n", q);
682 re_priv->re_jrs[q] = chan;
683 chan->chan.device = dma_dev;
684 chan->chan.private = chan;
686 chan->re_dev = re_priv;
688 spin_lock_init(&chan->desc_lock);
689 INIT_LIST_HEAD(&chan->ack_q);
690 INIT_LIST_HEAD(&chan->active_q);
691 INIT_LIST_HEAD(&chan->submit_q);
692 INIT_LIST_HEAD(&chan->free_q);
694 chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
695 GFP_KERNEL, &chan->inb_phys_addr);
696 if (!chan->inb_ring_virt_addr) {
697 dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
702 chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
703 GFP_KERNEL, &chan->oub_phys_addr);
704 if (!chan->oub_ring_virt_addr) {
705 dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
710 /* Program the Inbound/Outbound ring base addresses and size */
711 out_be32(&chan->jrregs->inbring_base_h,
712 chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
713 out_be32(&chan->jrregs->oubring_base_h,
714 chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
715 out_be32(&chan->jrregs->inbring_base_l,
716 chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
717 out_be32(&chan->jrregs->oubring_base_l,
718 chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
719 out_be32(&chan->jrregs->inbring_size,
720 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
721 out_be32(&chan->jrregs->oubring_size,
722 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
724 /* Read LIODN value from u-boot */
725 status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
727 /* Program the CFG reg */
728 out_be32(&chan->jrregs->jr_config_1,
729 FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
731 dev_set_drvdata(chandev, chan);
734 out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
739 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
740 chan->inb_phys_addr);
745 /* Probe function for RAID Engine */
746 static int fsl_re_probe(struct platform_device *ofdev)
748 struct fsl_re_drv_private *re_priv;
749 struct device_node *np;
750 struct device_node *child;
753 struct dma_device *dma_dev;
754 struct resource *res;
756 struct device *dev = &ofdev->dev;
758 re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
762 res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
766 /* IOMAP the entire RAID Engine region */
767 re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
768 if (!re_priv->re_regs)
771 /* Program the RE mode */
772 out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
774 /* Program Galois Field polynomial */
775 out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
777 dev_info(dev, "version %x, mode %x, gfp %x\n",
778 in_be32(&re_priv->re_regs->re_version_id),
779 in_be32(&re_priv->re_regs->global_config),
780 in_be32(&re_priv->re_regs->galois_field_config));
782 dma_dev = &re_priv->dma_dev;
784 INIT_LIST_HEAD(&dma_dev->channels);
785 dma_set_mask(dev, DMA_BIT_MASK(40));
787 dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
788 dma_dev->device_tx_status = fsl_re_tx_status;
789 dma_dev->device_issue_pending = fsl_re_issue_pending;
791 dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
792 dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
793 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
795 dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
796 dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
797 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
799 dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
800 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
802 dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
804 re_priv->total_chans = 0;
806 re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
808 FSL_RE_CF_CDB_ALIGN, 0);
810 if (!re_priv->cf_desc_pool) {
811 dev_err(dev, "No memory for fsl re_cf desc pool\n");
815 re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
816 sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
817 FSL_RE_FRAME_ALIGN, 0);
818 if (!re_priv->hw_desc_pool) {
819 dev_err(dev, "No memory for fsl re_hw desc pool\n");
823 dev_set_drvdata(dev, re_priv);
825 /* Parse Device tree to find out the total number of JQs present */
826 for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
827 rc = of_property_read_u32(np, "reg", &off);
829 dev_err(dev, "Reg property not found in JQ node\n");
833 /* Find out the Job Rings present under each JQ */
834 for_each_child_of_node(np, child) {
835 rc = of_device_is_compatible(child,
836 "fsl,raideng-v1.0-job-ring");
838 fsl_re_chan_probe(ofdev, child, ridx++, off);
839 re_priv->total_chans++;
844 dma_async_device_register(dma_dev);
849 static void fsl_re_remove_chan(struct fsl_re_chan *chan)
851 tasklet_kill(&chan->irqtask);
853 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
854 chan->inb_phys_addr);
856 dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
857 chan->oub_phys_addr);
860 static int fsl_re_remove(struct platform_device *ofdev)
862 struct fsl_re_drv_private *re_priv;
867 re_priv = dev_get_drvdata(dev);
869 /* Cleanup chan related memory areas */
870 for (i = 0; i < re_priv->total_chans; i++)
871 fsl_re_remove_chan(re_priv->re_jrs[i]);
873 /* Unregister the driver */
874 dma_async_device_unregister(&re_priv->dma_dev);
879 static const struct of_device_id fsl_re_ids[] = {
880 { .compatible = "fsl,raideng-v1.0", },
883 MODULE_DEVICE_TABLE(of, fsl_re_ids);
885 static struct platform_driver fsl_re_driver = {
887 .name = "fsl-raideng",
888 .of_match_table = fsl_re_ids,
890 .probe = fsl_re_probe,
891 .remove = fsl_re_remove,
894 module_platform_driver(fsl_re_driver);
896 MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
897 MODULE_LICENSE("GPL v2");
898 MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");