Merge branch 'master' of git://git.denx.de/u-boot
[platform/kernel/u-boot.git] / drivers / ddr / fsl / lc_common_dimm_params.c
1 /*
2  * Copyright 2008-2014 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8
9 #include <common.h>
10 #include <fsl_ddr_sdram.h>
11
12 #include <fsl_ddr.h>
13
14 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
15 static unsigned int
16 compute_cas_latency(const unsigned int ctrl_num,
17                     const dimm_params_t *dimm_params,
18                     common_timing_params_t *outpdimm,
19                     unsigned int number_of_dimms)
20 {
21         unsigned int i;
22         unsigned int common_caslat;
23         unsigned int caslat_actual;
24         unsigned int retry = 16;
25         unsigned int tmp;
26         const unsigned int mclk_ps = get_memory_clk_period_ps(ctrl_num);
27 #ifdef CONFIG_SYS_FSL_DDR3
28         const unsigned int taamax = 20000;
29 #else
30         const unsigned int taamax = 18000;
31 #endif
32
33         /* compute the common CAS latency supported between slots */
34         tmp = dimm_params[0].caslat_x;
35         for (i = 1; i < number_of_dimms; i++) {
36                 if (dimm_params[i].n_ranks)
37                         tmp &= dimm_params[i].caslat_x;
38         }
39         common_caslat = tmp;
40
41         /* validate if the memory clk is in the range of dimms */
42         if (mclk_ps < outpdimm->tckmin_x_ps) {
43                 printf("DDR clock (MCLK cycle %u ps) is faster than "
44                         "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
45                         mclk_ps, outpdimm->tckmin_x_ps);
46         }
47 #ifdef CONFIG_SYS_FSL_DDR4
48         if (mclk_ps > outpdimm->tckmax_ps) {
49                 printf("DDR clock (MCLK cycle %u ps) is slower than DIMM(s) (tCKmax %u ps) can support.\n",
50                        mclk_ps, outpdimm->tckmax_ps);
51         }
52 #endif
53         /* determine the acutal cas latency */
54         caslat_actual = (outpdimm->taamin_ps + mclk_ps - 1) / mclk_ps;
55         /* check if the dimms support the CAS latency */
56         while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
57                 caslat_actual++;
58                 retry--;
59         }
60         /* once the caculation of caslat_actual is completed
61          * we must verify that this CAS latency value does not
62          * exceed tAAmax, which is 20 ns for all DDR3 speed grades,
63          * 18ns for all DDR4 speed grades.
64          */
65         if (caslat_actual * mclk_ps > taamax) {
66                 printf("The choosen cas latency %d is too large\n",
67                         caslat_actual);
68         }
69         outpdimm->lowest_common_spd_caslat = caslat_actual;
70         debug("lowest_common_spd_caslat is 0x%x\n", caslat_actual);
71
72         return 0;
73 }
74 #else   /* for DDR1 and DDR2 */
75 static unsigned int
76 compute_cas_latency(const unsigned int ctrl_num,
77                     const dimm_params_t *dimm_params,
78                     common_timing_params_t *outpdimm,
79                     unsigned int number_of_dimms)
80 {
81         int i;
82         const unsigned int mclk_ps = get_memory_clk_period_ps(ctrl_num);
83         unsigned int lowest_good_caslat;
84         unsigned int not_ok;
85         unsigned int temp1, temp2;
86
87         debug("using mclk_ps = %u\n", mclk_ps);
88         if (mclk_ps > outpdimm->tckmax_ps) {
89                 printf("Warning: DDR clock (%u ps) is slower than DIMM(s) (tCKmax %u ps)\n",
90                        mclk_ps, outpdimm->tckmax_ps);
91         }
92
93         /*
94          * Compute a CAS latency suitable for all DIMMs
95          *
96          * Strategy for SPD-defined latencies: compute only
97          * CAS latency defined by all DIMMs.
98          */
99
100         /*
101          * Step 1: find CAS latency common to all DIMMs using bitwise
102          * operation.
103          */
104         temp1 = 0xFF;
105         for (i = 0; i < number_of_dimms; i++) {
106                 if (dimm_params[i].n_ranks) {
107                         temp2 = 0;
108                         temp2 |= 1 << dimm_params[i].caslat_x;
109                         temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
110                         temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
111                         /*
112                          * If there was no entry for X-2 (X-1) in
113                          * the SPD, then caslat_x_minus_2
114                          * (caslat_x_minus_1) contains either 255 or
115                          * 0xFFFFFFFF because that's what the glorious
116                          * __ilog2 function returns for an input of 0.
117                          * On 32-bit PowerPC, left shift counts with bit
118                          * 26 set (that the value of 255 or 0xFFFFFFFF
119                          * will have), cause the destination register to
120                          * be 0.  That is why this works.
121                          */
122                         temp1 &= temp2;
123                 }
124         }
125
126         /*
127          * Step 2: check each common CAS latency against tCK of each
128          * DIMM's SPD.
129          */
130         lowest_good_caslat = 0;
131         temp2 = 0;
132         while (temp1) {
133                 not_ok = 0;
134                 temp2 =  __ilog2(temp1);
135                 debug("checking common caslat = %u\n", temp2);
136
137                 /* Check if this CAS latency will work on all DIMMs at tCK. */
138                 for (i = 0; i < number_of_dimms; i++) {
139                         if (!dimm_params[i].n_ranks)
140                                 continue;
141
142                         if (dimm_params[i].caslat_x == temp2) {
143                                 if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
144                                         debug("CL = %u ok on DIMM %u at tCK=%u ps with tCKmin_X_ps of %u\n",
145                                               temp2, i, mclk_ps,
146                                               dimm_params[i].tckmin_x_ps);
147                                         continue;
148                                 } else {
149                                         not_ok++;
150                                 }
151                         }
152
153                         if (dimm_params[i].caslat_x_minus_1 == temp2) {
154                                 unsigned int tckmin_x_minus_1_ps
155                                         = dimm_params[i].tckmin_x_minus_1_ps;
156                                 if (mclk_ps >= tckmin_x_minus_1_ps) {
157                                         debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_1_ps of %u\n",
158                                               temp2, i, mclk_ps,
159                                               tckmin_x_minus_1_ps);
160                                         continue;
161                                 } else {
162                                         not_ok++;
163                                 }
164                         }
165
166                         if (dimm_params[i].caslat_x_minus_2 == temp2) {
167                                 unsigned int tckmin_x_minus_2_ps
168                                         = dimm_params[i].tckmin_x_minus_2_ps;
169                                 if (mclk_ps >= tckmin_x_minus_2_ps) {
170                                         debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_2_ps of %u\n",
171                                               temp2, i, mclk_ps,
172                                               tckmin_x_minus_2_ps);
173                                         continue;
174                                 } else {
175                                         not_ok++;
176                                 }
177                         }
178                 }
179
180                 if (!not_ok)
181                         lowest_good_caslat = temp2;
182
183                 temp1 &= ~(1 << temp2);
184         }
185
186         debug("lowest common SPD-defined CAS latency = %u\n",
187               lowest_good_caslat);
188         outpdimm->lowest_common_spd_caslat = lowest_good_caslat;
189
190
191         /*
192          * Compute a common 'de-rated' CAS latency.
193          *
194          * The strategy here is to find the *highest* dereated cas latency
195          * with the assumption that all of the DIMMs will support a dereated
196          * CAS latency higher than or equal to their lowest dereated value.
197          */
198         temp1 = 0;
199         for (i = 0; i < number_of_dimms; i++)
200                 temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
201
202         outpdimm->highest_common_derated_caslat = temp1;
203         debug("highest common dereated CAS latency = %u\n", temp1);
204
205         return 0;
206 }
207 #endif
208
209 /*
210  * compute_lowest_common_dimm_parameters()
211  *
212  * Determine the worst-case DIMM timing parameters from the set of DIMMs
213  * whose parameters have been computed into the array pointed to
214  * by dimm_params.
215  */
216 unsigned int
217 compute_lowest_common_dimm_parameters(const unsigned int ctrl_num,
218                                       const dimm_params_t *dimm_params,
219                                       common_timing_params_t *outpdimm,
220                                       const unsigned int number_of_dimms)
221 {
222         unsigned int i, j;
223
224         unsigned int tckmin_x_ps = 0;
225         unsigned int tckmax_ps = 0xFFFFFFFF;
226         unsigned int trcd_ps = 0;
227         unsigned int trp_ps = 0;
228         unsigned int tras_ps = 0;
229 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
230         unsigned int taamin_ps = 0;
231 #endif
232 #ifdef CONFIG_SYS_FSL_DDR4
233         unsigned int twr_ps = 15000;
234         unsigned int trfc1_ps = 0;
235         unsigned int trfc2_ps = 0;
236         unsigned int trfc4_ps = 0;
237         unsigned int trrds_ps = 0;
238         unsigned int trrdl_ps = 0;
239         unsigned int tccdl_ps = 0;
240 #else
241         unsigned int twr_ps = 0;
242         unsigned int twtr_ps = 0;
243         unsigned int trfc_ps = 0;
244         unsigned int trrd_ps = 0;
245         unsigned int trtp_ps = 0;
246 #endif
247         unsigned int trc_ps = 0;
248         unsigned int refresh_rate_ps = 0;
249         unsigned int extended_op_srt = 1;
250 #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
251         unsigned int tis_ps = 0;
252         unsigned int tih_ps = 0;
253         unsigned int tds_ps = 0;
254         unsigned int tdh_ps = 0;
255         unsigned int tdqsq_max_ps = 0;
256         unsigned int tqhs_ps = 0;
257 #endif
258         unsigned int temp1, temp2;
259         unsigned int additive_latency = 0;
260
261         temp1 = 0;
262         for (i = 0; i < number_of_dimms; i++) {
263                 /*
264                  * If there are no ranks on this DIMM,
265                  * it probably doesn't exist, so skip it.
266                  */
267                 if (dimm_params[i].n_ranks == 0) {
268                         temp1++;
269                         continue;
270                 }
271                 if (dimm_params[i].n_ranks == 4 && i != 0) {
272                         printf("Found Quad-rank DIMM in wrong bank, ignored."
273                                 " Software may not run as expected.\n");
274                         temp1++;
275                         continue;
276                 }
277
278                 /*
279                  * check if quad-rank DIMM is plugged if
280                  * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
281                  * Only the board with proper design is capable
282                  */
283 #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
284                 if (dimm_params[i].n_ranks == 4 && \
285                   CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
286                         printf("Found Quad-rank DIMM, not able to support.");
287                         temp1++;
288                         continue;
289                 }
290 #endif
291                 /*
292                  * Find minimum tckmax_ps to find fastest slow speed,
293                  * i.e., this is the slowest the whole system can go.
294                  */
295                 tckmax_ps = min(tckmax_ps,
296                                 (unsigned int)dimm_params[i].tckmax_ps);
297 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
298                 taamin_ps = max(taamin_ps,
299                                 (unsigned int)dimm_params[i].taa_ps);
300 #endif
301                 tckmin_x_ps = max(tckmin_x_ps,
302                                   (unsigned int)dimm_params[i].tckmin_x_ps);
303                 trcd_ps = max(trcd_ps, (unsigned int)dimm_params[i].trcd_ps);
304                 trp_ps = max(trp_ps, (unsigned int)dimm_params[i].trp_ps);
305                 tras_ps = max(tras_ps, (unsigned int)dimm_params[i].tras_ps);
306 #ifdef CONFIG_SYS_FSL_DDR4
307                 trfc1_ps = max(trfc1_ps,
308                                (unsigned int)dimm_params[i].trfc1_ps);
309                 trfc2_ps = max(trfc2_ps,
310                                (unsigned int)dimm_params[i].trfc2_ps);
311                 trfc4_ps = max(trfc4_ps,
312                                (unsigned int)dimm_params[i].trfc4_ps);
313                 trrds_ps = max(trrds_ps,
314                                (unsigned int)dimm_params[i].trrds_ps);
315                 trrdl_ps = max(trrdl_ps,
316                                (unsigned int)dimm_params[i].trrdl_ps);
317                 tccdl_ps = max(tccdl_ps,
318                                (unsigned int)dimm_params[i].tccdl_ps);
319 #else
320                 twr_ps = max(twr_ps, (unsigned int)dimm_params[i].twr_ps);
321                 twtr_ps = max(twtr_ps, (unsigned int)dimm_params[i].twtr_ps);
322                 trfc_ps = max(trfc_ps, (unsigned int)dimm_params[i].trfc_ps);
323                 trrd_ps = max(trrd_ps, (unsigned int)dimm_params[i].trrd_ps);
324                 trtp_ps = max(trtp_ps, (unsigned int)dimm_params[i].trtp_ps);
325 #endif
326                 trc_ps = max(trc_ps, (unsigned int)dimm_params[i].trc_ps);
327 #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
328                 tis_ps = max(tis_ps, (unsigned int)dimm_params[i].tis_ps);
329                 tih_ps = max(tih_ps, (unsigned int)dimm_params[i].tih_ps);
330                 tds_ps = max(tds_ps, (unsigned int)dimm_params[i].tds_ps);
331                 tdh_ps = max(tdh_ps, (unsigned int)dimm_params[i].tdh_ps);
332                 tqhs_ps = max(tqhs_ps, (unsigned int)dimm_params[i].tqhs_ps);
333                 /*
334                  * Find maximum tdqsq_max_ps to find slowest.
335                  *
336                  * FIXME: is finding the slowest value the correct
337                  * strategy for this parameter?
338                  */
339                 tdqsq_max_ps = max(tdqsq_max_ps,
340                                    (unsigned int)dimm_params[i].tdqsq_max_ps);
341 #endif
342                 refresh_rate_ps = max(refresh_rate_ps,
343                                       (unsigned int)dimm_params[i].refresh_rate_ps);
344                 /* extended_op_srt is either 0 or 1, 0 having priority */
345                 extended_op_srt = min(extended_op_srt,
346                                       (unsigned int)dimm_params[i].extended_op_srt);
347         }
348
349         outpdimm->ndimms_present = number_of_dimms - temp1;
350
351         if (temp1 == number_of_dimms) {
352                 debug("no dimms this memory controller\n");
353                 return 0;
354         }
355
356         outpdimm->tckmin_x_ps = tckmin_x_ps;
357         outpdimm->tckmax_ps = tckmax_ps;
358 #if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR4)
359         outpdimm->taamin_ps = taamin_ps;
360 #endif
361         outpdimm->trcd_ps = trcd_ps;
362         outpdimm->trp_ps = trp_ps;
363         outpdimm->tras_ps = tras_ps;
364 #ifdef CONFIG_SYS_FSL_DDR4
365         outpdimm->trfc1_ps = trfc1_ps;
366         outpdimm->trfc2_ps = trfc2_ps;
367         outpdimm->trfc4_ps = trfc4_ps;
368         outpdimm->trrds_ps = trrds_ps;
369         outpdimm->trrdl_ps = trrdl_ps;
370         outpdimm->tccdl_ps = tccdl_ps;
371 #else
372         outpdimm->twtr_ps = twtr_ps;
373         outpdimm->trfc_ps = trfc_ps;
374         outpdimm->trrd_ps = trrd_ps;
375         outpdimm->trtp_ps = trtp_ps;
376 #endif
377         outpdimm->twr_ps = twr_ps;
378         outpdimm->trc_ps = trc_ps;
379         outpdimm->refresh_rate_ps = refresh_rate_ps;
380         outpdimm->extended_op_srt = extended_op_srt;
381 #if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
382         outpdimm->tis_ps = tis_ps;
383         outpdimm->tih_ps = tih_ps;
384         outpdimm->tds_ps = tds_ps;
385         outpdimm->tdh_ps = tdh_ps;
386         outpdimm->tdqsq_max_ps = tdqsq_max_ps;
387         outpdimm->tqhs_ps = tqhs_ps;
388 #endif
389
390         /* Determine common burst length for all DIMMs. */
391         temp1 = 0xff;
392         for (i = 0; i < number_of_dimms; i++) {
393                 if (dimm_params[i].n_ranks) {
394                         temp1 &= dimm_params[i].burst_lengths_bitmask;
395                 }
396         }
397         outpdimm->all_dimms_burst_lengths_bitmask = temp1;
398
399         /* Determine if all DIMMs registered buffered. */
400         temp1 = temp2 = 0;
401         for (i = 0; i < number_of_dimms; i++) {
402                 if (dimm_params[i].n_ranks) {
403                         if (dimm_params[i].registered_dimm) {
404                                 temp1 = 1;
405 #ifndef CONFIG_SPL_BUILD
406                                 printf("Detected RDIMM %s\n",
407                                         dimm_params[i].mpart);
408 #endif
409                         } else {
410                                 temp2 = 1;
411 #ifndef CONFIG_SPL_BUILD
412                                 printf("Detected UDIMM %s\n",
413                                         dimm_params[i].mpart);
414 #endif
415                         }
416                 }
417         }
418
419         outpdimm->all_dimms_registered = 0;
420         outpdimm->all_dimms_unbuffered = 0;
421         if (temp1 && !temp2) {
422                 outpdimm->all_dimms_registered = 1;
423         } else if (!temp1 && temp2) {
424                 outpdimm->all_dimms_unbuffered = 1;
425         } else {
426                 printf("ERROR:  Mix of registered buffered and unbuffered "
427                                 "DIMMs detected!\n");
428         }
429
430         temp1 = 0;
431         if (outpdimm->all_dimms_registered)
432                 for (j = 0; j < 16; j++) {
433                         outpdimm->rcw[j] = dimm_params[0].rcw[j];
434                         for (i = 1; i < number_of_dimms; i++) {
435                                 if (!dimm_params[i].n_ranks)
436                                         continue;
437                                 if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
438                                         temp1 = 1;
439                                         break;
440                                 }
441                         }
442                 }
443
444         if (temp1 != 0)
445                 printf("ERROR: Mix different RDIMM detected!\n");
446
447         /* calculate cas latency for all DDR types */
448         if (compute_cas_latency(ctrl_num, dimm_params,
449                                 outpdimm, number_of_dimms))
450                 return 1;
451
452         /* Determine if all DIMMs ECC capable. */
453         temp1 = 1;
454         for (i = 0; i < number_of_dimms; i++) {
455                 if (dimm_params[i].n_ranks &&
456                         !(dimm_params[i].edc_config & EDC_ECC)) {
457                         temp1 = 0;
458                         break;
459                 }
460         }
461         if (temp1) {
462                 debug("all DIMMs ECC capable\n");
463         } else {
464                 debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
465         }
466         outpdimm->all_dimms_ecc_capable = temp1;
467
468         /*
469          * Compute additive latency.
470          *
471          * For DDR1, additive latency should be 0.
472          *
473          * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
474          *      which comes from Trcd, and also note that:
475          *          add_lat + caslat must be >= 4
476          *
477          * For DDR3, we use the AL=0
478          *
479          * When to use additive latency for DDR2:
480          *
481          * I. Because you are using CL=3 and need to do ODT on writes and
482          *    want functionality.
483          *    1. Are you going to use ODT? (Does your board not have
484          *      additional termination circuitry for DQ, DQS, DQS_,
485          *      DM, RDQS, RDQS_ for x4/x8 configs?)
486          *    2. If so, is your lowest supported CL going to be 3?
487          *    3. If so, then you must set AL=1 because
488          *
489          *       WL >= 3 for ODT on writes
490          *       RL = AL + CL
491          *       WL = RL - 1
492          *       ->
493          *       WL = AL + CL - 1
494          *       AL + CL - 1 >= 3
495          *       AL + CL >= 4
496          *  QED
497          *
498          *  RL >= 3 for ODT on reads
499          *  RL = AL + CL
500          *
501          *  Since CL aren't usually less than 2, AL=0 is a minimum,
502          *  so the WL-derived AL should be the  -- FIXME?
503          *
504          * II. Because you are using auto-precharge globally and want to
505          *     use additive latency (posted CAS) to get more bandwidth.
506          *     1. Are you going to use auto-precharge mode globally?
507          *
508          *        Use addtivie latency and compute AL to be 1 cycle less than
509          *        tRCD, i.e. the READ or WRITE command is in the cycle
510          *        immediately following the ACTIVATE command..
511          *
512          * III. Because you feel like it or want to do some sort of
513          *      degraded-performance experiment.
514          *     1.  Do you just want to use additive latency because you feel
515          *         like it?
516          *
517          * Validation:  AL is less than tRCD, and within the other
518          * read-to-precharge constraints.
519          */
520
521         additive_latency = 0;
522
523 #if defined(CONFIG_SYS_FSL_DDR2)
524         if ((outpdimm->lowest_common_spd_caslat < 4) &&
525             (picos_to_mclk(ctrl_num, trcd_ps) >
526              outpdimm->lowest_common_spd_caslat)) {
527                 additive_latency = picos_to_mclk(ctrl_num, trcd_ps) -
528                                    outpdimm->lowest_common_spd_caslat;
529                 if (mclk_to_picos(ctrl_num, additive_latency) > trcd_ps) {
530                         additive_latency = picos_to_mclk(ctrl_num, trcd_ps);
531                         debug("setting additive_latency to %u because it was "
532                                 " greater than tRCD_ps\n", additive_latency);
533                 }
534         }
535 #endif
536
537         /*
538          * Validate additive latency
539          *
540          * AL <= tRCD(min)
541          */
542         if (mclk_to_picos(ctrl_num, additive_latency) > trcd_ps) {
543                 printf("Error: invalid additive latency exceeds tRCD(min).\n");
544                 return 1;
545         }
546
547         /*
548          * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
549          * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
550          * ADD_LAT (the register) must be set to a value less
551          * than ACTTORW if WL = 1, then AL must be set to 1
552          * RD_TO_PRE (the register) must be set to a minimum
553          * tRTP + AL if AL is nonzero
554          */
555
556         /*
557          * Additive latency will be applied only if the memctl option to
558          * use it.
559          */
560         outpdimm->additive_latency = additive_latency;
561
562         debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
563         debug("trcd_ps   = %u\n", outpdimm->trcd_ps);
564         debug("trp_ps    = %u\n", outpdimm->trp_ps);
565         debug("tras_ps   = %u\n", outpdimm->tras_ps);
566 #ifdef CONFIG_SYS_FSL_DDR4
567         debug("trfc1_ps = %u\n", trfc1_ps);
568         debug("trfc2_ps = %u\n", trfc2_ps);
569         debug("trfc4_ps = %u\n", trfc4_ps);
570         debug("trrds_ps = %u\n", trrds_ps);
571         debug("trrdl_ps = %u\n", trrdl_ps);
572         debug("tccdl_ps = %u\n", tccdl_ps);
573 #else
574         debug("twtr_ps   = %u\n", outpdimm->twtr_ps);
575         debug("trfc_ps   = %u\n", outpdimm->trfc_ps);
576         debug("trrd_ps   = %u\n", outpdimm->trrd_ps);
577 #endif
578         debug("twr_ps    = %u\n", outpdimm->twr_ps);
579         debug("trc_ps    = %u\n", outpdimm->trc_ps);
580
581         return 0;
582 }