dmaengine: dw-axi-dmac: Add StarFive JH7100 support
[platform/kernel/linux-starfive.git] / drivers / dma / dw-axi-dmac / dw-axi-dmac-platform.c
1 // SPDX-License-Identifier: GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3
4 /*
5  * Synopsys DesignWare AXI DMA Controller driver.
6  *
7  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8  */
9
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30
31 #include "dw-axi-dmac.h"
32 #include "../dmaengine.h"
33 #include "../virt-dma.h"
34
35 /*
36  * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
37  * master data bus width up to 512 bits (for both AXI master interfaces), but
38  * it depends on IP block configuration.
39  */
40 #define AXI_DMA_BUSWIDTHS                 \
41         (DMA_SLAVE_BUSWIDTH_1_BYTE      | \
42         DMA_SLAVE_BUSWIDTH_2_BYTES      | \
43         DMA_SLAVE_BUSWIDTH_4_BYTES      | \
44         DMA_SLAVE_BUSWIDTH_8_BYTES      | \
45         DMA_SLAVE_BUSWIDTH_16_BYTES     | \
46         DMA_SLAVE_BUSWIDTH_32_BYTES     | \
47         DMA_SLAVE_BUSWIDTH_64_BYTES)
48
49 static inline void
50 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
51 {
52         iowrite32(val, chip->regs + reg);
53 }
54
55 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
56 {
57         return ioread32(chip->regs + reg);
58 }
59
60 static inline void
61 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
62 {
63         iowrite32(val, chan->chan_regs + reg);
64 }
65
66 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
67 {
68         return ioread32(chan->chan_regs + reg);
69 }
70
71 static inline void
72 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
73 {
74         /*
75          * We split one 64 bit write for two 32 bit write as some HW doesn't
76          * support 64 bit access.
77          */
78         iowrite32(lower_32_bits(val), chan->chan_regs + reg);
79         iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
80 }
81
82 static inline void axi_chan_config_write(struct axi_dma_chan *chan,
83                                          struct axi_dma_chan_config *config)
84 {
85         u32 cfg_lo, cfg_hi;
86
87         cfg_lo = (config->dst_multblk_type << CH_CFG_L_DST_MULTBLK_TYPE_POS |
88                   config->src_multblk_type << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
89         if (!IS_ENABLED(CONFIG_SOC_STARFIVE) && chan->chip->dw->hdata->reg_map_8_channels) {
90                 cfg_hi = config->tt_fc << CH_CFG_H_TT_FC_POS |
91                          config->hs_sel_src << CH_CFG_H_HS_SEL_SRC_POS |
92                          config->hs_sel_dst << CH_CFG_H_HS_SEL_DST_POS |
93                          config->src_per << CH_CFG_H_SRC_PER_POS |
94                          config->dst_per << CH_CFG_H_DST_PER_POS |
95                          config->prior << CH_CFG_H_PRIORITY_POS;
96         } else {
97                 cfg_lo |= config->src_per << CH_CFG2_L_SRC_PER_POS |
98                           config->dst_per << CH_CFG2_L_DST_PER_POS;
99                 cfg_hi = config->tt_fc << CH_CFG2_H_TT_FC_POS |
100                          config->hs_sel_src << CH_CFG2_H_HS_SEL_SRC_POS |
101                          config->hs_sel_dst << CH_CFG2_H_HS_SEL_DST_POS |
102                          config->prior << CH_CFG2_H_PRIORITY_POS;
103         }
104         axi_chan_iowrite32(chan, CH_CFG_L, cfg_lo);
105         axi_chan_iowrite32(chan, CH_CFG_H, cfg_hi);
106 }
107
108 static inline void axi_dma_disable(struct axi_dma_chip *chip)
109 {
110         u32 val;
111
112         val = axi_dma_ioread32(chip, DMAC_CFG);
113         val &= ~DMAC_EN_MASK;
114         axi_dma_iowrite32(chip, DMAC_CFG, val);
115 }
116
117 static inline void axi_dma_enable(struct axi_dma_chip *chip)
118 {
119         u32 val;
120
121         val = axi_dma_ioread32(chip, DMAC_CFG);
122         val |= DMAC_EN_MASK;
123         axi_dma_iowrite32(chip, DMAC_CFG, val);
124 }
125
126 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
127 {
128         u32 val;
129
130         val = axi_dma_ioread32(chip, DMAC_CFG);
131         val &= ~INT_EN_MASK;
132         axi_dma_iowrite32(chip, DMAC_CFG, val);
133 }
134
135 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
136 {
137         u32 val;
138
139         val = axi_dma_ioread32(chip, DMAC_CFG);
140         val |= INT_EN_MASK;
141         axi_dma_iowrite32(chip, DMAC_CFG, val);
142 }
143
144 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
145 {
146         u32 val;
147
148         if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
149                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
150         } else {
151                 val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
152                 val &= ~irq_mask;
153                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
154         }
155 }
156
157 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
158 {
159         axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
160 }
161
162 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
163 {
164         axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
165 }
166
167 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
168 {
169         axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
170 }
171
172 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
173 {
174         return axi_chan_ioread32(chan, CH_INTSTATUS);
175 }
176
177 static inline void axi_chan_disable(struct axi_dma_chan *chan)
178 {
179         u32 val;
180
181         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
182         val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
183         if (chan->chip->dw->hdata->reg_map_8_channels)
184                 val |=   BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
185         else
186                 val |=   BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
187         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
188 }
189
190 static inline void axi_chan_enable(struct axi_dma_chan *chan)
191 {
192         u32 val;
193
194         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
195         if (chan->chip->dw->hdata->reg_map_8_channels)
196                 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
197                         BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
198         else
199                 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
200                         BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
201         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
202 }
203
204 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
205 {
206         u32 val;
207
208         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
209
210         return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
211 }
212
213 static void axi_dma_hw_init(struct axi_dma_chip *chip)
214 {
215         int ret;
216         u32 i;
217
218         for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
219                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
220                 axi_chan_disable(&chip->dw->chan[i]);
221         }
222         ret = dma_set_mask_and_coherent(chip->dev, DMA_BIT_MASK(64));
223         if (ret)
224                 dev_warn(chip->dev, "Unable to set coherent mask\n");
225 }
226
227 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
228                                    dma_addr_t dst, size_t len)
229 {
230         u32 max_width = chan->chip->dw->hdata->m_data_width;
231
232         return __ffs(src | dst | len | BIT(max_width));
233 }
234
235 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
236 {
237         return dma_chan_name(&chan->vc.chan);
238 }
239
240 static struct axi_dma_desc *axi_desc_alloc(u32 num)
241 {
242         struct axi_dma_desc *desc;
243
244         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
245         if (!desc)
246                 return NULL;
247
248         desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
249         if (!desc->hw_desc) {
250                 kfree(desc);
251                 return NULL;
252         }
253
254         return desc;
255 }
256
257 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
258                                         dma_addr_t *addr)
259 {
260         struct axi_dma_lli *lli;
261         dma_addr_t phys;
262
263         lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
264         if (unlikely(!lli)) {
265                 dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
266                         axi_chan_name(chan));
267                 return NULL;
268         }
269
270         atomic_inc(&chan->descs_allocated);
271         *addr = phys;
272
273         return lli;
274 }
275
276 static void axi_desc_put(struct axi_dma_desc *desc)
277 {
278         struct axi_dma_chan *chan = desc->chan;
279         int count = atomic_read(&chan->descs_allocated);
280         struct axi_dma_hw_desc *hw_desc;
281         int descs_put;
282
283         for (descs_put = 0; descs_put < count; descs_put++) {
284                 hw_desc = &desc->hw_desc[descs_put];
285                 dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
286         }
287
288         kfree(desc->hw_desc);
289         kfree(desc);
290         atomic_sub(descs_put, &chan->descs_allocated);
291         dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
292                 axi_chan_name(chan), descs_put,
293                 atomic_read(&chan->descs_allocated));
294 }
295
296 static void vchan_desc_put(struct virt_dma_desc *vdesc)
297 {
298         axi_desc_put(vd_to_axi_desc(vdesc));
299 }
300
301 static enum dma_status
302 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
303                   struct dma_tx_state *txstate)
304 {
305         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
306         struct virt_dma_desc *vdesc;
307         enum dma_status status;
308         u32 completed_length;
309         unsigned long flags;
310         u32 completed_blocks;
311         size_t bytes = 0;
312         u32 length;
313         u32 len;
314
315         status = dma_cookie_status(dchan, cookie, txstate);
316         if (status == DMA_COMPLETE || !txstate)
317                 return status;
318
319         spin_lock_irqsave(&chan->vc.lock, flags);
320
321         vdesc = vchan_find_desc(&chan->vc, cookie);
322         if (vdesc) {
323                 length = vd_to_axi_desc(vdesc)->length;
324                 completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
325                 len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
326                 completed_length = completed_blocks * len;
327                 bytes = length - completed_length;
328         } else {
329                 bytes = vd_to_axi_desc(vdesc)->length;
330         }
331
332         spin_unlock_irqrestore(&chan->vc.lock, flags);
333         dma_set_residue(txstate, bytes);
334
335         return status;
336 }
337
338 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
339 {
340         desc->lli->llp = cpu_to_le64(adr);
341 }
342
343 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
344 {
345         axi_chan_iowrite64(chan, CH_LLP, adr);
346 }
347
348 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
349 {
350         u32 offset = DMAC_APB_BYTE_WR_CH_EN;
351         u32 reg_width, val;
352
353         if (!chan->chip->apb_regs) {
354                 dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
355                 return;
356         }
357
358         reg_width = __ffs(chan->config.dst_addr_width);
359         if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
360                 offset = DMAC_APB_HALFWORD_WR_CH_EN;
361
362         val = ioread32(chan->chip->apb_regs + offset);
363
364         if (set)
365                 val |= BIT(chan->id);
366         else
367                 val &= ~BIT(chan->id);
368
369         iowrite32(val, chan->chip->apb_regs + offset);
370 }
371 /* Called in chan locked context */
372 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
373                                       struct axi_dma_desc *first)
374 {
375         u32 priority = chan->chip->dw->hdata->priority[chan->id];
376         struct axi_dma_chan_config config = {};
377         u32 irq_mask;
378         u8 lms = 0; /* Select AXI0 master for LLI fetching */
379
380         chan->is_err = false;
381         if (unlikely(axi_chan_is_hw_enable(chan))) {
382                 dev_err(chan2dev(chan), "%s is non-idle!\n",
383                         axi_chan_name(chan));
384
385                 axi_chan_disable(chan);
386                 chan->is_err = true;
387         }
388
389         axi_dma_enable(chan->chip);
390
391         config.dst_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
392         config.src_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
393         config.tt_fc = DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC;
394         config.prior = priority;
395         config.hs_sel_dst = DWAXIDMAC_HS_SEL_HW;
396         config.hs_sel_src = DWAXIDMAC_HS_SEL_HW;
397         switch (chan->direction) {
398         case DMA_MEM_TO_DEV:
399                 dw_axi_dma_set_byte_halfword(chan, true);
400                 config.tt_fc = chan->config.device_fc ?
401                                 DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
402                                 DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC;
403                 if (chan->chip->apb_regs)
404                         config.dst_per = chan->id;
405                 else
406                         config.dst_per = chan->hw_handshake_num;
407                 break;
408         case DMA_DEV_TO_MEM:
409                 config.tt_fc = chan->config.device_fc ?
410                                 DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
411                                 DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC;
412                 if (chan->chip->apb_regs)
413                         config.src_per = chan->id;
414                 else
415                         config.src_per = chan->hw_handshake_num;
416                 break;
417         default:
418                 break;
419         }
420         axi_chan_config_write(chan, &config);
421
422         write_chan_llp(chan, first->hw_desc[0].llp | lms);
423
424         irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
425         axi_chan_irq_sig_set(chan, irq_mask);
426
427         /* Generate 'suspend' status but don't generate interrupt */
428         irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
429         axi_chan_irq_set(chan, irq_mask);
430
431         axi_chan_enable(chan);
432 }
433
434 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
435 {
436         struct axi_dma_desc *desc;
437         struct virt_dma_desc *vd;
438
439         vd = vchan_next_desc(&chan->vc);
440         if (!vd)
441                 return;
442
443         desc = vd_to_axi_desc(vd);
444         dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
445                 vd->tx.cookie);
446         axi_chan_block_xfer_start(chan, desc);
447 }
448
449 static void dma_chan_issue_pending(struct dma_chan *dchan)
450 {
451         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
452         unsigned long flags;
453
454         spin_lock_irqsave(&chan->vc.lock, flags);
455         if (vchan_issue_pending(&chan->vc))
456                 axi_chan_start_first_queued(chan);
457         spin_unlock_irqrestore(&chan->vc.lock, flags);
458 }
459
460 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
461 {
462         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
463
464         vchan_synchronize(&chan->vc);
465 }
466
467 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
468 {
469         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
470
471         /* ASSERT: channel is idle */
472         if (axi_chan_is_hw_enable(chan)) {
473                 dev_err(chan2dev(chan), "%s is non-idle!\n",
474                         axi_chan_name(chan));
475                 return -EBUSY;
476         }
477
478         /* LLI address must be aligned to a 64-byte boundary */
479         chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
480                                           chan->chip->dev,
481                                           sizeof(struct axi_dma_lli),
482                                           64, 0);
483         if (!chan->desc_pool) {
484                 dev_err(chan2dev(chan), "No memory for descriptors\n");
485                 return -ENOMEM;
486         }
487         dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
488
489         pm_runtime_get(chan->chip->dev);
490
491         return 0;
492 }
493
494 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
495 {
496         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
497
498         /* ASSERT: channel is idle */
499         if (axi_chan_is_hw_enable(chan))
500                 dev_err(dchan2dev(dchan), "%s is non-idle!\n",
501                         axi_chan_name(chan));
502
503         axi_chan_disable(chan);
504         axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
505
506         vchan_free_chan_resources(&chan->vc);
507
508         dma_pool_destroy(chan->desc_pool);
509         chan->desc_pool = NULL;
510         dev_vdbg(dchan2dev(dchan),
511                  "%s: free resources, descriptor still allocated: %u\n",
512                  axi_chan_name(chan), atomic_read(&chan->descs_allocated));
513
514         pm_runtime_put(chan->chip->dev);
515 }
516
517 static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
518 {
519         struct axi_dma_chip *chip = chan->chip;
520         unsigned long reg_value, val;
521
522         if (!chip->apb_regs) {
523                 dev_err(chip->dev, "apb_regs not initialized\n");
524                 return;
525         }
526
527         /*
528          * An unused DMA channel has a default value of 0x3F.
529          * Lock the DMA channel by assign a handshake number to the channel.
530          * Unlock the DMA channel by assign 0x3F to the channel.
531          */
532         if (set)
533                 val = chan->hw_handshake_num;
534         else
535                 val = UNUSED_CHANNEL;
536
537         reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
538
539         /* Channel is already allocated, set handshake as per channel ID */
540         /* 64 bit write should handle for 8 channels */
541
542         reg_value &= ~(DMA_APB_HS_SEL_MASK <<
543                         (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
544         reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
545         lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
546
547         return;
548 }
549
550 /*
551  * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
552  * as 1, it understands that the current block is the final block in the
553  * transfer and completes the DMA transfer operation at the end of current
554  * block transfer.
555  */
556 static void set_desc_last(struct axi_dma_hw_desc *desc)
557 {
558         u32 val;
559
560         val = le32_to_cpu(desc->lli->ctl_hi);
561         val |= CH_CTL_H_LLI_LAST;
562         desc->lli->ctl_hi = cpu_to_le32(val);
563 }
564
565 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
566 {
567         desc->lli->sar = cpu_to_le64(adr);
568 }
569
570 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
571 {
572         desc->lli->dar = cpu_to_le64(adr);
573 }
574
575 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
576 {
577         u32 val;
578
579         /* Select AXI0 for source master */
580         val = le32_to_cpu(desc->lli->ctl_lo);
581         val &= ~CH_CTL_L_SRC_MAST;
582         desc->lli->ctl_lo = cpu_to_le32(val);
583 }
584
585 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
586                                  struct axi_dma_desc *desc)
587 {
588         u32 val;
589
590         /* Select AXI1 for source master if available */
591         val = le32_to_cpu(hw_desc->lli->ctl_lo);
592         if (desc->chan->chip->dw->hdata->nr_masters > 1)
593                 val |= CH_CTL_L_DST_MAST;
594         else
595                 val &= ~CH_CTL_L_DST_MAST;
596
597         hw_desc->lli->ctl_lo = cpu_to_le32(val);
598 }
599
600 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
601                                   struct axi_dma_hw_desc *hw_desc,
602                                   dma_addr_t mem_addr, size_t len)
603 {
604         unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
605         unsigned int reg_width;
606         unsigned int mem_width;
607         dma_addr_t device_addr;
608         size_t axi_block_ts;
609         size_t block_ts;
610         u32 ctllo, ctlhi;
611         u32 burst_len;
612
613         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
614
615         mem_width = __ffs(data_width | mem_addr | len);
616         if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
617                 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
618
619         if (!IS_ALIGNED(mem_addr, 4)) {
620                 dev_err(chan->chip->dev, "invalid buffer alignment\n");
621                 return -EINVAL;
622         }
623
624         switch (chan->direction) {
625         case DMA_MEM_TO_DEV:
626                 reg_width = __ffs(chan->config.dst_addr_width);
627                 device_addr = chan->config.dst_addr;
628                 ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
629                         mem_width << CH_CTL_L_SRC_WIDTH_POS |
630                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
631                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
632                 block_ts = len >> mem_width;
633                 break;
634         case DMA_DEV_TO_MEM:
635                 reg_width = __ffs(chan->config.src_addr_width);
636                 device_addr = chan->config.src_addr;
637                 ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
638                         mem_width << CH_CTL_L_DST_WIDTH_POS |
639                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
640                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
641                 block_ts = len >> reg_width;
642                 break;
643         default:
644                 return -EINVAL;
645         }
646
647         if (block_ts > axi_block_ts)
648                 return -EINVAL;
649
650         hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
651         if (unlikely(!hw_desc->lli))
652                 return -ENOMEM;
653
654         ctlhi = CH_CTL_H_LLI_VALID;
655
656         if (chan->chip->dw->hdata->restrict_axi_burst_len) {
657                 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
658                 ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
659                          burst_len << CH_CTL_H_ARLEN_POS |
660                          burst_len << CH_CTL_H_AWLEN_POS;
661         }
662
663         hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
664
665         if (chan->direction == DMA_MEM_TO_DEV) {
666                 write_desc_sar(hw_desc, mem_addr);
667                 write_desc_dar(hw_desc, device_addr);
668         } else {
669                 write_desc_sar(hw_desc, device_addr);
670                 write_desc_dar(hw_desc, mem_addr);
671         }
672
673         hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
674
675 #ifdef CONFIG_SOC_STARFIVE
676         ctllo |= DWAXIDMAC_BURST_TRANS_LEN_16 << CH_CTL_L_DST_MSIZE_POS |
677                  DWAXIDMAC_BURST_TRANS_LEN_16 << CH_CTL_L_SRC_MSIZE_POS;
678 #else
679         ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
680                  DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
681 #endif
682         hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
683
684         set_desc_src_master(hw_desc);
685
686         hw_desc->len = len;
687         return 0;
688 }
689
690 static size_t calculate_block_len(struct axi_dma_chan *chan,
691                                   dma_addr_t dma_addr, size_t buf_len,
692                                   enum dma_transfer_direction direction)
693 {
694         u32 data_width, reg_width, mem_width;
695         size_t axi_block_ts, block_len;
696
697         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
698
699         switch (direction) {
700         case DMA_MEM_TO_DEV:
701                 data_width = BIT(chan->chip->dw->hdata->m_data_width);
702                 mem_width = __ffs(data_width | dma_addr | buf_len);
703                 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
704                         mem_width = DWAXIDMAC_TRANS_WIDTH_32;
705
706                 block_len = axi_block_ts << mem_width;
707                 break;
708         case DMA_DEV_TO_MEM:
709                 reg_width = __ffs(chan->config.src_addr_width);
710                 block_len = axi_block_ts << reg_width;
711                 break;
712         default:
713                 block_len = 0;
714         }
715
716         return block_len;
717 }
718
719 static struct dma_async_tx_descriptor *
720 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
721                             size_t buf_len, size_t period_len,
722                             enum dma_transfer_direction direction,
723                             unsigned long flags)
724 {
725         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
726         struct axi_dma_hw_desc *hw_desc = NULL;
727         struct axi_dma_desc *desc = NULL;
728         dma_addr_t src_addr = dma_addr;
729         u32 num_periods, num_segments;
730         size_t axi_block_len;
731         u32 total_segments;
732         u32 segment_len;
733         unsigned int i;
734         int status;
735         u64 llp = 0;
736         u8 lms = 0; /* Select AXI0 master for LLI fetching */
737
738         num_periods = buf_len / period_len;
739
740         axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
741         if (axi_block_len == 0)
742                 return NULL;
743
744         num_segments = DIV_ROUND_UP(period_len, axi_block_len);
745         segment_len = DIV_ROUND_UP(period_len, num_segments);
746
747         total_segments = num_periods * num_segments;
748
749         desc = axi_desc_alloc(total_segments);
750         if (unlikely(!desc))
751                 goto err_desc_get;
752
753         chan->direction = direction;
754         desc->chan = chan;
755         chan->cyclic = true;
756         desc->length = 0;
757         desc->period_len = period_len;
758
759         for (i = 0; i < total_segments; i++) {
760                 hw_desc = &desc->hw_desc[i];
761
762                 status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
763                                                 segment_len);
764                 if (status < 0)
765                         goto err_desc_get;
766
767                 desc->length += hw_desc->len;
768                 /* Set end-of-link to the linked descriptor, so that cyclic
769                  * callback function can be triggered during interrupt.
770                  */
771                 set_desc_last(hw_desc);
772
773                 src_addr += segment_len;
774         }
775
776         llp = desc->hw_desc[0].llp;
777
778         /* Managed transfer list */
779         do {
780                 hw_desc = &desc->hw_desc[--total_segments];
781                 write_desc_llp(hw_desc, llp | lms);
782                 llp = hw_desc->llp;
783         } while (total_segments);
784
785         dw_axi_dma_set_hw_channel(chan, true);
786
787         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
788
789 err_desc_get:
790         if (desc)
791                 axi_desc_put(desc);
792
793         return NULL;
794 }
795
796 static struct dma_async_tx_descriptor *
797 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
798                               unsigned int sg_len,
799                               enum dma_transfer_direction direction,
800                               unsigned long flags, void *context)
801 {
802         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
803         struct axi_dma_hw_desc *hw_desc = NULL;
804         struct axi_dma_desc *desc = NULL;
805         u32 num_segments, segment_len;
806         unsigned int loop = 0;
807         struct scatterlist *sg;
808         size_t axi_block_len;
809         u32 len, num_sgs = 0;
810         unsigned int i;
811         dma_addr_t mem;
812         int status;
813         u64 llp = 0;
814         u8 lms = 0; /* Select AXI0 master for LLI fetching */
815
816         if (unlikely(!is_slave_direction(direction) || !sg_len))
817                 return NULL;
818
819         mem = sg_dma_address(sgl);
820         len = sg_dma_len(sgl);
821
822         axi_block_len = calculate_block_len(chan, mem, len, direction);
823         if (axi_block_len == 0)
824                 return NULL;
825
826         for_each_sg(sgl, sg, sg_len, i)
827                 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
828
829         desc = axi_desc_alloc(num_sgs);
830         if (unlikely(!desc))
831                 goto err_desc_get;
832
833         desc->chan = chan;
834         desc->length = 0;
835         chan->direction = direction;
836
837         for_each_sg(sgl, sg, sg_len, i) {
838                 mem = sg_dma_address(sg);
839                 len = sg_dma_len(sg);
840                 num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
841                 segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
842
843                 do {
844                         hw_desc = &desc->hw_desc[loop++];
845                         status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
846                         if (status < 0)
847                                 goto err_desc_get;
848
849                         desc->length += hw_desc->len;
850                         len -= segment_len;
851                         mem += segment_len;
852                 } while (len >= segment_len);
853         }
854
855         /* Set end-of-link to the last link descriptor of list */
856         set_desc_last(&desc->hw_desc[num_sgs - 1]);
857
858         /* Managed transfer list */
859         do {
860                 hw_desc = &desc->hw_desc[--num_sgs];
861                 write_desc_llp(hw_desc, llp | lms);
862                 llp = hw_desc->llp;
863         } while (num_sgs);
864
865         dw_axi_dma_set_hw_channel(chan, true);
866
867         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
868
869 err_desc_get:
870         if (desc)
871                 axi_desc_put(desc);
872
873         return NULL;
874 }
875
876 static struct dma_async_tx_descriptor *
877 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
878                          dma_addr_t src_adr, size_t len, unsigned long flags)
879 {
880         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
881         size_t block_ts, max_block_ts, xfer_len;
882         struct axi_dma_hw_desc *hw_desc = NULL;
883         struct axi_dma_desc *desc = NULL;
884         u32 xfer_width, reg, num;
885         u64 llp = 0;
886         u8 lms = 0; /* Select AXI0 master for LLI fetching */
887
888         dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
889                 axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
890
891         max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
892         xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
893         num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
894         desc = axi_desc_alloc(num);
895         if (unlikely(!desc))
896                 goto err_desc_get;
897
898         desc->chan = chan;
899         num = 0;
900         desc->length = 0;
901         while (len) {
902                 xfer_len = len;
903
904                 hw_desc = &desc->hw_desc[num];
905                 /*
906                  * Take care for the alignment.
907                  * Actually source and destination widths can be different, but
908                  * make them same to be simpler.
909                  */
910                 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
911
912                 /*
913                  * block_ts indicates the total number of data of width
914                  * to be transferred in a DMA block transfer.
915                  * BLOCK_TS register should be set to block_ts - 1
916                  */
917                 block_ts = xfer_len >> xfer_width;
918                 if (block_ts > max_block_ts) {
919                         block_ts = max_block_ts;
920                         xfer_len = max_block_ts << xfer_width;
921                 }
922
923                 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
924                 if (unlikely(!hw_desc->lli))
925                         goto err_desc_get;
926
927                 write_desc_sar(hw_desc, src_adr);
928                 write_desc_dar(hw_desc, dst_adr);
929                 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
930
931                 reg = CH_CTL_H_LLI_VALID;
932                 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
933                         u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
934
935                         reg |= (CH_CTL_H_ARLEN_EN |
936                                 burst_len << CH_CTL_H_ARLEN_POS |
937                                 CH_CTL_H_AWLEN_EN |
938                                 burst_len << CH_CTL_H_AWLEN_POS);
939                 }
940                 hw_desc->lli->ctl_hi = cpu_to_le32(reg);
941
942                 reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
943                        DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
944                        xfer_width << CH_CTL_L_DST_WIDTH_POS |
945                        xfer_width << CH_CTL_L_SRC_WIDTH_POS |
946                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
947                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
948                 hw_desc->lli->ctl_lo = cpu_to_le32(reg);
949
950                 set_desc_src_master(hw_desc);
951                 set_desc_dest_master(hw_desc, desc);
952
953                 hw_desc->len = xfer_len;
954                 desc->length += hw_desc->len;
955                 /* update the length and addresses for the next loop cycle */
956                 len -= xfer_len;
957                 dst_adr += xfer_len;
958                 src_adr += xfer_len;
959                 num++;
960         }
961
962         /* Set end-of-link to the last link descriptor of list */
963         set_desc_last(&desc->hw_desc[num - 1]);
964         /* Managed transfer list */
965         do {
966                 hw_desc = &desc->hw_desc[--num];
967                 write_desc_llp(hw_desc, llp | lms);
968                 llp = hw_desc->llp;
969         } while (num);
970
971         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
972
973 err_desc_get:
974         if (desc)
975                 axi_desc_put(desc);
976         return NULL;
977 }
978
979 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
980                                         struct dma_slave_config *config)
981 {
982         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
983
984         memcpy(&chan->config, config, sizeof(*config));
985
986         return 0;
987 }
988
989 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
990                               struct axi_dma_hw_desc *desc)
991 {
992         if (!desc->lli) {
993                 dev_err(dchan2dev(&chan->vc.chan), "NULL LLI\n");
994                 return;
995         }
996
997         dev_err(dchan2dev(&chan->vc.chan),
998                 "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
999                 le64_to_cpu(desc->lli->sar),
1000                 le64_to_cpu(desc->lli->dar),
1001                 le64_to_cpu(desc->lli->llp),
1002                 le32_to_cpu(desc->lli->block_ts_lo),
1003                 le32_to_cpu(desc->lli->ctl_hi),
1004                 le32_to_cpu(desc->lli->ctl_lo));
1005 }
1006
1007 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
1008                                    struct axi_dma_desc *desc_head)
1009 {
1010         int count = atomic_read(&chan->descs_allocated);
1011         int i;
1012
1013         for (i = 0; i < count; i++)
1014                 axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
1015 }
1016
1017 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
1018 {
1019         struct virt_dma_desc *vd;
1020         unsigned long flags;
1021
1022         spin_lock_irqsave(&chan->vc.lock, flags);
1023
1024         axi_chan_disable(chan);
1025
1026         /* The bad descriptor currently is in the head of vc list */
1027         vd = vchan_next_desc(&chan->vc);
1028         if (!vd) {
1029                 dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1030                         axi_chan_name(chan));
1031                 goto out;
1032         }
1033
1034         if (chan->is_err) {
1035                 struct axi_dma_desc *desc = vd_to_axi_desc(vd);
1036
1037                 axi_chan_block_xfer_start(chan, desc);
1038                 chan->is_err = false;
1039                 goto out;
1040         }
1041
1042         /* Remove the completed descriptor from issued list */
1043         list_del(&vd->node);
1044
1045         /* WARN about bad descriptor */
1046         dev_err(chan2dev(chan),
1047                 "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
1048                 axi_chan_name(chan), vd->tx.cookie, status);
1049         axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
1050
1051         vchan_cookie_complete(vd);
1052
1053         /* Try to restart the controller */
1054         axi_chan_start_first_queued(chan);
1055
1056 out:
1057         spin_unlock_irqrestore(&chan->vc.lock, flags);
1058 }
1059
1060 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1061 {
1062         int count = atomic_read(&chan->descs_allocated);
1063         struct axi_dma_hw_desc *hw_desc;
1064         struct axi_dma_desc *desc;
1065         struct virt_dma_desc *vd;
1066         unsigned long flags;
1067         u64 llp;
1068         int i;
1069
1070         spin_lock_irqsave(&chan->vc.lock, flags);
1071         if (unlikely(axi_chan_is_hw_enable(chan))) {
1072                 dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1073                         axi_chan_name(chan));
1074                 axi_chan_disable(chan);
1075         }
1076
1077         /* The completed descriptor currently is in the head of vc list */
1078         vd = vchan_next_desc(&chan->vc);
1079         if (!vd) {
1080                 dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1081                         axi_chan_name(chan));
1082                 goto out;
1083         }
1084
1085         if (chan->cyclic) {
1086                 desc = vd_to_axi_desc(vd);
1087                 if (desc) {
1088                         llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1089                         for (i = 0; i < count; i++) {
1090                                 hw_desc = &desc->hw_desc[i];
1091                                 if (hw_desc->llp == llp) {
1092                                         axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1093                                         hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1094                                         desc->completed_blocks = i;
1095
1096                                         if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1097                                                 vchan_cyclic_callback(vd);
1098                                         break;
1099                                 }
1100                         }
1101
1102                         axi_chan_enable(chan);
1103                 }
1104         } else {
1105                 /* Remove the completed descriptor from issued list before completing */
1106                 list_del(&vd->node);
1107                 vchan_cookie_complete(vd);
1108
1109                 /* Submit queued descriptors after processing the completed ones */
1110                 axi_chan_start_first_queued(chan);
1111         }
1112
1113 out:
1114         spin_unlock_irqrestore(&chan->vc.lock, flags);
1115 }
1116
1117 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1118 {
1119         struct axi_dma_chip *chip = dev_id;
1120         struct dw_axi_dma *dw = chip->dw;
1121         struct axi_dma_chan *chan;
1122
1123         u32 status, i;
1124
1125         /* Disable DMAC interrupts. We'll enable them after processing channels */
1126         axi_dma_irq_disable(chip);
1127
1128         /* Poll, clear and process every channel interrupt status */
1129         for (i = 0; i < dw->hdata->nr_channels; i++) {
1130                 chan = &dw->chan[i];
1131                 status = axi_chan_irq_read(chan);
1132                 axi_chan_irq_clear(chan, status);
1133
1134                 dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1135                         axi_chan_name(chan), i, status);
1136
1137                 if (status & DWAXIDMAC_IRQ_ALL_ERR)
1138                         axi_chan_handle_err(chan, status);
1139                 else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1140                         axi_chan_block_xfer_complete(chan);
1141         }
1142
1143         /* Re-enable interrupts */
1144         axi_dma_irq_enable(chip);
1145
1146         return IRQ_HANDLED;
1147 }
1148
1149 static int dma_chan_terminate_all(struct dma_chan *dchan)
1150 {
1151         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1152         u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1153         unsigned long flags;
1154         u32 val;
1155         int ret;
1156         LIST_HEAD(head);
1157
1158         axi_chan_disable(chan);
1159
1160         ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1161                                         !(val & chan_active), 1000, 10000);
1162         if (ret == -ETIMEDOUT)
1163                 dev_warn(dchan2dev(dchan),
1164                          "%s failed to stop\n", axi_chan_name(chan));
1165
1166         if (chan->direction != DMA_MEM_TO_MEM)
1167                 dw_axi_dma_set_hw_channel(chan, false);
1168         if (chan->direction == DMA_MEM_TO_DEV)
1169                 dw_axi_dma_set_byte_halfword(chan, false);
1170
1171         spin_lock_irqsave(&chan->vc.lock, flags);
1172
1173         vchan_get_all_descriptors(&chan->vc, &head);
1174
1175         chan->cyclic = false;
1176         spin_unlock_irqrestore(&chan->vc.lock, flags);
1177
1178         vchan_dma_desc_free_list(&chan->vc, &head);
1179
1180         dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1181
1182         return 0;
1183 }
1184
1185 static int dma_chan_pause(struct dma_chan *dchan)
1186 {
1187         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1188         unsigned long flags;
1189         unsigned int timeout = 20; /* timeout iterations */
1190         u32 val;
1191
1192         spin_lock_irqsave(&chan->vc.lock, flags);
1193
1194         if (chan->chip->dw->hdata->reg_map_8_channels) {
1195                 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1196                 val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1197                         BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1198                 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1199         } else {
1200                 val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1201                 val |= BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT |
1202                         BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT;
1203                 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1204         }
1205
1206         do  {
1207                 if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1208                         break;
1209
1210                 udelay(2);
1211         } while (--timeout);
1212
1213         axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1214
1215         chan->is_paused = true;
1216
1217         spin_unlock_irqrestore(&chan->vc.lock, flags);
1218
1219         return timeout ? 0 : -EAGAIN;
1220 }
1221
1222 /* Called in chan locked context */
1223 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1224 {
1225         u32 val;
1226
1227         if (chan->chip->dw->hdata->reg_map_8_channels) {
1228                 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1229                 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1230                 val |=  (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1231                 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1232         } else {
1233                 val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1234                 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT);
1235                 val |=  (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT);
1236                 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1237         }
1238
1239         chan->is_paused = false;
1240 }
1241
1242 static int dma_chan_resume(struct dma_chan *dchan)
1243 {
1244         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1245         unsigned long flags;
1246
1247         spin_lock_irqsave(&chan->vc.lock, flags);
1248
1249         if (chan->is_paused)
1250                 axi_chan_resume(chan);
1251
1252         spin_unlock_irqrestore(&chan->vc.lock, flags);
1253
1254         return 0;
1255 }
1256
1257 static int axi_dma_suspend(struct axi_dma_chip *chip)
1258 {
1259         axi_dma_irq_disable(chip);
1260         axi_dma_disable(chip);
1261
1262         clk_disable_unprepare(chip->core_clk);
1263         clk_disable_unprepare(chip->cfgr_clk);
1264
1265         return 0;
1266 }
1267
1268 static int axi_dma_resume(struct axi_dma_chip *chip)
1269 {
1270         int ret;
1271
1272         ret = clk_prepare_enable(chip->cfgr_clk);
1273         if (ret < 0)
1274                 return ret;
1275
1276         ret = clk_prepare_enable(chip->core_clk);
1277         if (ret < 0)
1278                 return ret;
1279
1280         axi_dma_enable(chip);
1281         axi_dma_irq_enable(chip);
1282
1283         return 0;
1284 }
1285
1286 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1287 {
1288         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1289
1290         return axi_dma_suspend(chip);
1291 }
1292
1293 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1294 {
1295         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1296
1297         return axi_dma_resume(chip);
1298 }
1299
1300 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1301                                             struct of_dma *ofdma)
1302 {
1303         struct dw_axi_dma *dw = ofdma->of_dma_data;
1304         struct axi_dma_chan *chan;
1305         struct dma_chan *dchan;
1306
1307         dchan = dma_get_any_slave_channel(&dw->dma);
1308         if (!dchan)
1309                 return NULL;
1310
1311         chan = dchan_to_axi_dma_chan(dchan);
1312         chan->hw_handshake_num = dma_spec->args[0];
1313         return dchan;
1314 }
1315
1316 static int parse_device_properties(struct axi_dma_chip *chip)
1317 {
1318         struct device *dev = chip->dev;
1319         u32 tmp, carr[DMAC_MAX_CHANNELS];
1320         int ret;
1321
1322         ret = device_property_read_u32(dev, "dma-channels", &tmp);
1323         if (ret)
1324                 return ret;
1325         if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1326                 return -EINVAL;
1327
1328         chip->dw->hdata->nr_channels = tmp;
1329         if (tmp <= DMA_REG_MAP_CH_REF)
1330                 chip->dw->hdata->reg_map_8_channels = true;
1331
1332         ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1333         if (ret)
1334                 return ret;
1335         if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1336                 return -EINVAL;
1337
1338         chip->dw->hdata->nr_masters = tmp;
1339
1340         ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1341         if (ret)
1342                 return ret;
1343         if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1344                 return -EINVAL;
1345
1346         chip->dw->hdata->m_data_width = tmp;
1347
1348         ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1349                                              chip->dw->hdata->nr_channels);
1350         if (ret)
1351                 return ret;
1352         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1353                 if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1354                         return -EINVAL;
1355
1356                 chip->dw->hdata->block_size[tmp] = carr[tmp];
1357         }
1358
1359         ret = device_property_read_u32_array(dev, "snps,priority", carr,
1360                                              chip->dw->hdata->nr_channels);
1361         if (ret)
1362                 return ret;
1363         /* Priority value must be programmed within [0:nr_channels-1] range */
1364         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1365                 if (carr[tmp] >= chip->dw->hdata->nr_channels)
1366                         return -EINVAL;
1367
1368                 chip->dw->hdata->priority[tmp] = carr[tmp];
1369         }
1370
1371         /* axi-max-burst-len is optional property */
1372         ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1373         if (!ret) {
1374                 if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1375                         return -EINVAL;
1376                 if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1377                         return -EINVAL;
1378
1379                 chip->dw->hdata->restrict_axi_burst_len = true;
1380                 chip->dw->hdata->axi_rw_burst_len = tmp;
1381         }
1382
1383         return 0;
1384 }
1385
1386 static int dw_probe(struct platform_device *pdev)
1387 {
1388         struct device_node *node = pdev->dev.of_node;
1389         struct axi_dma_chip *chip;
1390         struct resource *mem;
1391         struct dw_axi_dma *dw;
1392         struct dw_axi_dma_hcfg *hdata;
1393         u32 i;
1394         int ret;
1395
1396         chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1397         if (!chip)
1398                 return -ENOMEM;
1399
1400         dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1401         if (!dw)
1402                 return -ENOMEM;
1403
1404         hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1405         if (!hdata)
1406                 return -ENOMEM;
1407
1408         chip->dw = dw;
1409         chip->dev = &pdev->dev;
1410         chip->dw->hdata = hdata;
1411
1412         chip->irq = platform_get_irq(pdev, 0);
1413         if (chip->irq < 0)
1414                 return chip->irq;
1415
1416         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1417         chip->regs = devm_ioremap_resource(chip->dev, mem);
1418         if (IS_ERR(chip->regs))
1419                 return PTR_ERR(chip->regs);
1420
1421         if (of_device_is_compatible(node, "intel,kmb-axi-dma")) {
1422                 chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1423                 if (IS_ERR(chip->apb_regs))
1424                         return PTR_ERR(chip->apb_regs);
1425         }
1426
1427         chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1428         if (IS_ERR(chip->core_clk))
1429                 return PTR_ERR(chip->core_clk);
1430
1431         chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1432         if (IS_ERR(chip->cfgr_clk))
1433                 return PTR_ERR(chip->cfgr_clk);
1434
1435         ret = parse_device_properties(chip);
1436         if (ret)
1437                 return ret;
1438
1439         dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1440                                 sizeof(*dw->chan), GFP_KERNEL);
1441         if (!dw->chan)
1442                 return -ENOMEM;
1443
1444         ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1445                                IRQF_SHARED, KBUILD_MODNAME, chip);
1446         if (ret)
1447                 return ret;
1448
1449         INIT_LIST_HEAD(&dw->dma.channels);
1450         for (i = 0; i < hdata->nr_channels; i++) {
1451                 struct axi_dma_chan *chan = &dw->chan[i];
1452
1453                 chan->chip = chip;
1454                 chan->id = i;
1455                 chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1456                 atomic_set(&chan->descs_allocated, 0);
1457
1458                 chan->vc.desc_free = vchan_desc_put;
1459                 vchan_init(&chan->vc, &dw->dma);
1460         }
1461
1462         /* Set capabilities */
1463         dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1464         dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1465         dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1466
1467         /* DMA capabilities */
1468         dw->dma.chancnt = hdata->nr_channels;
1469         dw->dma.max_burst = hdata->axi_rw_burst_len;
1470         dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1471         dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1472         dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1473         dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1474         dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1475
1476         dw->dma.dev = chip->dev;
1477         dw->dma.device_tx_status = dma_chan_tx_status;
1478         dw->dma.device_issue_pending = dma_chan_issue_pending;
1479         dw->dma.device_terminate_all = dma_chan_terminate_all;
1480         dw->dma.device_pause = dma_chan_pause;
1481         dw->dma.device_resume = dma_chan_resume;
1482
1483         dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1484         dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1485
1486         dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1487         dw->dma.device_synchronize = dw_axi_dma_synchronize;
1488         dw->dma.device_config = dw_axi_dma_chan_slave_config;
1489         dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1490         dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1491
1492         /*
1493          * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1494          * supported blocks is 1024. Device register width is 4 bytes.
1495          * Therefore, set constraint to 1024 * 4.
1496          */
1497         dw->dma.dev->dma_parms = &dw->dma_parms;
1498 #ifdef CONFIG_SOC_STARFIVE
1499         dma_set_max_seg_size(&pdev->dev, DMAC_MAX_BLK_SIZE);
1500 #else
1501         dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1502 #endif
1503         platform_set_drvdata(pdev, chip);
1504
1505         pm_runtime_enable(chip->dev);
1506
1507         /*
1508          * We can't just call pm_runtime_get here instead of
1509          * pm_runtime_get_noresume + axi_dma_resume because we need
1510          * driver to work also without Runtime PM.
1511          */
1512         pm_runtime_get_noresume(chip->dev);
1513         ret = axi_dma_resume(chip);
1514         if (ret < 0)
1515                 goto err_pm_disable;
1516
1517         axi_dma_hw_init(chip);
1518
1519         pm_runtime_put(chip->dev);
1520
1521         ret = dmaenginem_async_device_register(&dw->dma);
1522         if (ret)
1523                 goto err_pm_disable;
1524
1525         /* Register with OF helpers for DMA lookups */
1526         ret = of_dma_controller_register(pdev->dev.of_node,
1527                                          dw_axi_dma_of_xlate, dw);
1528         if (ret < 0)
1529                 dev_warn(&pdev->dev,
1530                          "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1531
1532         dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1533                  dw->hdata->nr_channels);
1534
1535         return 0;
1536
1537 err_pm_disable:
1538         pm_runtime_disable(chip->dev);
1539
1540         return ret;
1541 }
1542
1543 static int dw_remove(struct platform_device *pdev)
1544 {
1545         struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1546         struct dw_axi_dma *dw = chip->dw;
1547         struct axi_dma_chan *chan, *_chan;
1548         u32 i;
1549
1550         /* Enable clk before accessing to registers */
1551         clk_prepare_enable(chip->cfgr_clk);
1552         clk_prepare_enable(chip->core_clk);
1553         axi_dma_irq_disable(chip);
1554         for (i = 0; i < dw->hdata->nr_channels; i++) {
1555                 axi_chan_disable(&chip->dw->chan[i]);
1556                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1557         }
1558         axi_dma_disable(chip);
1559
1560         pm_runtime_disable(chip->dev);
1561         axi_dma_suspend(chip);
1562
1563         devm_free_irq(chip->dev, chip->irq, chip);
1564
1565         of_dma_controller_free(chip->dev->of_node);
1566
1567         list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1568                         vc.chan.device_node) {
1569                 list_del(&chan->vc.chan.device_node);
1570                 tasklet_kill(&chan->vc.task);
1571         }
1572
1573         return 0;
1574 }
1575
1576 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1577         SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1578 };
1579
1580 static const struct of_device_id dw_dma_of_id_table[] = {
1581         { .compatible = "snps,axi-dma-1.01a" },
1582         { .compatible = "intel,kmb-axi-dma" },
1583         {}
1584 };
1585 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1586
1587 static struct platform_driver dw_driver = {
1588         .probe          = dw_probe,
1589         .remove         = dw_remove,
1590         .driver = {
1591                 .name   = KBUILD_MODNAME,
1592                 .of_match_table = dw_dma_of_id_table,
1593                 .pm = &dw_axi_dma_pm_ops,
1594         },
1595 };
1596 module_platform_driver(dw_driver);
1597
1598 MODULE_LICENSE("GPL v2");
1599 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1600 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");