1 #include <linux/dmaengine.h>
2 #include <linux/dma-mapping.h>
3 #include <linux/platform_device.h>
4 #include <linux/module.h>
6 #include <linux/slab.h>
7 #include <linux/of_dma.h>
8 #include <linux/of_irq.h>
9 #include <linux/dmapool.h>
10 #include <linux/interrupt.h>
11 #include <linux/of_address.h>
12 #include <linux/pm_runtime.h>
13 #include "dmaengine.h"
16 #define DESC_TYPE_HOST 0x10
17 #define DESC_TYPE_TEARD 0x13
19 #define TD_DESC_IS_RX (1 << 16)
20 #define TD_DESC_DMA_NUM 10
22 #define DESC_LENGTH_BITS_NUM 21
24 #define DESC_TYPE_USB (5 << 26)
25 #define DESC_PD_COMPLETE (1 << 31)
29 #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
30 #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
33 #define GCR_CHAN_ENABLE (1 << 31)
34 #define GCR_TEARDOWN (1 << 30)
35 #define GCR_STARV_RETRY (1 << 24)
36 #define GCR_DESC_TYPE_HOST (1 << 14)
39 #define DMA_SCHED_CTRL 0
40 #define DMA_SCHED_CTRL_EN (1 << 31)
41 #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
43 #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
44 #define SCHED_ENTRY0_IS_RX (1 << 7)
46 #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
47 #define SCHED_ENTRY1_IS_RX (1 << 15)
49 #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
50 #define SCHED_ENTRY2_IS_RX (1 << 23)
52 #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
53 #define SCHED_ENTRY3_IS_RX (1 << 31)
56 /* 4 KiB of memory for descriptors, 2 for each endpoint */
57 #define ALLOC_DECS_NUM 128
59 #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
60 #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
62 #define QMGR_LRAM0_BASE 0x80
63 #define QMGR_LRAM_SIZE 0x84
64 #define QMGR_LRAM1_BASE 0x88
65 #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
66 #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
67 #define QMGR_MEMCTRL_IDX_SH 16
68 #define QMGR_MEMCTRL_DESC_SH 8
70 #define QMGR_NUM_PEND 5
71 #define QMGR_PEND(x) (0x90 + (x) * 4)
73 #define QMGR_PENDING_SLOT_Q(x) (x / 32)
74 #define QMGR_PENDING_BIT_Q(x) (x % 32)
76 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
77 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
78 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
79 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
81 /* Glue layer specific */
82 /* USBSS / USB AM335x */
83 #define USBSS_IRQ_STATUS 0x28
84 #define USBSS_IRQ_ENABLER 0x2c
85 #define USBSS_IRQ_CLEARR 0x30
87 #define USBSS_IRQ_PD_COMP (1 << 2)
89 struct cppi41_channel {
91 struct dma_async_tx_descriptor txd;
92 struct cppi41_dd *cdd;
93 struct cppi41_desc *desc;
95 void __iomem *gcr_reg;
100 unsigned int q_comp_num;
101 unsigned int port_num;
104 unsigned td_queued:1;
106 unsigned td_desc_seen:1;
126 struct dma_device ddev;
129 dma_addr_t scratch_phys;
131 struct cppi41_desc *cd;
132 dma_addr_t descs_phys;
134 struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
136 void __iomem *usbss_mem;
137 void __iomem *ctrl_mem;
138 void __iomem *sched_mem;
139 void __iomem *qmgr_mem;
141 const struct chan_queues *queues_rx;
142 const struct chan_queues *queues_tx;
143 struct chan_queues td_queue;
145 /* context for suspend/resume */
146 unsigned int dma_tdfdq;
149 #define FIST_COMPLETION_QUEUE 93
150 static struct chan_queues usb_queues_tx[] = {
152 [ 0] = { .submit = 32, .complete = 93},
153 [ 1] = { .submit = 34, .complete = 94},
154 [ 2] = { .submit = 36, .complete = 95},
155 [ 3] = { .submit = 38, .complete = 96},
156 [ 4] = { .submit = 40, .complete = 97},
157 [ 5] = { .submit = 42, .complete = 98},
158 [ 6] = { .submit = 44, .complete = 99},
159 [ 7] = { .submit = 46, .complete = 100},
160 [ 8] = { .submit = 48, .complete = 101},
161 [ 9] = { .submit = 50, .complete = 102},
162 [10] = { .submit = 52, .complete = 103},
163 [11] = { .submit = 54, .complete = 104},
164 [12] = { .submit = 56, .complete = 105},
165 [13] = { .submit = 58, .complete = 106},
166 [14] = { .submit = 60, .complete = 107},
169 [15] = { .submit = 62, .complete = 125},
170 [16] = { .submit = 64, .complete = 126},
171 [17] = { .submit = 66, .complete = 127},
172 [18] = { .submit = 68, .complete = 128},
173 [19] = { .submit = 70, .complete = 129},
174 [20] = { .submit = 72, .complete = 130},
175 [21] = { .submit = 74, .complete = 131},
176 [22] = { .submit = 76, .complete = 132},
177 [23] = { .submit = 78, .complete = 133},
178 [24] = { .submit = 80, .complete = 134},
179 [25] = { .submit = 82, .complete = 135},
180 [26] = { .submit = 84, .complete = 136},
181 [27] = { .submit = 86, .complete = 137},
182 [28] = { .submit = 88, .complete = 138},
183 [29] = { .submit = 90, .complete = 139},
186 static const struct chan_queues usb_queues_rx[] = {
188 [ 0] = { .submit = 1, .complete = 109},
189 [ 1] = { .submit = 2, .complete = 110},
190 [ 2] = { .submit = 3, .complete = 111},
191 [ 3] = { .submit = 4, .complete = 112},
192 [ 4] = { .submit = 5, .complete = 113},
193 [ 5] = { .submit = 6, .complete = 114},
194 [ 6] = { .submit = 7, .complete = 115},
195 [ 7] = { .submit = 8, .complete = 116},
196 [ 8] = { .submit = 9, .complete = 117},
197 [ 9] = { .submit = 10, .complete = 118},
198 [10] = { .submit = 11, .complete = 119},
199 [11] = { .submit = 12, .complete = 120},
200 [12] = { .submit = 13, .complete = 121},
201 [13] = { .submit = 14, .complete = 122},
202 [14] = { .submit = 15, .complete = 123},
205 [15] = { .submit = 16, .complete = 141},
206 [16] = { .submit = 17, .complete = 142},
207 [17] = { .submit = 18, .complete = 143},
208 [18] = { .submit = 19, .complete = 144},
209 [19] = { .submit = 20, .complete = 145},
210 [20] = { .submit = 21, .complete = 146},
211 [21] = { .submit = 22, .complete = 147},
212 [22] = { .submit = 23, .complete = 148},
213 [23] = { .submit = 24, .complete = 149},
214 [24] = { .submit = 25, .complete = 150},
215 [25] = { .submit = 26, .complete = 151},
216 [26] = { .submit = 27, .complete = 152},
217 [27] = { .submit = 28, .complete = 153},
218 [28] = { .submit = 29, .complete = 154},
219 [29] = { .submit = 30, .complete = 155},
222 struct cppi_glue_infos {
223 irqreturn_t (*isr)(int irq, void *data);
224 const struct chan_queues *queues_rx;
225 const struct chan_queues *queues_tx;
226 struct chan_queues td_queue;
229 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
231 return container_of(c, struct cppi41_channel, chan);
234 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
236 struct cppi41_channel *c;
240 descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
242 if (!((desc >= cdd->descs_phys) &&
243 (desc < (cdd->descs_phys + descs_size)))) {
247 desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
248 BUG_ON(desc_num >= ALLOC_DECS_NUM);
249 c = cdd->chan_busy[desc_num];
250 cdd->chan_busy[desc_num] = NULL;
254 static void cppi_writel(u32 val, void *__iomem *mem)
256 __raw_writel(val, mem);
259 static u32 cppi_readl(void *__iomem *mem)
261 return __raw_readl(mem);
264 static u32 pd_trans_len(u32 val)
266 return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
269 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
273 desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
278 static irqreturn_t cppi41_irq(int irq, void *data)
280 struct cppi41_dd *cdd = data;
281 struct cppi41_channel *c;
285 status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
286 if (!(status & USBSS_IRQ_PD_COMP))
288 cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
290 for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
295 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
296 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
298 /* set corresponding bit for completetion Q 93 */
299 mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
300 /* not set all bits for queues less than Q 93 */
302 /* now invert and keep only Q 93+ set */
313 val &= ~(1 << q_num);
315 desc = cppi41_pop_desc(cdd, q_num);
316 c = desc_to_chan(cdd, desc);
318 pr_err("%s() q %d desc %08x\n", __func__,
322 c->residue = pd_trans_len(c->desc->pd6) -
323 pd_trans_len(c->desc->pd0);
325 dma_cookie_complete(&c->txd);
326 c->txd.callback(c->txd.callback_param);
332 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
336 cookie = dma_cookie_assign(tx);
341 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
343 struct cppi41_channel *c = to_cpp41_chan(chan);
345 dma_cookie_init(chan);
346 dma_async_tx_descriptor_init(&c->txd, chan);
347 c->txd.tx_submit = cppi41_tx_submit;
350 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
355 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
359 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
360 dma_cookie_t cookie, struct dma_tx_state *txstate)
362 struct cppi41_channel *c = to_cpp41_chan(chan);
366 ret = dma_cookie_status(chan, cookie, txstate);
367 if (txstate && ret == DMA_COMPLETE)
368 txstate->residue = c->residue;
374 static void push_desc_queue(struct cppi41_channel *c)
376 struct cppi41_dd *cdd = c->cdd;
381 desc_phys = lower_32_bits(c->desc_phys);
382 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
383 WARN_ON(cdd->chan_busy[desc_num]);
384 cdd->chan_busy[desc_num] = c;
386 reg = (sizeof(struct cppi41_desc) - 24) / 4;
388 cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
391 static void cppi41_dma_issue_pending(struct dma_chan *chan)
393 struct cppi41_channel *c = to_cpp41_chan(chan);
398 reg = GCR_CHAN_ENABLE;
400 reg |= GCR_STARV_RETRY;
401 reg |= GCR_DESC_TYPE_HOST;
402 reg |= c->q_comp_num;
405 cppi_writel(reg, c->gcr_reg);
408 * We don't use writel() but __raw_writel() so we have to make sure
409 * that the DMA descriptor in coherent memory made to the main memory
410 * before starting the dma engine.
416 static u32 get_host_pd0(u32 length)
420 reg = DESC_TYPE_HOST << DESC_TYPE;
426 static u32 get_host_pd1(struct cppi41_channel *c)
435 static u32 get_host_pd2(struct cppi41_channel *c)
440 reg |= c->q_comp_num;
445 static u32 get_host_pd3(u32 length)
449 /* PD3 = packet size */
455 static u32 get_host_pd6(u32 length)
459 /* PD6 buffer size */
460 reg = DESC_PD_COMPLETE;
466 static u32 get_host_pd4_or_7(u32 addr)
475 static u32 get_host_pd5(void)
484 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
485 struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
486 enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
488 struct cppi41_channel *c = to_cpp41_chan(chan);
489 struct cppi41_desc *d;
490 struct scatterlist *sg;
496 for_each_sg(sgl, sg, sg_len, i) {
500 /* We need to use more than one desc once musb supports sg */
502 addr = lower_32_bits(sg_dma_address(sg));
503 len = sg_dma_len(sg);
505 d->pd0 = get_host_pd0(len);
506 d->pd1 = get_host_pd1(c);
507 d->pd2 = get_host_pd2(c);
508 d->pd3 = get_host_pd3(len);
509 d->pd4 = get_host_pd4_or_7(addr);
510 d->pd5 = get_host_pd5();
511 d->pd6 = get_host_pd6(len);
512 d->pd7 = get_host_pd4_or_7(addr);
520 static int cpp41_cfg_chan(struct cppi41_channel *c,
521 struct dma_slave_config *cfg)
526 static void cppi41_compute_td_desc(struct cppi41_desc *d)
528 d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
531 static int cppi41_tear_down_chan(struct cppi41_channel *c)
533 struct cppi41_dd *cdd = c->cdd;
534 struct cppi41_desc *td;
540 td += cdd->first_td_desc;
542 td_desc_phys = cdd->descs_phys;
543 td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
546 cppi41_compute_td_desc(td);
549 reg = (sizeof(struct cppi41_desc) - 24) / 4;
551 cppi_writel(reg, cdd->qmgr_mem +
552 QMGR_QUEUE_D(cdd->td_queue.submit));
554 reg = GCR_CHAN_ENABLE;
556 reg |= GCR_STARV_RETRY;
557 reg |= GCR_DESC_TYPE_HOST;
558 reg |= c->q_comp_num;
561 cppi_writel(reg, c->gcr_reg);
566 if (!c->td_seen || !c->td_desc_seen) {
568 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
570 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
572 if (desc_phys == c->desc_phys) {
575 } else if (desc_phys == td_desc_phys) {
580 WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
581 WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
582 WARN_ON((pd0 & 0x1f) != c->port_num);
584 } else if (desc_phys) {
590 * If the TX descriptor / channel is in use, the caller needs to poke
591 * his TD bit multiple times. After that he hardware releases the
592 * transfer descriptor followed by TD descriptor. Waiting seems not to
593 * cause any difference.
594 * RX seems to be thrown out right away. However once the TearDown
595 * descriptor gets through we are done. If we have seens the transfer
596 * descriptor before the TD we fetch it from enqueue, it has to be
597 * there waiting for us.
599 if (!c->td_seen && c->td_retry)
602 WARN_ON(!c->td_retry);
603 if (!c->td_desc_seen) {
604 desc_phys = cppi41_pop_desc(cdd, c->q_num);
611 cppi_writel(0, c->gcr_reg);
615 static int cppi41_stop_chan(struct dma_chan *chan)
617 struct cppi41_channel *c = to_cpp41_chan(chan);
618 struct cppi41_dd *cdd = c->cdd;
623 ret = cppi41_tear_down_chan(c);
627 desc_phys = lower_32_bits(c->desc_phys);
628 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
629 WARN_ON(!cdd->chan_busy[desc_num]);
630 cdd->chan_busy[desc_num] = NULL;
635 static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
638 struct cppi41_channel *c = to_cpp41_chan(chan);
642 case DMA_SLAVE_CONFIG:
643 ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
646 case DMA_TERMINATE_ALL:
647 ret = cppi41_stop_chan(chan);
657 static void cleanup_chans(struct cppi41_dd *cdd)
659 while (!list_empty(&cdd->ddev.channels)) {
660 struct cppi41_channel *cchan;
662 cchan = list_first_entry(&cdd->ddev.channels,
663 struct cppi41_channel, chan.device_node);
664 list_del(&cchan->chan.device_node);
669 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
671 struct cppi41_channel *cchan;
676 ret = of_property_read_u32(dev->of_node, "#dma-channels",
681 * The channels can only be used as TX or as RX. So we add twice
682 * that much dma channels because USB can only do RX or TX.
686 for (i = 0; i < n_chans; i++) {
687 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
693 cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
696 cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
699 cchan->port_num = i >> 1;
700 cchan->desc = &cdd->cd[i];
701 cchan->desc_phys = cdd->descs_phys;
702 cchan->desc_phys += i * sizeof(struct cppi41_desc);
703 cchan->chan.device = &cdd->ddev;
704 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
706 cdd->first_td_desc = n_chans;
714 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
716 unsigned int mem_decs;
719 mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
721 for (i = 0; i < DESCS_AREAS; i++) {
723 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
724 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
726 dma_free_coherent(dev, mem_decs, cdd->cd,
731 static void disable_sched(struct cppi41_dd *cdd)
733 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
736 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
740 purge_descs(dev, cdd);
742 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
743 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
744 dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
748 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
750 unsigned int desc_size;
751 unsigned int mem_decs;
756 BUILD_BUG_ON(sizeof(struct cppi41_desc) &
757 (sizeof(struct cppi41_desc) - 1));
758 BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
759 BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
761 desc_size = sizeof(struct cppi41_desc);
762 mem_decs = ALLOC_DECS_NUM * desc_size;
765 for (i = 0; i < DESCS_AREAS; i++) {
767 reg = idx << QMGR_MEMCTRL_IDX_SH;
768 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
769 reg |= ilog2(ALLOC_DECS_NUM) - 5;
771 BUILD_BUG_ON(DESCS_AREAS != 1);
772 cdd->cd = dma_alloc_coherent(dev, mem_decs,
773 &cdd->descs_phys, GFP_KERNEL);
777 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
778 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
780 idx += ALLOC_DECS_NUM;
785 static void init_sched(struct cppi41_dd *cdd)
792 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
793 for (ch = 0; ch < 15 * 2; ch += 2) {
795 reg = SCHED_ENTRY0_CHAN(ch);
796 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
798 reg |= SCHED_ENTRY2_CHAN(ch + 1);
799 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
800 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
803 reg = 15 * 2 * 2 - 1;
804 reg |= DMA_SCHED_CTRL_EN;
805 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
808 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
812 BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
813 cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
814 &cdd->scratch_phys, GFP_KERNEL);
815 if (!cdd->qmgr_scratch)
818 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
819 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
820 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
822 ret = init_descs(dev, cdd);
826 cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
830 deinit_cppi41(dev, cdd);
834 static struct platform_driver cpp41_dma_driver;
836 * The param format is:
844 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
846 struct cppi41_channel *cchan;
847 struct cppi41_dd *cdd;
848 const struct chan_queues *queues;
851 if (chan->device->dev->driver != &cpp41_dma_driver.driver)
854 cchan = to_cpp41_chan(chan);
856 if (cchan->port_num != num[INFO_PORT])
859 if (cchan->is_tx && !num[INFO_IS_TX])
863 queues = cdd->queues_tx;
865 queues = cdd->queues_rx;
867 BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
868 if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
871 cchan->q_num = queues[cchan->port_num].submit;
872 cchan->q_comp_num = queues[cchan->port_num].complete;
876 static struct of_dma_filter_info cpp41_dma_info = {
877 .filter_fn = cpp41_dma_filter_fn,
880 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
881 struct of_dma *ofdma)
883 int count = dma_spec->args_count;
884 struct of_dma_filter_info *info = ofdma->of_dma_data;
886 if (!info || !info->filter_fn)
892 return dma_request_channel(info->dma_cap, info->filter_fn,
896 static const struct cppi_glue_infos usb_infos = {
898 .queues_rx = usb_queues_rx,
899 .queues_tx = usb_queues_tx,
900 .td_queue = { .submit = 31, .complete = 0 },
903 static const struct of_device_id cppi41_dma_ids[] = {
904 { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
907 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
909 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
911 const struct of_device_id *of_id;
913 of_id = of_match_node(cppi41_dma_ids, dev->of_node);
919 static int cppi41_dma_probe(struct platform_device *pdev)
921 struct cppi41_dd *cdd;
922 struct device *dev = &pdev->dev;
923 const struct cppi_glue_infos *glue_info;
927 glue_info = get_glue_info(dev);
931 cdd = kzalloc(sizeof(*cdd), GFP_KERNEL);
935 dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
936 cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
937 cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
938 cdd->ddev.device_tx_status = cppi41_dma_tx_status;
939 cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
940 cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
941 cdd->ddev.device_control = cppi41_dma_control;
943 INIT_LIST_HEAD(&cdd->ddev.channels);
944 cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
946 cdd->usbss_mem = of_iomap(dev->of_node, 0);
947 cdd->ctrl_mem = of_iomap(dev->of_node, 1);
948 cdd->sched_mem = of_iomap(dev->of_node, 2);
949 cdd->qmgr_mem = of_iomap(dev->of_node, 3);
951 if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
957 pm_runtime_enable(dev);
958 ret = pm_runtime_get_sync(dev);
962 cdd->queues_rx = glue_info->queues_rx;
963 cdd->queues_tx = glue_info->queues_tx;
964 cdd->td_queue = glue_info->td_queue;
966 ret = init_cppi41(dev, cdd);
970 ret = cppi41_add_chans(dev, cdd);
974 irq = irq_of_parse_and_map(dev->of_node, 0);
980 cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
982 ret = request_irq(irq, glue_info->isr, IRQF_SHARED,
988 ret = dma_async_device_register(&cdd->ddev);
992 ret = of_dma_controller_register(dev->of_node,
993 cppi41_dma_xlate, &cpp41_dma_info);
997 platform_set_drvdata(pdev, cdd);
1000 dma_async_device_unregister(&cdd->ddev);
1004 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1007 deinit_cppi41(dev, cdd);
1009 pm_runtime_put(dev);
1011 pm_runtime_disable(dev);
1012 iounmap(cdd->usbss_mem);
1013 iounmap(cdd->ctrl_mem);
1014 iounmap(cdd->sched_mem);
1015 iounmap(cdd->qmgr_mem);
1021 static int cppi41_dma_remove(struct platform_device *pdev)
1023 struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1025 of_dma_controller_free(pdev->dev.of_node);
1026 dma_async_device_unregister(&cdd->ddev);
1028 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1029 free_irq(cdd->irq, cdd);
1031 deinit_cppi41(&pdev->dev, cdd);
1032 iounmap(cdd->usbss_mem);
1033 iounmap(cdd->ctrl_mem);
1034 iounmap(cdd->sched_mem);
1035 iounmap(cdd->qmgr_mem);
1036 pm_runtime_put(&pdev->dev);
1037 pm_runtime_disable(&pdev->dev);
1042 #ifdef CONFIG_PM_SLEEP
1043 static int cppi41_suspend(struct device *dev)
1045 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1047 cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1048 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1054 static int cppi41_resume(struct device *dev)
1056 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1057 struct cppi41_channel *c;
1060 for (i = 0; i < DESCS_AREAS; i++)
1061 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1063 list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1065 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1069 cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1070 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1071 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1072 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1074 cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1080 static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
1082 static struct platform_driver cpp41_dma_driver = {
1083 .probe = cppi41_dma_probe,
1084 .remove = cppi41_dma_remove,
1086 .name = "cppi41-dma-engine",
1087 .owner = THIS_MODULE,
1088 .pm = &cppi41_pm_ops,
1089 .of_match_table = of_match_ptr(cppi41_dma_ids),
1093 module_platform_driver(cpp41_dma_driver);
1094 MODULE_LICENSE("GPL");
1095 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");