1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
7 * This code implements the DMA subsystem. It provides a HW-neutral interface
8 * for other kernel code to use asynchronous memory copy capabilities,
9 * if present, and allows different HW DMA drivers to register as providing
12 * Due to the fact we are accelerating what is already a relatively fast
13 * operation, the code goes to great lengths to avoid additional overhead,
18 * The subsystem keeps a global list of dma_device structs it is protected by a
19 * mutex, dma_list_mutex.
21 * A subsystem can get access to a channel by calling dmaengine_get() followed
22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
23 * dma_request_channel(). Once a channel is allocated a reference is taken
24 * against its corresponding driver to disable removal.
26 * Each device has a channels list, which runs unlocked but is never modified
27 * once the device is registered, it's just setup by the driver.
29 * See Documentation/driver-api/dmaengine for more details
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
56 #include "dmaengine.h"
58 static DEFINE_MUTEX(dma_list_mutex);
59 static DEFINE_IDA(dma_ida);
60 static LIST_HEAD(dma_device_list);
61 static long dmaengine_ref_count;
63 /* --- debugfs implementation --- */
64 #ifdef CONFIG_DEBUG_FS
65 #include <linux/debugfs.h>
67 static struct dentry *rootdir;
69 static void dmaengine_debug_register(struct dma_device *dma_dev)
71 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
73 if (IS_ERR(dma_dev->dbg_dev_root))
74 dma_dev->dbg_dev_root = NULL;
77 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
79 debugfs_remove_recursive(dma_dev->dbg_dev_root);
80 dma_dev->dbg_dev_root = NULL;
83 static void dmaengine_dbg_summary_show(struct seq_file *s,
84 struct dma_device *dma_dev)
86 struct dma_chan *chan;
88 list_for_each_entry(chan, &dma_dev->channels, device_node) {
89 if (chan->client_count) {
90 seq_printf(s, " %-13s| %s", dma_chan_name(chan),
91 chan->dbg_client_name ?: "in-use");
94 seq_printf(s, " (via router: %s)\n",
95 dev_name(chan->router->dev));
102 static int dmaengine_summary_show(struct seq_file *s, void *data)
104 struct dma_device *dma_dev = NULL;
106 mutex_lock(&dma_list_mutex);
107 list_for_each_entry(dma_dev, &dma_device_list, global_node) {
108 seq_printf(s, "dma%d (%s): number of channels: %u\n",
109 dma_dev->dev_id, dev_name(dma_dev->dev),
112 if (dma_dev->dbg_summary_show)
113 dma_dev->dbg_summary_show(s, dma_dev);
115 dmaengine_dbg_summary_show(s, dma_dev);
117 if (!list_is_last(&dma_dev->global_node, &dma_device_list))
120 mutex_unlock(&dma_list_mutex);
124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
126 static void __init dmaengine_debugfs_init(void)
128 rootdir = debugfs_create_dir("dmaengine", NULL);
130 /* /sys/kernel/debug/dmaengine/summary */
131 debugfs_create_file("summary", 0444, rootdir, NULL,
132 &dmaengine_summary_fops);
135 static inline void dmaengine_debugfs_init(void) { }
136 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
142 #endif /* DEBUG_FS */
144 /* --- sysfs implementation --- */
146 #define DMA_SLAVE_NAME "slave"
149 * dev_to_dma_chan - convert a device pointer to its sysfs container object
152 * Must be called under dma_list_mutex.
154 static struct dma_chan *dev_to_dma_chan(struct device *dev)
156 struct dma_chan_dev *chan_dev;
158 chan_dev = container_of(dev, typeof(*chan_dev), device);
159 return chan_dev->chan;
162 static ssize_t memcpy_count_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
165 struct dma_chan *chan;
166 unsigned long count = 0;
170 mutex_lock(&dma_list_mutex);
171 chan = dev_to_dma_chan(dev);
173 for_each_possible_cpu(i)
174 count += per_cpu_ptr(chan->local, i)->memcpy_count;
175 err = sprintf(buf, "%lu\n", count);
178 mutex_unlock(&dma_list_mutex);
182 static DEVICE_ATTR_RO(memcpy_count);
184 static ssize_t bytes_transferred_show(struct device *dev,
185 struct device_attribute *attr, char *buf)
187 struct dma_chan *chan;
188 unsigned long count = 0;
192 mutex_lock(&dma_list_mutex);
193 chan = dev_to_dma_chan(dev);
195 for_each_possible_cpu(i)
196 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
197 err = sprintf(buf, "%lu\n", count);
200 mutex_unlock(&dma_list_mutex);
204 static DEVICE_ATTR_RO(bytes_transferred);
206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
209 struct dma_chan *chan;
212 mutex_lock(&dma_list_mutex);
213 chan = dev_to_dma_chan(dev);
215 err = sprintf(buf, "%d\n", chan->client_count);
218 mutex_unlock(&dma_list_mutex);
222 static DEVICE_ATTR_RO(in_use);
224 static struct attribute *dma_dev_attrs[] = {
225 &dev_attr_memcpy_count.attr,
226 &dev_attr_bytes_transferred.attr,
227 &dev_attr_in_use.attr,
230 ATTRIBUTE_GROUPS(dma_dev);
232 static void chan_dev_release(struct device *dev)
234 struct dma_chan_dev *chan_dev;
236 chan_dev = container_of(dev, typeof(*chan_dev), device);
240 static struct class dma_devclass = {
242 .dev_groups = dma_dev_groups,
243 .dev_release = chan_dev_release,
246 /* --- client and device registration --- */
248 /* enable iteration over all operation types */
249 static dma_cap_mask_t dma_cap_mask_all;
252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253 * @chan: associated channel for this entry
255 struct dma_chan_tbl_ent {
256 struct dma_chan *chan;
259 /* percpu lookup table for memory-to-memory offload providers */
260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
262 static int __init dma_channel_table_init(void)
264 enum dma_transaction_type cap;
267 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
269 /* 'interrupt', 'private', and 'slave' are channel capabilities,
270 * but are not associated with an operation so they do not need
271 * an entry in the channel_table
273 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
274 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
275 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
277 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
278 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
279 if (!channel_table[cap]) {
286 pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
287 for_each_dma_cap_mask(cap, dma_cap_mask_all)
288 free_percpu(channel_table[cap]);
293 arch_initcall(dma_channel_table_init);
296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297 * @chan: DMA channel to test
298 * @cpu: CPU index which the channel should be close to
300 * Returns true if the channel is in the same NUMA-node as the CPU.
302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
304 int node = dev_to_node(chan->device->dev);
305 return node == NUMA_NO_NODE ||
306 cpumask_test_cpu(cpu, cpumask_of_node(node));
310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311 * @cap: capability to match
312 * @cpu: CPU index which the channel should be close to
314 * If some channels are close to the given CPU, the one with the lowest
315 * reference count is returned. Otherwise, CPU is ignored and only the
316 * reference count is taken into account.
318 * Must be called under dma_list_mutex.
320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
322 struct dma_device *device;
323 struct dma_chan *chan;
324 struct dma_chan *min = NULL;
325 struct dma_chan *localmin = NULL;
327 list_for_each_entry(device, &dma_device_list, global_node) {
328 if (!dma_has_cap(cap, device->cap_mask) ||
329 dma_has_cap(DMA_PRIVATE, device->cap_mask))
331 list_for_each_entry(chan, &device->channels, device_node) {
332 if (!chan->client_count)
334 if (!min || chan->table_count < min->table_count)
337 if (dma_chan_is_local(chan, cpu))
339 chan->table_count < localmin->table_count)
344 chan = localmin ? localmin : min;
353 * dma_channel_rebalance - redistribute the available channels
355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356 * operation type) in the SMP case, and operation isolation (avoid
357 * multi-tasking channels) in the non-SMP case.
359 * Must be called under dma_list_mutex.
361 static void dma_channel_rebalance(void)
363 struct dma_chan *chan;
364 struct dma_device *device;
368 /* undo the last distribution */
369 for_each_dma_cap_mask(cap, dma_cap_mask_all)
370 for_each_possible_cpu(cpu)
371 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
373 list_for_each_entry(device, &dma_device_list, global_node) {
374 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
376 list_for_each_entry(chan, &device->channels, device_node)
377 chan->table_count = 0;
380 /* don't populate the channel_table if no clients are available */
381 if (!dmaengine_ref_count)
384 /* redistribute available channels */
385 for_each_dma_cap_mask(cap, dma_cap_mask_all)
386 for_each_online_cpu(cpu) {
387 chan = min_chan(cap, cpu);
388 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
392 static int dma_device_satisfies_mask(struct dma_device *device,
393 const dma_cap_mask_t *want)
397 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
399 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
402 static struct module *dma_chan_to_owner(struct dma_chan *chan)
404 return chan->device->owner;
408 * balance_ref_count - catch up the channel reference count
409 * @chan: channel to balance ->client_count versus dmaengine_ref_count
411 * Must be called under dma_list_mutex.
413 static void balance_ref_count(struct dma_chan *chan)
415 struct module *owner = dma_chan_to_owner(chan);
417 while (chan->client_count < dmaengine_ref_count) {
419 chan->client_count++;
423 static void dma_device_release(struct kref *ref)
425 struct dma_device *device = container_of(ref, struct dma_device, ref);
427 list_del_rcu(&device->global_node);
428 dma_channel_rebalance();
430 if (device->device_release)
431 device->device_release(device);
434 static void dma_device_put(struct dma_device *device)
436 lockdep_assert_held(&dma_list_mutex);
437 kref_put(&device->ref, dma_device_release);
441 * dma_chan_get - try to grab a DMA channel's parent driver module
442 * @chan: channel to grab
444 * Must be called under dma_list_mutex.
446 static int dma_chan_get(struct dma_chan *chan)
448 struct module *owner = dma_chan_to_owner(chan);
451 /* The channel is already in use, update client count */
452 if (chan->client_count) {
457 if (!try_module_get(owner))
460 ret = kref_get_unless_zero(&chan->device->ref);
466 /* allocate upon first client reference */
467 if (chan->device->device_alloc_chan_resources) {
468 ret = chan->device->device_alloc_chan_resources(chan);
473 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
474 balance_ref_count(chan);
477 chan->client_count++;
481 dma_device_put(chan->device);
488 * dma_chan_put - drop a reference to a DMA channel's parent driver module
489 * @chan: channel to release
491 * Must be called under dma_list_mutex.
493 static void dma_chan_put(struct dma_chan *chan)
495 /* This channel is not in use, bail out */
496 if (!chan->client_count)
499 chan->client_count--;
501 /* This channel is not in use anymore, free it */
502 if (!chan->client_count && chan->device->device_free_chan_resources) {
503 /* Make sure all operations have completed */
504 dmaengine_synchronize(chan);
505 chan->device->device_free_chan_resources(chan);
508 /* If the channel is used via a DMA request router, free the mapping */
509 if (chan->router && chan->router->route_free) {
510 chan->router->route_free(chan->router->dev, chan->route_data);
512 chan->route_data = NULL;
515 dma_device_put(chan->device);
516 module_put(dma_chan_to_owner(chan));
519 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
521 enum dma_status status;
522 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
524 dma_async_issue_pending(chan);
526 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
527 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
528 dev_err(chan->device->dev, "%s: timeout!\n", __func__);
531 if (status != DMA_IN_PROGRESS)
538 EXPORT_SYMBOL(dma_sync_wait);
541 * dma_find_channel - find a channel to carry out the operation
542 * @tx_type: transaction type
544 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
546 return this_cpu_read(channel_table[tx_type]->chan);
548 EXPORT_SYMBOL(dma_find_channel);
551 * dma_issue_pending_all - flush all pending operations across all channels
553 void dma_issue_pending_all(void)
555 struct dma_device *device;
556 struct dma_chan *chan;
559 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
560 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
562 list_for_each_entry(chan, &device->channels, device_node)
563 if (chan->client_count)
564 device->device_issue_pending(chan);
568 EXPORT_SYMBOL(dma_issue_pending_all);
570 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
572 struct dma_device *device;
577 device = chan->device;
579 /* check if the channel supports slave transactions */
580 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
581 test_bit(DMA_CYCLIC, device->cap_mask.bits)))
585 * Check whether it reports it uses the generic slave
586 * capabilities, if not, that means it doesn't support any
587 * kind of slave capabilities reporting.
589 if (!device->directions)
592 caps->src_addr_widths = device->src_addr_widths;
593 caps->dst_addr_widths = device->dst_addr_widths;
594 caps->directions = device->directions;
595 caps->min_burst = device->min_burst;
596 caps->max_burst = device->max_burst;
597 caps->max_sg_burst = device->max_sg_burst;
598 caps->residue_granularity = device->residue_granularity;
599 caps->descriptor_reuse = device->descriptor_reuse;
600 caps->cmd_pause = !!device->device_pause;
601 caps->cmd_resume = !!device->device_resume;
602 caps->cmd_terminate = !!device->device_terminate_all;
605 * DMA engine device might be configured with non-uniformly
606 * distributed slave capabilities per device channels. In this
607 * case the corresponding driver may provide the device_caps
608 * callback to override the generic capabilities with
609 * channel-specific ones.
611 if (device->device_caps)
612 device->device_caps(chan, caps);
616 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
618 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
619 struct dma_device *dev,
620 dma_filter_fn fn, void *fn_param)
622 struct dma_chan *chan;
624 if (mask && !dma_device_satisfies_mask(dev, mask)) {
625 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
628 /* devices with multiple channels need special handling as we need to
629 * ensure that all channels are either private or public.
631 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
632 list_for_each_entry(chan, &dev->channels, device_node) {
633 /* some channels are already publicly allocated */
634 if (chan->client_count)
638 list_for_each_entry(chan, &dev->channels, device_node) {
639 if (chan->client_count) {
640 dev_dbg(dev->dev, "%s: %s busy\n",
641 __func__, dma_chan_name(chan));
644 if (fn && !fn(chan, fn_param)) {
645 dev_dbg(dev->dev, "%s: %s filter said false\n",
646 __func__, dma_chan_name(chan));
655 static struct dma_chan *find_candidate(struct dma_device *device,
656 const dma_cap_mask_t *mask,
657 dma_filter_fn fn, void *fn_param)
659 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
663 /* Found a suitable channel, try to grab, prep, and return it.
664 * We first set DMA_PRIVATE to disable balance_ref_count as this
665 * channel will not be published in the general-purpose
668 dma_cap_set(DMA_PRIVATE, device->cap_mask);
669 device->privatecnt++;
670 err = dma_chan_get(chan);
673 if (err == -ENODEV) {
674 dev_dbg(device->dev, "%s: %s module removed\n",
675 __func__, dma_chan_name(chan));
676 list_del_rcu(&device->global_node);
679 "%s: failed to get %s: (%d)\n",
680 __func__, dma_chan_name(chan), err);
682 if (--device->privatecnt == 0)
683 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
689 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
693 * dma_get_slave_channel - try to get specific channel exclusively
694 * @chan: target channel
696 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
698 /* lock against __dma_request_channel */
699 mutex_lock(&dma_list_mutex);
701 if (chan->client_count == 0) {
702 struct dma_device *device = chan->device;
705 dma_cap_set(DMA_PRIVATE, device->cap_mask);
706 device->privatecnt++;
707 err = dma_chan_get(chan);
709 dev_dbg(chan->device->dev,
710 "%s: failed to get %s: (%d)\n",
711 __func__, dma_chan_name(chan), err);
713 if (--device->privatecnt == 0)
714 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
719 mutex_unlock(&dma_list_mutex);
724 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
726 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
729 struct dma_chan *chan;
732 dma_cap_set(DMA_SLAVE, mask);
734 /* lock against __dma_request_channel */
735 mutex_lock(&dma_list_mutex);
737 chan = find_candidate(device, &mask, NULL, NULL);
739 mutex_unlock(&dma_list_mutex);
741 return IS_ERR(chan) ? NULL : chan;
743 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
746 * __dma_request_channel - try to allocate an exclusive channel
747 * @mask: capabilities that the channel must satisfy
748 * @fn: optional callback to disposition available channels
749 * @fn_param: opaque parameter to pass to dma_filter_fn()
750 * @np: device node to look for DMA channels
752 * Returns pointer to appropriate DMA channel on success or NULL.
754 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
755 dma_filter_fn fn, void *fn_param,
756 struct device_node *np)
758 struct dma_device *device, *_d;
759 struct dma_chan *chan = NULL;
762 mutex_lock(&dma_list_mutex);
763 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
764 /* Finds a DMA controller with matching device node */
765 if (np && device->dev->of_node && np != device->dev->of_node)
768 chan = find_candidate(device, mask, fn, fn_param);
774 mutex_unlock(&dma_list_mutex);
776 pr_debug("%s: %s (%s)\n",
778 chan ? "success" : "fail",
779 chan ? dma_chan_name(chan) : NULL);
783 EXPORT_SYMBOL_GPL(__dma_request_channel);
785 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
791 if (!device->filter.mapcnt)
794 for (i = 0; i < device->filter.mapcnt; i++) {
795 const struct dma_slave_map *map = &device->filter.map[i];
797 if (!strcmp(map->devname, dev_name(dev)) &&
798 !strcmp(map->slave, name))
806 * dma_request_chan - try to allocate an exclusive slave channel
807 * @dev: pointer to client device structure
808 * @name: slave channel name
810 * Returns pointer to appropriate DMA channel on success or an error pointer.
812 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
814 struct dma_device *d, *_d;
815 struct dma_chan *chan = NULL;
817 /* If device-tree is present get slave info from here */
819 chan = of_dma_request_slave_channel(dev->of_node, name);
821 /* If device was enumerated by ACPI get slave info from here */
822 if (has_acpi_companion(dev) && !chan)
823 chan = acpi_dma_request_slave_chan_by_name(dev, name);
825 if (PTR_ERR(chan) == -EPROBE_DEFER)
828 if (!IS_ERR_OR_NULL(chan))
831 /* Try to find the channel via the DMA filter map(s) */
832 mutex_lock(&dma_list_mutex);
833 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
835 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
841 dma_cap_set(DMA_SLAVE, mask);
843 chan = find_candidate(d, &mask, d->filter.fn, map->param);
847 mutex_unlock(&dma_list_mutex);
852 return ERR_PTR(-EPROBE_DEFER);
855 #ifdef CONFIG_DEBUG_FS
856 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
860 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
865 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
867 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
868 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
869 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
873 EXPORT_SYMBOL_GPL(dma_request_chan);
876 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
877 * @mask: capabilities that the channel must satisfy
879 * Returns pointer to appropriate DMA channel on success or an error pointer.
881 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
883 struct dma_chan *chan;
886 return ERR_PTR(-ENODEV);
888 chan = __dma_request_channel(mask, NULL, NULL, NULL);
890 mutex_lock(&dma_list_mutex);
891 if (list_empty(&dma_device_list))
892 chan = ERR_PTR(-EPROBE_DEFER);
894 chan = ERR_PTR(-ENODEV);
895 mutex_unlock(&dma_list_mutex);
900 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
902 void dma_release_channel(struct dma_chan *chan)
904 mutex_lock(&dma_list_mutex);
905 WARN_ONCE(chan->client_count != 1,
906 "chan reference count %d != 1\n", chan->client_count);
908 /* drop PRIVATE cap enabled by __dma_request_channel() */
909 if (--chan->device->privatecnt == 0)
910 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
913 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
914 sysfs_remove_link(&chan->slave->kobj, chan->name);
920 #ifdef CONFIG_DEBUG_FS
921 kfree(chan->dbg_client_name);
922 chan->dbg_client_name = NULL;
924 mutex_unlock(&dma_list_mutex);
926 EXPORT_SYMBOL_GPL(dma_release_channel);
929 * dmaengine_get - register interest in dma_channels
931 void dmaengine_get(void)
933 struct dma_device *device, *_d;
934 struct dma_chan *chan;
937 mutex_lock(&dma_list_mutex);
938 dmaengine_ref_count++;
940 /* try to grab channels */
941 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
942 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
944 list_for_each_entry(chan, &device->channels, device_node) {
945 err = dma_chan_get(chan);
946 if (err == -ENODEV) {
947 /* module removed before we could use it */
948 list_del_rcu(&device->global_node);
951 dev_dbg(chan->device->dev,
952 "%s: failed to get %s: (%d)\n",
953 __func__, dma_chan_name(chan), err);
957 /* if this is the first reference and there were channels
958 * waiting we need to rebalance to get those channels
959 * incorporated into the channel table
961 if (dmaengine_ref_count == 1)
962 dma_channel_rebalance();
963 mutex_unlock(&dma_list_mutex);
965 EXPORT_SYMBOL(dmaengine_get);
968 * dmaengine_put - let DMA drivers be removed when ref_count == 0
970 void dmaengine_put(void)
972 struct dma_device *device, *_d;
973 struct dma_chan *chan;
975 mutex_lock(&dma_list_mutex);
976 dmaengine_ref_count--;
977 BUG_ON(dmaengine_ref_count < 0);
978 /* drop channel references */
979 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
980 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
982 list_for_each_entry(chan, &device->channels, device_node)
985 mutex_unlock(&dma_list_mutex);
987 EXPORT_SYMBOL(dmaengine_put);
989 static bool device_has_all_tx_types(struct dma_device *device)
991 /* A device that satisfies this test has channels that will never cause
992 * an async_tx channel switch event as all possible operation types can
995 #ifdef CONFIG_ASYNC_TX_DMA
996 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
1000 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1001 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1005 #if IS_ENABLED(CONFIG_ASYNC_XOR)
1006 if (!dma_has_cap(DMA_XOR, device->cap_mask))
1009 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1010 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1015 #if IS_ENABLED(CONFIG_ASYNC_PQ)
1016 if (!dma_has_cap(DMA_PQ, device->cap_mask))
1019 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1020 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1028 static int get_dma_id(struct dma_device *device)
1030 int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1034 device->dev_id = rc;
1038 static int __dma_async_device_channel_register(struct dma_device *device,
1039 struct dma_chan *chan)
1043 chan->local = alloc_percpu(typeof(*chan->local));
1046 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1049 goto err_free_local;
1053 * When the chan_id is a negative value, we are dynamically adding
1054 * the channel. Otherwise we are static enumerating.
1056 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1057 if (chan->chan_id < 0) {
1058 pr_err("%s: unable to alloc ida for chan: %d\n",
1059 __func__, chan->chan_id);
1064 chan->dev->device.class = &dma_devclass;
1065 chan->dev->device.parent = device->dev;
1066 chan->dev->chan = chan;
1067 chan->dev->dev_id = device->dev_id;
1068 dev_set_name(&chan->dev->device, "dma%dchan%d",
1069 device->dev_id, chan->chan_id);
1070 rc = device_register(&chan->dev->device);
1073 chan->client_count = 0;
1079 ida_free(&device->chan_ida, chan->chan_id);
1083 free_percpu(chan->local);
1088 int dma_async_device_channel_register(struct dma_device *device,
1089 struct dma_chan *chan)
1093 rc = __dma_async_device_channel_register(device, chan);
1097 dma_channel_rebalance();
1100 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1102 static void __dma_async_device_channel_unregister(struct dma_device *device,
1103 struct dma_chan *chan)
1105 WARN_ONCE(!device->device_release && chan->client_count,
1106 "%s called while %d clients hold a reference\n",
1107 __func__, chan->client_count);
1108 mutex_lock(&dma_list_mutex);
1110 chan->dev->chan = NULL;
1111 mutex_unlock(&dma_list_mutex);
1112 ida_free(&device->chan_ida, chan->chan_id);
1113 device_unregister(&chan->dev->device);
1114 free_percpu(chan->local);
1117 void dma_async_device_channel_unregister(struct dma_device *device,
1118 struct dma_chan *chan)
1120 __dma_async_device_channel_unregister(device, chan);
1121 dma_channel_rebalance();
1123 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1126 * dma_async_device_register - registers DMA devices found
1127 * @device: pointer to &struct dma_device
1129 * After calling this routine the structure should not be freed except in the
1130 * device_release() callback which will be called after
1131 * dma_async_device_unregister() is called and no further references are taken.
1133 int dma_async_device_register(struct dma_device *device)
1136 struct dma_chan* chan;
1141 /* validate device routines */
1143 pr_err("DMAdevice must have dev\n");
1147 device->owner = device->dev->driver->owner;
1149 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1150 dev_err(device->dev,
1151 "Device claims capability %s, but op is not defined\n",
1156 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1157 dev_err(device->dev,
1158 "Device claims capability %s, but op is not defined\n",
1163 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1164 dev_err(device->dev,
1165 "Device claims capability %s, but op is not defined\n",
1170 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1171 dev_err(device->dev,
1172 "Device claims capability %s, but op is not defined\n",
1177 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1178 dev_err(device->dev,
1179 "Device claims capability %s, but op is not defined\n",
1184 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1185 dev_err(device->dev,
1186 "Device claims capability %s, but op is not defined\n",
1191 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1192 dev_err(device->dev,
1193 "Device claims capability %s, but op is not defined\n",
1198 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1199 dev_err(device->dev,
1200 "Device claims capability %s, but op is not defined\n",
1205 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1206 dev_err(device->dev,
1207 "Device claims capability %s, but op is not defined\n",
1213 if (!device->device_tx_status) {
1214 dev_err(device->dev, "Device tx_status is not defined\n");
1219 if (!device->device_issue_pending) {
1220 dev_err(device->dev, "Device issue_pending is not defined\n");
1224 if (!device->device_release)
1225 dev_dbg(device->dev,
1226 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1228 kref_init(&device->ref);
1230 /* note: this only matters in the
1231 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1233 if (device_has_all_tx_types(device))
1234 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1236 rc = get_dma_id(device);
1240 ida_init(&device->chan_ida);
1242 /* represent channels in sysfs. Probably want devs too */
1243 list_for_each_entry(chan, &device->channels, device_node) {
1244 rc = __dma_async_device_channel_register(device, chan);
1249 mutex_lock(&dma_list_mutex);
1250 /* take references on public channels */
1251 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1252 list_for_each_entry(chan, &device->channels, device_node) {
1253 /* if clients are already waiting for channels we need
1254 * to take references on their behalf
1256 if (dma_chan_get(chan) == -ENODEV) {
1257 /* note we can only get here for the first
1258 * channel as the remaining channels are
1259 * guaranteed to get a reference
1262 mutex_unlock(&dma_list_mutex);
1266 list_add_tail_rcu(&device->global_node, &dma_device_list);
1267 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1268 device->privatecnt++; /* Always private */
1269 dma_channel_rebalance();
1270 mutex_unlock(&dma_list_mutex);
1272 dmaengine_debug_register(device);
1277 /* if we never registered a channel just release the idr */
1278 if (!device->chancnt) {
1279 ida_free(&dma_ida, device->dev_id);
1283 list_for_each_entry(chan, &device->channels, device_node) {
1284 if (chan->local == NULL)
1286 mutex_lock(&dma_list_mutex);
1287 chan->dev->chan = NULL;
1288 mutex_unlock(&dma_list_mutex);
1289 device_unregister(&chan->dev->device);
1290 free_percpu(chan->local);
1294 EXPORT_SYMBOL(dma_async_device_register);
1297 * dma_async_device_unregister - unregister a DMA device
1298 * @device: pointer to &struct dma_device
1300 * This routine is called by dma driver exit routines, dmaengine holds module
1301 * references to prevent it being called while channels are in use.
1303 void dma_async_device_unregister(struct dma_device *device)
1305 struct dma_chan *chan, *n;
1307 dmaengine_debug_unregister(device);
1309 list_for_each_entry_safe(chan, n, &device->channels, device_node)
1310 __dma_async_device_channel_unregister(device, chan);
1312 mutex_lock(&dma_list_mutex);
1314 * setting DMA_PRIVATE ensures the device being torn down will not
1315 * be used in the channel_table
1317 dma_cap_set(DMA_PRIVATE, device->cap_mask);
1318 dma_channel_rebalance();
1319 ida_free(&dma_ida, device->dev_id);
1320 dma_device_put(device);
1321 mutex_unlock(&dma_list_mutex);
1323 EXPORT_SYMBOL(dma_async_device_unregister);
1325 static void dmam_device_release(struct device *dev, void *res)
1327 struct dma_device *device;
1329 device = *(struct dma_device **)res;
1330 dma_async_device_unregister(device);
1334 * dmaenginem_async_device_register - registers DMA devices found
1335 * @device: pointer to &struct dma_device
1337 * The operation is managed and will be undone on driver detach.
1339 int dmaenginem_async_device_register(struct dma_device *device)
1344 p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1348 ret = dma_async_device_register(device);
1350 *(struct dma_device **)p = device;
1351 devres_add(device->dev, p);
1358 EXPORT_SYMBOL(dmaenginem_async_device_register);
1360 struct dmaengine_unmap_pool {
1361 struct kmem_cache *cache;
1367 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1368 static struct dmaengine_unmap_pool unmap_pool[] = {
1370 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1377 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1379 int order = get_count_order(nr);
1383 return &unmap_pool[0];
1384 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1386 return &unmap_pool[1];
1388 return &unmap_pool[2];
1390 return &unmap_pool[3];
1398 static void dmaengine_unmap(struct kref *kref)
1400 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1401 struct device *dev = unmap->dev;
1404 cnt = unmap->to_cnt;
1405 for (i = 0; i < cnt; i++)
1406 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1408 cnt += unmap->from_cnt;
1409 for (; i < cnt; i++)
1410 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1412 cnt += unmap->bidi_cnt;
1413 for (; i < cnt; i++) {
1414 if (unmap->addr[i] == 0)
1416 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1419 cnt = unmap->map_cnt;
1420 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1423 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1426 kref_put(&unmap->kref, dmaengine_unmap);
1428 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1430 static void dmaengine_destroy_unmap_pool(void)
1434 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1435 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1437 mempool_destroy(p->pool);
1439 kmem_cache_destroy(p->cache);
1444 static int __init dmaengine_init_unmap_pool(void)
1448 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1449 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1452 size = sizeof(struct dmaengine_unmap_data) +
1453 sizeof(dma_addr_t) * p->size;
1455 p->cache = kmem_cache_create(p->name, size, 0,
1456 SLAB_HWCACHE_ALIGN, NULL);
1459 p->pool = mempool_create_slab_pool(1, p->cache);
1464 if (i == ARRAY_SIZE(unmap_pool))
1467 dmaengine_destroy_unmap_pool();
1471 struct dmaengine_unmap_data *
1472 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1474 struct dmaengine_unmap_data *unmap;
1476 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1480 memset(unmap, 0, sizeof(*unmap));
1481 kref_init(&unmap->kref);
1483 unmap->map_cnt = nr;
1487 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1489 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1490 struct dma_chan *chan)
1493 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1494 spin_lock_init(&tx->lock);
1497 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1499 static inline int desc_check_and_set_metadata_mode(
1500 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1502 /* Make sure that the metadata mode is not mixed */
1503 if (!desc->desc_metadata_mode) {
1504 if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1505 desc->desc_metadata_mode = mode;
1508 } else if (desc->desc_metadata_mode != mode) {
1515 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1516 void *data, size_t len)
1523 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1527 if (!desc->metadata_ops || !desc->metadata_ops->attach)
1530 return desc->metadata_ops->attach(desc, data, len);
1532 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1534 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1535 size_t *payload_len, size_t *max_len)
1540 return ERR_PTR(-EINVAL);
1542 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1544 return ERR_PTR(ret);
1546 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1547 return ERR_PTR(-ENOTSUPP);
1549 return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1551 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1553 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1561 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1565 if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1568 return desc->metadata_ops->set_len(desc, payload_len);
1570 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1573 * dma_wait_for_async_tx - spin wait for a transaction to complete
1574 * @tx: in-flight transaction to wait on
1577 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1579 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1582 return DMA_COMPLETE;
1584 while (tx->cookie == -EBUSY) {
1585 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1586 dev_err(tx->chan->device->dev,
1587 "%s timeout waiting for descriptor submission\n",
1593 return dma_sync_wait(tx->chan, tx->cookie);
1595 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1598 * dma_run_dependencies - process dependent operations on the target channel
1599 * @tx: transaction with dependencies
1601 * Helper routine for DMA drivers to process (start) dependent operations
1602 * on their target channel.
1604 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1606 struct dma_async_tx_descriptor *dep = txd_next(tx);
1607 struct dma_async_tx_descriptor *dep_next;
1608 struct dma_chan *chan;
1613 /* we'll submit tx->next now, so clear the link */
1617 /* keep submitting up until a channel switch is detected
1618 * in that case we will be called again as a result of
1619 * processing the interrupt from async_tx_channel_switch
1621 for (; dep; dep = dep_next) {
1623 txd_clear_parent(dep);
1624 dep_next = txd_next(dep);
1625 if (dep_next && dep_next->chan == chan)
1626 txd_clear_next(dep); /* ->next will be submitted */
1628 dep_next = NULL; /* submit current dep and terminate */
1631 dep->tx_submit(dep);
1634 chan->device->device_issue_pending(chan);
1636 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1638 static int __init dma_bus_init(void)
1640 int err = dmaengine_init_unmap_pool();
1645 err = class_register(&dma_devclass);
1647 dmaengine_debugfs_init();
1651 arch_initcall(dma_bus_init);