1 // SPDX-License-Identifier: GPL-2.0
3 * K3 SA2UL crypto accelerator driver
5 * Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com
11 #include <linux/bitfield.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
22 #include <crypto/aes.h>
23 #include <crypto/authenc.h>
24 #include <crypto/des.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/scatterwalk.h>
29 #include <crypto/sha1.h>
30 #include <crypto/sha2.h>
34 /* Byte offset for key in encryption security context */
35 #define SC_ENC_KEY_OFFSET (1 + 27 + 4)
36 /* Byte offset for Aux-1 in encryption security context */
37 #define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32)
39 #define SA_CMDL_UPD_ENC 0x0001
40 #define SA_CMDL_UPD_AUTH 0x0002
41 #define SA_CMDL_UPD_ENC_IV 0x0004
42 #define SA_CMDL_UPD_AUTH_IV 0x0008
43 #define SA_CMDL_UPD_AUX_KEY 0x0010
45 #define SA_AUTH_SUBKEY_LEN 16
46 #define SA_CMDL_PAYLOAD_LENGTH_MASK 0xFFFF
47 #define SA_CMDL_SOP_BYPASS_LEN_MASK 0xFF000000
49 #define MODE_CONTROL_BYTES 27
50 #define SA_HASH_PROCESSING 0
51 #define SA_CRYPTO_PROCESSING 0
52 #define SA_UPLOAD_HASH_TO_TLR BIT(6)
54 #define SA_SW0_FLAGS_MASK 0xF0000
55 #define SA_SW0_CMDL_INFO_MASK 0x1F00000
56 #define SA_SW0_CMDL_PRESENT BIT(4)
57 #define SA_SW0_ENG_ID_MASK 0x3E000000
58 #define SA_SW0_DEST_INFO_PRESENT BIT(30)
59 #define SA_SW2_EGRESS_LENGTH 0xFF000000
60 #define SA_BASIC_HASH 0x10
62 #define SHA256_DIGEST_WORDS 8
63 /* Make 32-bit word from 4 bytes */
64 #define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \
67 /* size of SCCTL structure in bytes */
68 #define SA_SCCTL_SZ 16
70 /* Max Authentication tag size */
71 #define SA_MAX_AUTH_TAG_SZ 64
81 SA_ALG_AUTHENC_SHA1_AES,
82 SA_ALG_AUTHENC_SHA256_AES,
85 struct sa_match_data {
89 bool skip_engine_control;
92 static struct device *sa_k3_dev;
95 * struct sa_cmdl_cfg - Command label configuration descriptor
96 * @aalg: authentication algorithm ID
97 * @enc_eng_id: Encryption Engine ID supported by the SA hardware
98 * @auth_eng_id: Authentication Engine ID
99 * @iv_size: Initialization Vector size
100 * @akey: Authentication key
101 * @akey_len: Authentication key length
102 * @enc: True, if this is an encode request
115 * struct algo_data - Crypto algorithm specific data
116 * @enc_eng: Encryption engine info structure
117 * @auth_eng: Authentication engine info structure
118 * @auth_ctrl: Authentication control word
119 * @hash_size: Size of digest
120 * @iv_idx: iv index in psdata
121 * @iv_out_size: iv out size
122 * @ealg_id: Encryption Algorithm ID
123 * @aalg_id: Authentication algorithm ID
124 * @mci_enc: Mode Control Instruction for Encryption algorithm
125 * @mci_dec: Mode Control Instruction for Decryption
126 * @inv_key: Whether the encryption algorithm demands key inversion
127 * @ctx: Pointer to the algorithm context
128 * @keyed_mac: Whether the authentication algorithm has key
129 * @prep_iopad: Function pointer to generate intermediate ipad/opad
132 struct sa_eng_info enc_eng;
133 struct sa_eng_info auth_eng;
143 struct sa_tfm_ctx *ctx;
145 void (*prep_iopad)(struct algo_data *algo, const u8 *key,
146 u16 key_sz, __be32 *ipad, __be32 *opad);
150 * struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms
151 * @type: Type of the crypto algorithm.
152 * @alg: Union of crypto algorithm definitions.
153 * @registered: Flag indicating if the crypto algorithm is already registered
156 u32 type; /* CRYPTO_ALG_TYPE from <linux/crypto.h> */
158 struct skcipher_alg skcipher;
159 struct ahash_alg ahash;
160 struct aead_alg aead;
166 * struct sa_mapped_sg: scatterlist information for tx and rx
167 * @mapped: Set to true if the @sgt is mapped
168 * @dir: mapping direction used for @sgt
169 * @split_sg: Set if the sg is split and needs to be freed up
170 * @static_sg: Static scatterlist entry for overriding data
171 * @sgt: scatterlist table for DMA API use
173 struct sa_mapped_sg {
175 enum dma_data_direction dir;
176 struct scatterlist static_sg;
177 struct scatterlist *split_sg;
181 * struct sa_rx_data: RX Packet miscellaneous data place holder
182 * @req: crypto request data pointer
183 * @ddev: pointer to the DMA device
184 * @tx_in: dma_async_tx_descriptor pointer for rx channel
185 * @mapped_sg: Information on tx (0) and rx (1) scatterlist DMA mapping
186 * @enc: Flag indicating either encryption or decryption
187 * @enc_iv_size: Initialisation vector size
188 * @iv_idx: Initialisation vector index
193 struct dma_async_tx_descriptor *tx_in;
194 struct sa_mapped_sg mapped_sg[2];
201 * struct sa_req: SA request definition
202 * @dev: device for the request
203 * @size: total data to the xmitted via DMA
204 * @enc_offset: offset of cipher data
205 * @enc_size: data to be passed to cipher engine
207 * @auth_offset: offset of the authentication data
208 * @auth_size: size of the authentication data
209 * @auth_iv: authentication IV
210 * @type: algorithm type for the request
211 * @cmdl: command label pointer
212 * @base: pointer to the base request
213 * @ctx: pointer to the algorithm context data
214 * @enc: true if this is an encode request
216 * @dst: destination data
217 * @callback: DMA callback for the request
218 * @mdata_size: metadata size passed to DMA
231 struct crypto_async_request *base;
232 struct sa_tfm_ctx *ctx;
234 struct scatterlist *src;
235 struct scatterlist *dst;
236 dma_async_tx_callback callback;
241 * Mode Control Instructions for various Key lengths 128, 192, 256
242 * For CBC (Cipher Block Chaining) mode for encryption
244 static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = {
245 { 0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
246 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
247 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
248 { 0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
249 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
250 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
251 { 0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
252 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
253 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
257 * Mode Control Instructions for various Key lengths 128, 192, 256
258 * For CBC (Cipher Block Chaining) mode for decryption
260 static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = {
261 { 0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
262 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
263 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
264 { 0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
265 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
266 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
267 { 0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
268 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
269 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
273 * Mode Control Instructions for various Key lengths 128, 192, 256
274 * For CBC (Cipher Block Chaining) mode for encryption
276 static u8 mci_cbc_enc_no_iv_array[3][MODE_CONTROL_BYTES] = {
277 { 0x21, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
278 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
279 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
280 { 0x21, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
281 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
282 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
283 { 0x21, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
284 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
285 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
289 * Mode Control Instructions for various Key lengths 128, 192, 256
290 * For CBC (Cipher Block Chaining) mode for decryption
292 static u8 mci_cbc_dec_no_iv_array[3][MODE_CONTROL_BYTES] = {
293 { 0x31, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
294 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
295 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
296 { 0x31, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
297 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
298 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
299 { 0x31, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
300 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
301 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
305 * Mode Control Instructions for various Key lengths 128, 192, 256
306 * For ECB (Electronic Code Book) mode for encryption
308 static u8 mci_ecb_enc_array[3][27] = {
309 { 0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
310 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
311 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
312 { 0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
313 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
314 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
315 { 0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
316 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
317 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
321 * Mode Control Instructions for various Key lengths 128, 192, 256
322 * For ECB (Electronic Code Book) mode for decryption
324 static u8 mci_ecb_dec_array[3][27] = {
325 { 0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
326 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
327 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
328 { 0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
329 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
330 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
331 { 0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
332 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
333 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
337 * Mode Control Instructions for DES algorithm
338 * For CBC (Cipher Block Chaining) mode and ECB mode
339 * encryption and for decryption respectively
341 static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = {
342 0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00,
343 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
347 static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = {
348 0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00,
349 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
353 static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = {
354 0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
355 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
359 static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = {
360 0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
361 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
366 * Perform 16 byte or 128 bit swizzling
367 * The SA2UL Expects the security context to
368 * be in little Endian and the bus width is 128 bits or 16 bytes
369 * Hence swap 16 bytes at a time from higher to lower address
371 static void sa_swiz_128(u8 *in, u16 len)
376 for (i = 0; i < len; i += 16) {
377 memcpy(data, &in[i], 16);
378 for (j = 0; j < 16; j++)
379 in[i + j] = data[15 - j];
383 /* Prepare the ipad and opad from key as per SHA algorithm step 1*/
384 static void prepare_kipad(u8 *k_ipad, const u8 *key, u16 key_sz)
388 for (i = 0; i < key_sz; i++)
389 k_ipad[i] = key[i] ^ 0x36;
391 /* Instead of XOR with 0 */
392 for (; i < SHA1_BLOCK_SIZE; i++)
396 static void prepare_kopad(u8 *k_opad, const u8 *key, u16 key_sz)
400 for (i = 0; i < key_sz; i++)
401 k_opad[i] = key[i] ^ 0x5c;
403 /* Instead of XOR with 0 */
404 for (; i < SHA1_BLOCK_SIZE; i++)
408 static void sa_export_shash(void *state, struct shash_desc *hash,
409 int digest_size, __be32 *out)
411 struct sha1_state *sha1;
412 struct sha256_state *sha256;
415 switch (digest_size) {
416 case SHA1_DIGEST_SIZE:
418 result = sha1->state;
420 case SHA256_DIGEST_SIZE:
422 result = sha256->state;
425 dev_err(sa_k3_dev, "%s: bad digest_size=%d\n", __func__,
430 crypto_shash_export(hash, state);
432 cpu_to_be32_array(out, result, digest_size / 4);
435 static void sa_prepare_iopads(struct algo_data *data, const u8 *key,
436 u16 key_sz, __be32 *ipad, __be32 *opad)
438 SHASH_DESC_ON_STACK(shash, data->ctx->shash);
439 int block_size = crypto_shash_blocksize(data->ctx->shash);
440 int digest_size = crypto_shash_digestsize(data->ctx->shash);
442 struct sha1_state sha1;
443 struct sha256_state sha256;
444 u8 k_pad[SHA1_BLOCK_SIZE];
447 shash->tfm = data->ctx->shash;
449 prepare_kipad(sha.k_pad, key, key_sz);
451 crypto_shash_init(shash);
452 crypto_shash_update(shash, sha.k_pad, block_size);
453 sa_export_shash(&sha, shash, digest_size, ipad);
455 prepare_kopad(sha.k_pad, key, key_sz);
457 crypto_shash_init(shash);
458 crypto_shash_update(shash, sha.k_pad, block_size);
460 sa_export_shash(&sha, shash, digest_size, opad);
462 memzero_explicit(&sha, sizeof(sha));
465 /* Derive the inverse key used in AES-CBC decryption operation */
466 static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz)
468 struct crypto_aes_ctx ctx;
471 if (aes_expandkey(&ctx, key, key_sz)) {
472 dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
476 /* work around to get the right inverse for AES_KEYSIZE_192 size keys */
477 if (key_sz == AES_KEYSIZE_192) {
478 ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46];
479 ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47];
482 /* Based crypto_aes_expand_key logic */
484 case AES_KEYSIZE_128:
485 case AES_KEYSIZE_192:
486 key_pos = key_sz + 24;
489 case AES_KEYSIZE_256:
490 key_pos = key_sz + 24 - 4;
494 dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
498 memcpy(inv_key, &ctx.key_enc[key_pos], key_sz);
502 /* Set Security context for the encryption engine */
503 static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz,
506 const u8 *mci = NULL;
508 /* Set Encryption mode selector to crypto processing */
509 sc_buf[0] = SA_CRYPTO_PROCESSING;
515 /* Set the mode control instructions in security context */
517 memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES);
519 /* For AES-CBC decryption get the inverse key */
520 if (ad->inv_key && !enc) {
521 if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz))
523 /* For all other cases: key is used */
525 memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz);
531 /* Set Security context for the authentication engine */
532 static void sa_set_sc_auth(struct algo_data *ad, const u8 *key, u16 key_sz,
535 __be32 *ipad = (void *)(sc_buf + 32);
536 __be32 *opad = (void *)(sc_buf + 64);
538 /* Set Authentication mode selector to hash processing */
539 sc_buf[0] = SA_HASH_PROCESSING;
540 /* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */
541 sc_buf[1] = SA_UPLOAD_HASH_TO_TLR;
542 sc_buf[1] |= ad->auth_ctrl;
544 /* Copy the keys or ipad/opad */
546 ad->prep_iopad(ad, key, key_sz, ipad, opad);
549 sc_buf[1] |= SA_BASIC_HASH;
553 static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16)
557 for (j = 0; j < ((size16) ? 4 : 2); j++) {
558 *out = cpu_to_be32(*((u32 *)iv));
564 /* Format general command label */
565 static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl,
566 struct sa_cmdl_upd_info *upd_info)
568 u8 enc_offset = 0, auth_offset = 0, total = 0;
569 u8 enc_next_eng = SA_ENG_ID_OUTPORT2;
570 u8 auth_next_eng = SA_ENG_ID_OUTPORT2;
571 u32 *word_ptr = (u32 *)cmdl;
574 /* Clear the command label */
575 memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32)));
577 /* Iniialize the command update structure */
578 memzero_explicit(upd_info, sizeof(*upd_info));
580 if (cfg->enc_eng_id && cfg->auth_eng_id) {
582 auth_offset = SA_CMDL_HEADER_SIZE_BYTES;
583 enc_next_eng = cfg->auth_eng_id;
586 auth_offset += cfg->iv_size;
588 enc_offset = SA_CMDL_HEADER_SIZE_BYTES;
589 auth_next_eng = cfg->enc_eng_id;
593 if (cfg->enc_eng_id) {
594 upd_info->flags |= SA_CMDL_UPD_ENC;
595 upd_info->enc_size.index = enc_offset >> 2;
596 upd_info->enc_offset.index = upd_info->enc_size.index + 1;
597 /* Encryption command label */
598 cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng;
600 /* Encryption modes requiring IV */
602 upd_info->flags |= SA_CMDL_UPD_ENC_IV;
603 upd_info->enc_iv.index =
604 (enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2;
605 upd_info->enc_iv.size = cfg->iv_size;
607 cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
608 SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
610 cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] =
611 (SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3));
612 total += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
614 cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
615 SA_CMDL_HEADER_SIZE_BYTES;
616 total += SA_CMDL_HEADER_SIZE_BYTES;
620 if (cfg->auth_eng_id) {
621 upd_info->flags |= SA_CMDL_UPD_AUTH;
622 upd_info->auth_size.index = auth_offset >> 2;
623 upd_info->auth_offset.index = upd_info->auth_size.index + 1;
624 cmdl[auth_offset + SA_CMDL_OFFSET_NESC] = auth_next_eng;
625 cmdl[auth_offset + SA_CMDL_OFFSET_LABEL_LEN] =
626 SA_CMDL_HEADER_SIZE_BYTES;
627 total += SA_CMDL_HEADER_SIZE_BYTES;
630 total = roundup(total, 8);
632 for (i = 0; i < total / 4; i++)
633 word_ptr[i] = swab32(word_ptr[i]);
638 /* Update Command label */
639 static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl,
640 struct sa_cmdl_upd_info *upd_info)
644 if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) {
645 cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
646 cmdl[upd_info->enc_size.index] |= req->enc_size;
647 cmdl[upd_info->enc_offset.index] &=
648 ~SA_CMDL_SOP_BYPASS_LEN_MASK;
649 cmdl[upd_info->enc_offset.index] |=
650 FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK,
653 if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) {
654 __be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index];
655 u32 *enc_iv = (u32 *)req->enc_iv;
657 for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) {
658 data[j] = cpu_to_be32(*enc_iv);
664 if (likely(upd_info->flags & SA_CMDL_UPD_AUTH)) {
665 cmdl[upd_info->auth_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
666 cmdl[upd_info->auth_size.index] |= req->auth_size;
667 cmdl[upd_info->auth_offset.index] &=
668 ~SA_CMDL_SOP_BYPASS_LEN_MASK;
669 cmdl[upd_info->auth_offset.index] |=
670 FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK,
672 if (upd_info->flags & SA_CMDL_UPD_AUTH_IV) {
673 sa_copy_iv((void *)&cmdl[upd_info->auth_iv.index],
675 (upd_info->auth_iv.size > 8));
677 if (upd_info->flags & SA_CMDL_UPD_AUX_KEY) {
678 int offset = (req->auth_size & 0xF) ? 4 : 0;
680 memcpy(&cmdl[upd_info->aux_key_info.index],
681 &upd_info->aux_key[offset], 16);
686 /* Format SWINFO words to be sent to SA */
688 void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys,
689 u8 cmdl_present, u8 cmdl_offset, u8 flags,
690 u8 hash_size, u32 *swinfo)
693 swinfo[0] |= FIELD_PREP(SA_SW0_FLAGS_MASK, flags);
694 if (likely(cmdl_present))
695 swinfo[0] |= FIELD_PREP(SA_SW0_CMDL_INFO_MASK,
696 cmdl_offset | SA_SW0_CMDL_PRESENT);
697 swinfo[0] |= FIELD_PREP(SA_SW0_ENG_ID_MASK, eng_id);
699 swinfo[0] |= SA_SW0_DEST_INFO_PRESENT;
700 swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL);
701 swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32);
702 swinfo[2] |= FIELD_PREP(SA_SW2_EGRESS_LENGTH, hash_size);
705 /* Dump the security context */
706 static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr)
709 dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr);
710 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
711 16, 1, buf, SA_CTX_MAX_SZ, false);
716 int sa_init_sc(struct sa_ctx_info *ctx, const struct sa_match_data *match_data,
717 const u8 *enc_key, u16 enc_key_sz,
718 const u8 *auth_key, u16 auth_key_sz,
719 struct algo_data *ad, u8 enc, u32 *swinfo)
721 int enc_sc_offset = 0;
722 int auth_sc_offset = 0;
723 u8 *sc_buf = ctx->sc;
724 u16 sc_id = ctx->sc_id;
727 memzero_explicit(sc_buf, SA_CTX_MAX_SZ);
729 if (ad->auth_eng.eng_id) {
731 first_engine = ad->enc_eng.eng_id;
733 first_engine = ad->auth_eng.eng_id;
735 enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
736 auth_sc_offset = enc_sc_offset + ad->enc_eng.sc_size;
737 sc_buf[1] = SA_SCCTL_FE_AUTH_ENC;
740 ad->hash_size = roundup(ad->hash_size, 8);
742 } else if (ad->enc_eng.eng_id && !ad->auth_eng.eng_id) {
743 enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
744 first_engine = ad->enc_eng.eng_id;
745 sc_buf[1] = SA_SCCTL_FE_ENC;
746 ad->hash_size = ad->iv_out_size;
749 /* SCCTL Owner info: 0=host, 1=CP_ACE */
750 sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0;
751 memcpy(&sc_buf[2], &sc_id, 2);
753 sc_buf[5] = match_data->priv_id;
754 sc_buf[6] = match_data->priv;
757 /* Prepare context for encryption engine */
758 if (ad->enc_eng.sc_size) {
759 if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc,
760 &sc_buf[enc_sc_offset]))
764 /* Prepare context for authentication engine */
765 if (ad->auth_eng.sc_size)
766 sa_set_sc_auth(ad, auth_key, auth_key_sz,
767 &sc_buf[auth_sc_offset]);
769 /* Set the ownership of context to CP_ACE */
770 sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80;
772 /* swizzle the security context */
773 sa_swiz_128(sc_buf, SA_CTX_MAX_SZ);
775 sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0,
776 SA_SW_INFO_FLAG_EVICT, ad->hash_size, swinfo);
778 sa_dump_sc(sc_buf, ctx->sc_phys);
783 /* Free the per direction context memory */
784 static void sa_free_ctx_info(struct sa_ctx_info *ctx,
785 struct sa_crypto_data *data)
789 bn = ctx->sc_id - data->sc_id_start;
790 spin_lock(&data->scid_lock);
791 __clear_bit(bn, data->ctx_bm);
793 spin_unlock(&data->scid_lock);
796 dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys);
801 static int sa_init_ctx_info(struct sa_ctx_info *ctx,
802 struct sa_crypto_data *data)
807 spin_lock(&data->scid_lock);
808 bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX);
809 __set_bit(bn, data->ctx_bm);
811 spin_unlock(&data->scid_lock);
813 ctx->sc_id = (u16)(data->sc_id_start + bn);
815 ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys);
817 dev_err(&data->pdev->dev, "Failed to allocate SC memory\n");
825 spin_lock(&data->scid_lock);
826 __clear_bit(bn, data->ctx_bm);
828 spin_unlock(&data->scid_lock);
833 static void sa_cipher_cra_exit(struct crypto_skcipher *tfm)
835 struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
836 struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
838 dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
839 __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
840 ctx->dec.sc_id, &ctx->dec.sc_phys);
842 sa_free_ctx_info(&ctx->enc, data);
843 sa_free_ctx_info(&ctx->dec, data);
845 crypto_free_skcipher(ctx->fallback.skcipher);
848 static int sa_cipher_cra_init(struct crypto_skcipher *tfm)
850 struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
851 struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
852 const char *name = crypto_tfm_alg_name(&tfm->base);
853 struct crypto_skcipher *child;
856 memzero_explicit(ctx, sizeof(*ctx));
857 ctx->dev_data = data;
859 ret = sa_init_ctx_info(&ctx->enc, data);
862 ret = sa_init_ctx_info(&ctx->dec, data);
864 sa_free_ctx_info(&ctx->enc, data);
868 child = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
871 dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name);
872 return PTR_ERR(child);
875 ctx->fallback.skcipher = child;
876 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) +
877 sizeof(struct skcipher_request));
879 dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
880 __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
881 ctx->dec.sc_id, &ctx->dec.sc_phys);
885 static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
886 unsigned int keylen, struct algo_data *ad)
888 struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
889 struct crypto_skcipher *child = ctx->fallback.skcipher;
891 struct sa_cmdl_cfg cfg;
894 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
895 keylen != AES_KEYSIZE_256)
898 ad->enc_eng.eng_id = SA_ENG_ID_EM1;
899 ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
901 memzero_explicit(&cfg, sizeof(cfg));
902 cfg.enc_eng_id = ad->enc_eng.eng_id;
903 cfg.iv_size = crypto_skcipher_ivsize(tfm);
905 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
906 crypto_skcipher_set_flags(child, tfm->base.crt_flags &
907 CRYPTO_TFM_REQ_MASK);
908 ret = crypto_skcipher_setkey(child, key, keylen);
912 /* Setup Encryption Security Context & Command label template */
913 if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, key, keylen, NULL, 0,
914 ad, 1, &ctx->enc.epib[1]))
917 cmdl_len = sa_format_cmdl_gen(&cfg,
919 &ctx->enc.cmdl_upd_info);
920 if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
923 ctx->enc.cmdl_size = cmdl_len;
925 /* Setup Decryption Security Context & Command label template */
926 if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, key, keylen, NULL, 0,
927 ad, 0, &ctx->dec.epib[1]))
930 cfg.enc_eng_id = ad->enc_eng.eng_id;
931 cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
932 &ctx->dec.cmdl_upd_info);
934 if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
937 ctx->dec.cmdl_size = cmdl_len;
938 ctx->iv_idx = ad->iv_idx;
943 dev_err(sa_k3_dev, "%s: badkey\n", __func__);
947 static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
950 struct algo_data ad = { 0 };
951 /* Convert the key size (16/24/32) to the key size index (0/1/2) */
952 int key_idx = (keylen >> 3) - 2;
957 ad.mci_enc = mci_cbc_enc_array[key_idx];
958 ad.mci_dec = mci_cbc_dec_array[key_idx];
960 ad.ealg_id = SA_EALG_ID_AES_CBC;
964 return sa_cipher_setkey(tfm, key, keylen, &ad);
967 static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
970 struct algo_data ad = { 0 };
971 /* Convert the key size (16/24/32) to the key size index (0/1/2) */
972 int key_idx = (keylen >> 3) - 2;
977 ad.mci_enc = mci_ecb_enc_array[key_idx];
978 ad.mci_dec = mci_ecb_dec_array[key_idx];
980 ad.ealg_id = SA_EALG_ID_AES_ECB;
982 return sa_cipher_setkey(tfm, key, keylen, &ad);
985 static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
988 struct algo_data ad = { 0 };
990 ad.mci_enc = mci_cbc_3des_enc_array;
991 ad.mci_dec = mci_cbc_3des_dec_array;
992 ad.ealg_id = SA_EALG_ID_3DES_CBC;
996 return sa_cipher_setkey(tfm, key, keylen, &ad);
999 static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
1000 unsigned int keylen)
1002 struct algo_data ad = { 0 };
1004 ad.mci_enc = mci_ecb_3des_enc_array;
1005 ad.mci_dec = mci_ecb_3des_dec_array;
1007 return sa_cipher_setkey(tfm, key, keylen, &ad);
1010 static void sa_sync_from_device(struct sa_rx_data *rxd)
1012 struct sg_table *sgt;
1014 if (rxd->mapped_sg[0].dir == DMA_BIDIRECTIONAL)
1015 sgt = &rxd->mapped_sg[0].sgt;
1017 sgt = &rxd->mapped_sg[1].sgt;
1019 dma_sync_sgtable_for_cpu(rxd->ddev, sgt, DMA_FROM_DEVICE);
1022 static void sa_free_sa_rx_data(struct sa_rx_data *rxd)
1026 for (i = 0; i < ARRAY_SIZE(rxd->mapped_sg); i++) {
1027 struct sa_mapped_sg *mapped_sg = &rxd->mapped_sg[i];
1029 if (mapped_sg->mapped) {
1030 dma_unmap_sgtable(rxd->ddev, &mapped_sg->sgt,
1032 kfree(mapped_sg->split_sg);
1039 static void sa_aes_dma_in_callback(void *data)
1041 struct sa_rx_data *rxd = (struct sa_rx_data *)data;
1042 struct skcipher_request *req;
1048 sa_sync_from_device(rxd);
1049 req = container_of(rxd->req, struct skcipher_request, base);
1052 mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl,
1054 result = (u32 *)req->iv;
1056 for (i = 0; i < (rxd->enc_iv_size / 4); i++)
1057 result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]);
1060 sa_free_sa_rx_data(rxd);
1062 skcipher_request_complete(req, 0);
1066 sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib)
1071 for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++)
1074 mdptr[4] = (0xFFFF << 16);
1075 for (out = &mdptr[5], in = psdata, i = 0;
1076 i < pslen / sizeof(u32); i++)
1080 static int sa_run(struct sa_req *req)
1082 struct sa_rx_data *rxd;
1084 u32 cmdl[SA_MAX_CMDL_WORDS];
1085 struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev);
1086 struct device *ddev;
1087 struct dma_chan *dma_rx;
1088 int sg_nents, src_nents, dst_nents;
1089 struct scatterlist *src, *dst;
1090 size_t pl, ml, split_size;
1091 struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec;
1093 struct dma_async_tx_descriptor *tx_out;
1096 enum dma_data_direction dir_src;
1097 struct sa_mapped_sg *mapped_sg;
1099 gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1100 GFP_KERNEL : GFP_ATOMIC;
1102 rxd = kzalloc(sizeof(*rxd), gfp_flags);
1106 if (req->src != req->dst) {
1108 dir_src = DMA_TO_DEVICE;
1111 dir_src = DMA_BIDIRECTIONAL;
1115 * SA2UL has an interesting feature where the receive DMA channel
1116 * is selected based on the data passed to the engine. Within the
1117 * transition range, there is also a space where it is impossible
1118 * to determine where the data will end up, and this should be
1119 * avoided. This will be handled by the SW fallback mechanism by
1120 * the individual algorithm implementations.
1122 if (req->size >= 256)
1123 dma_rx = pdata->dma_rx2;
1125 dma_rx = pdata->dma_rx1;
1127 ddev = dmaengine_get_dma_device(pdata->dma_tx);
1130 memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size);
1132 sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info);
1134 if (req->type != CRYPTO_ALG_TYPE_AHASH) {
1137 (SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT);
1140 (SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT);
1143 cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type;
1146 * Map the packets, first we check if the data fits into a single
1147 * sg entry and use that if possible. If it does not fit, we check
1148 * if we need to do sg_split to align the scatterlist data on the
1149 * actual data size being processed by the crypto engine.
1152 sg_nents = sg_nents_for_len(src, req->size);
1154 split_size = req->size;
1156 mapped_sg = &rxd->mapped_sg[0];
1157 if (sg_nents == 1 && split_size <= req->src->length) {
1158 src = &mapped_sg->static_sg;
1160 sg_init_table(src, 1);
1161 sg_set_page(src, sg_page(req->src), split_size,
1164 mapped_sg->sgt.sgl = src;
1165 mapped_sg->sgt.orig_nents = src_nents;
1166 ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0);
1172 mapped_sg->dir = dir_src;
1173 mapped_sg->mapped = true;
1175 mapped_sg->sgt.sgl = req->src;
1176 mapped_sg->sgt.orig_nents = sg_nents;
1177 ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0);
1183 mapped_sg->dir = dir_src;
1184 mapped_sg->mapped = true;
1186 ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, 0, 1,
1187 &split_size, &src, &src_nents, gfp_flags);
1189 src_nents = mapped_sg->sgt.nents;
1190 src = mapped_sg->sgt.sgl;
1192 mapped_sg->split_sg = src;
1196 dma_sync_sgtable_for_device(ddev, &mapped_sg->sgt, DMA_TO_DEVICE);
1199 dst_nents = src_nents;
1202 dst_nents = sg_nents_for_len(req->dst, req->size);
1203 mapped_sg = &rxd->mapped_sg[1];
1205 if (dst_nents == 1 && split_size <= req->dst->length) {
1206 dst = &mapped_sg->static_sg;
1208 sg_init_table(dst, 1);
1209 sg_set_page(dst, sg_page(req->dst), split_size,
1212 mapped_sg->sgt.sgl = dst;
1213 mapped_sg->sgt.orig_nents = dst_nents;
1214 ret = dma_map_sgtable(ddev, &mapped_sg->sgt,
1215 DMA_FROM_DEVICE, 0);
1219 mapped_sg->dir = DMA_FROM_DEVICE;
1220 mapped_sg->mapped = true;
1222 mapped_sg->sgt.sgl = req->dst;
1223 mapped_sg->sgt.orig_nents = dst_nents;
1224 ret = dma_map_sgtable(ddev, &mapped_sg->sgt,
1225 DMA_FROM_DEVICE, 0);
1229 mapped_sg->dir = DMA_FROM_DEVICE;
1230 mapped_sg->mapped = true;
1232 ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents,
1233 0, 1, &split_size, &dst, &dst_nents,
1236 dst_nents = mapped_sg->sgt.nents;
1237 dst = mapped_sg->sgt.sgl;
1239 mapped_sg->split_sg = dst;
1244 rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents,
1246 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1248 dev_err(pdata->dev, "IN prep_slave_sg() failed\n");
1253 rxd->req = (void *)req->base;
1254 rxd->enc = req->enc;
1255 rxd->iv_idx = req->ctx->iv_idx;
1256 rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size;
1257 rxd->tx_in->callback = req->callback;
1258 rxd->tx_in->callback_param = rxd;
1260 tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src,
1261 src_nents, DMA_MEM_TO_DEV,
1262 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1265 dev_err(pdata->dev, "OUT prep_slave_sg() failed\n");
1271 * Prepare metadata for DMA engine. This essentially describes the
1272 * crypto algorithm to be used, data sizes, different keys etc.
1274 mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml);
1276 sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS *
1277 sizeof(u32))), cmdl, sizeof(sa_ctx->epib),
1280 ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32));
1281 dmaengine_desc_set_metadata_len(tx_out, req->mdata_size);
1283 dmaengine_submit(tx_out);
1284 dmaengine_submit(rxd->tx_in);
1286 dma_async_issue_pending(dma_rx);
1287 dma_async_issue_pending(pdata->dma_tx);
1289 return -EINPROGRESS;
1292 sa_free_sa_rx_data(rxd);
1297 static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc)
1299 struct sa_tfm_ctx *ctx =
1300 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1301 struct crypto_alg *alg = req->base.tfm->__crt_alg;
1302 struct sa_req sa_req = { 0 };
1307 if (req->cryptlen % alg->cra_blocksize)
1310 /* Use SW fallback if the data size is not supported */
1311 if (req->cryptlen > SA_MAX_DATA_SZ ||
1312 (req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN &&
1313 req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) {
1314 struct skcipher_request *subreq = skcipher_request_ctx(req);
1316 skcipher_request_set_tfm(subreq, ctx->fallback.skcipher);
1317 skcipher_request_set_callback(subreq, req->base.flags,
1320 skcipher_request_set_crypt(subreq, req->src, req->dst,
1321 req->cryptlen, req->iv);
1323 return crypto_skcipher_encrypt(subreq);
1325 return crypto_skcipher_decrypt(subreq);
1328 sa_req.size = req->cryptlen;
1329 sa_req.enc_size = req->cryptlen;
1330 sa_req.src = req->src;
1331 sa_req.dst = req->dst;
1333 sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER;
1335 sa_req.callback = sa_aes_dma_in_callback;
1336 sa_req.mdata_size = 44;
1337 sa_req.base = &req->base;
1340 return sa_run(&sa_req);
1343 static int sa_encrypt(struct skcipher_request *req)
1345 return sa_cipher_run(req, req->iv, 1);
1348 static int sa_decrypt(struct skcipher_request *req)
1350 return sa_cipher_run(req, req->iv, 0);
1353 static void sa_sha_dma_in_callback(void *data)
1355 struct sa_rx_data *rxd = (struct sa_rx_data *)data;
1356 struct ahash_request *req;
1357 struct crypto_ahash *tfm;
1358 unsigned int authsize;
1364 sa_sync_from_device(rxd);
1365 req = container_of(rxd->req, struct ahash_request, base);
1366 tfm = crypto_ahash_reqtfm(req);
1367 authsize = crypto_ahash_digestsize(tfm);
1369 mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
1370 result = (u32 *)req->result;
1372 for (i = 0; i < (authsize / 4); i++)
1373 result[i] = be32_to_cpu(mdptr[i + 4]);
1375 sa_free_sa_rx_data(rxd);
1377 ahash_request_complete(req, 0);
1380 static int zero_message_process(struct ahash_request *req)
1382 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1383 int sa_digest_size = crypto_ahash_digestsize(tfm);
1385 switch (sa_digest_size) {
1386 case SHA1_DIGEST_SIZE:
1387 memcpy(req->result, sha1_zero_message_hash, sa_digest_size);
1389 case SHA256_DIGEST_SIZE:
1390 memcpy(req->result, sha256_zero_message_hash, sa_digest_size);
1392 case SHA512_DIGEST_SIZE:
1393 memcpy(req->result, sha512_zero_message_hash, sa_digest_size);
1402 static int sa_sha_run(struct ahash_request *req)
1404 struct sa_tfm_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1405 struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
1406 struct sa_req sa_req = { 0 };
1409 auth_len = req->nbytes;
1412 return zero_message_process(req);
1414 if (auth_len > SA_MAX_DATA_SZ ||
1415 (auth_len >= SA_UNSAFE_DATA_SZ_MIN &&
1416 auth_len <= SA_UNSAFE_DATA_SZ_MAX)) {
1417 struct ahash_request *subreq = &rctx->fallback_req;
1420 ahash_request_set_tfm(subreq, ctx->fallback.ahash);
1421 subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1423 crypto_ahash_init(subreq);
1425 subreq->nbytes = auth_len;
1426 subreq->src = req->src;
1427 subreq->result = req->result;
1429 ret |= crypto_ahash_update(subreq);
1433 ret |= crypto_ahash_final(subreq);
1438 sa_req.size = auth_len;
1439 sa_req.auth_size = auth_len;
1440 sa_req.src = req->src;
1441 sa_req.dst = req->src;
1443 sa_req.type = CRYPTO_ALG_TYPE_AHASH;
1444 sa_req.callback = sa_sha_dma_in_callback;
1445 sa_req.mdata_size = 28;
1447 sa_req.base = &req->base;
1449 return sa_run(&sa_req);
1452 static int sa_sha_setup(struct sa_tfm_ctx *ctx, struct algo_data *ad)
1454 int bs = crypto_shash_blocksize(ctx->shash);
1456 struct sa_cmdl_cfg cfg;
1458 ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
1459 ad->auth_eng.eng_id = SA_ENG_ID_AM1;
1460 ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;
1462 memset(ctx->authkey, 0, bs);
1463 memset(&cfg, 0, sizeof(cfg));
1464 cfg.aalg = ad->aalg_id;
1465 cfg.enc_eng_id = ad->enc_eng.eng_id;
1466 cfg.auth_eng_id = ad->auth_eng.eng_id;
1471 ctx->dev_data = dev_get_drvdata(sa_k3_dev);
1472 /* Setup Encryption Security Context & Command label template */
1473 if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, NULL, 0, NULL, 0,
1474 ad, 0, &ctx->enc.epib[1]))
1477 cmdl_len = sa_format_cmdl_gen(&cfg,
1478 (u8 *)ctx->enc.cmdl,
1479 &ctx->enc.cmdl_upd_info);
1480 if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
1483 ctx->enc.cmdl_size = cmdl_len;
1488 dev_err(sa_k3_dev, "%s: badkey\n", __func__);
1492 static int sa_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
1494 struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
1495 struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
1498 memset(ctx, 0, sizeof(*ctx));
1499 ctx->dev_data = data;
1500 ret = sa_init_ctx_info(&ctx->enc, data);
1505 ctx->shash = crypto_alloc_shash(alg_base, 0,
1506 CRYPTO_ALG_NEED_FALLBACK);
1507 if (IS_ERR(ctx->shash)) {
1508 dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n",
1510 return PTR_ERR(ctx->shash);
1513 ctx->fallback.ahash =
1514 crypto_alloc_ahash(alg_base, 0,
1515 CRYPTO_ALG_NEED_FALLBACK);
1516 if (IS_ERR(ctx->fallback.ahash)) {
1517 dev_err(ctx->dev_data->dev,
1518 "Could not load fallback driver\n");
1519 return PTR_ERR(ctx->fallback.ahash);
1523 dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
1524 __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
1525 ctx->dec.sc_id, &ctx->dec.sc_phys);
1527 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1528 sizeof(struct sa_sha_req_ctx) +
1529 crypto_ahash_reqsize(ctx->fallback.ahash));
1534 static int sa_sha_digest(struct ahash_request *req)
1536 return sa_sha_run(req);
1539 static int sa_sha_init(struct ahash_request *req)
1541 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1542 struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
1543 struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
1545 dev_dbg(sa_k3_dev, "init: digest size: %u, rctx=%p\n",
1546 crypto_ahash_digestsize(tfm), rctx);
1548 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
1549 rctx->fallback_req.base.flags =
1550 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1552 return crypto_ahash_init(&rctx->fallback_req);
1555 static int sa_sha_update(struct ahash_request *req)
1557 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1558 struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
1559 struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
1561 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
1562 rctx->fallback_req.base.flags =
1563 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1564 rctx->fallback_req.nbytes = req->nbytes;
1565 rctx->fallback_req.src = req->src;
1567 return crypto_ahash_update(&rctx->fallback_req);
1570 static int sa_sha_final(struct ahash_request *req)
1572 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1573 struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
1574 struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
1576 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
1577 rctx->fallback_req.base.flags =
1578 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1579 rctx->fallback_req.result = req->result;
1581 return crypto_ahash_final(&rctx->fallback_req);
1584 static int sa_sha_finup(struct ahash_request *req)
1586 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1587 struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
1588 struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
1590 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
1591 rctx->fallback_req.base.flags =
1592 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1594 rctx->fallback_req.nbytes = req->nbytes;
1595 rctx->fallback_req.src = req->src;
1596 rctx->fallback_req.result = req->result;
1598 return crypto_ahash_finup(&rctx->fallback_req);
1601 static int sa_sha_import(struct ahash_request *req, const void *in)
1603 struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
1604 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1605 struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
1607 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
1608 rctx->fallback_req.base.flags = req->base.flags &
1609 CRYPTO_TFM_REQ_MAY_SLEEP;
1611 return crypto_ahash_import(&rctx->fallback_req, in);
1614 static int sa_sha_export(struct ahash_request *req, void *out)
1616 struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
1617 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1618 struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
1619 struct ahash_request *subreq = &rctx->fallback_req;
1621 ahash_request_set_tfm(subreq, ctx->fallback.ahash);
1622 subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1624 return crypto_ahash_export(subreq, out);
1627 static int sa_sha1_cra_init(struct crypto_tfm *tfm)
1629 struct algo_data ad = { 0 };
1630 struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
1632 sa_sha_cra_init_alg(tfm, "sha1");
1634 ad.aalg_id = SA_AALG_ID_SHA1;
1635 ad.hash_size = SHA1_DIGEST_SIZE;
1636 ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;
1638 sa_sha_setup(ctx, &ad);
1643 static int sa_sha256_cra_init(struct crypto_tfm *tfm)
1645 struct algo_data ad = { 0 };
1646 struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
1648 sa_sha_cra_init_alg(tfm, "sha256");
1650 ad.aalg_id = SA_AALG_ID_SHA2_256;
1651 ad.hash_size = SHA256_DIGEST_SIZE;
1652 ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;
1654 sa_sha_setup(ctx, &ad);
1659 static int sa_sha512_cra_init(struct crypto_tfm *tfm)
1661 struct algo_data ad = { 0 };
1662 struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
1664 sa_sha_cra_init_alg(tfm, "sha512");
1666 ad.aalg_id = SA_AALG_ID_SHA2_512;
1667 ad.hash_size = SHA512_DIGEST_SIZE;
1668 ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA512;
1670 sa_sha_setup(ctx, &ad);
1675 static void sa_sha_cra_exit(struct crypto_tfm *tfm)
1677 struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
1678 struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
1680 dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
1681 __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
1682 ctx->dec.sc_id, &ctx->dec.sc_phys);
1684 if (crypto_tfm_alg_type(tfm) == CRYPTO_ALG_TYPE_AHASH)
1685 sa_free_ctx_info(&ctx->enc, data);
1687 crypto_free_shash(ctx->shash);
1688 crypto_free_ahash(ctx->fallback.ahash);
1691 static void sa_aead_dma_in_callback(void *data)
1693 struct sa_rx_data *rxd = (struct sa_rx_data *)data;
1694 struct aead_request *req;
1695 struct crypto_aead *tfm;
1697 unsigned int authsize;
1698 u8 auth_tag[SA_MAX_AUTH_TAG_SZ];
1704 sa_sync_from_device(rxd);
1705 req = container_of(rxd->req, struct aead_request, base);
1706 tfm = crypto_aead_reqtfm(req);
1707 start = req->assoclen + req->cryptlen;
1708 authsize = crypto_aead_authsize(tfm);
1710 mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
1711 for (i = 0; i < (authsize / 4); i++)
1712 mdptr[i + 4] = swab32(mdptr[i + 4]);
1715 scatterwalk_map_and_copy(&mdptr[4], req->dst, start, authsize,
1719 scatterwalk_map_and_copy(auth_tag, req->src, start, authsize,
1722 err = memcmp(&mdptr[4], auth_tag, authsize) ? -EBADMSG : 0;
1725 sa_free_sa_rx_data(rxd);
1727 aead_request_complete(req, err);
1730 static int sa_cra_init_aead(struct crypto_aead *tfm, const char *hash,
1731 const char *fallback)
1733 struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
1734 struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
1737 memzero_explicit(ctx, sizeof(*ctx));
1738 ctx->dev_data = data;
1740 ctx->shash = crypto_alloc_shash(hash, 0, CRYPTO_ALG_NEED_FALLBACK);
1741 if (IS_ERR(ctx->shash)) {
1742 dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", hash);
1743 return PTR_ERR(ctx->shash);
1746 ctx->fallback.aead = crypto_alloc_aead(fallback, 0,
1747 CRYPTO_ALG_NEED_FALLBACK);
1749 if (IS_ERR(ctx->fallback.aead)) {
1750 dev_err(sa_k3_dev, "fallback driver %s couldn't be loaded\n",
1752 return PTR_ERR(ctx->fallback.aead);
1755 crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) +
1756 crypto_aead_reqsize(ctx->fallback.aead));
1758 ret = sa_init_ctx_info(&ctx->enc, data);
1762 ret = sa_init_ctx_info(&ctx->dec, data);
1764 sa_free_ctx_info(&ctx->enc, data);
1768 dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
1769 __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
1770 ctx->dec.sc_id, &ctx->dec.sc_phys);
1775 static int sa_cra_init_aead_sha1(struct crypto_aead *tfm)
1777 return sa_cra_init_aead(tfm, "sha1",
1778 "authenc(hmac(sha1-ce),cbc(aes-ce))");
1781 static int sa_cra_init_aead_sha256(struct crypto_aead *tfm)
1783 return sa_cra_init_aead(tfm, "sha256",
1784 "authenc(hmac(sha256-ce),cbc(aes-ce))");
1787 static void sa_exit_tfm_aead(struct crypto_aead *tfm)
1789 struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
1790 struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
1792 crypto_free_shash(ctx->shash);
1793 crypto_free_aead(ctx->fallback.aead);
1795 sa_free_ctx_info(&ctx->enc, data);
1796 sa_free_ctx_info(&ctx->dec, data);
1799 /* AEAD algorithm configuration interface function */
1800 static int sa_aead_setkey(struct crypto_aead *authenc,
1801 const u8 *key, unsigned int keylen,
1802 struct algo_data *ad)
1804 struct sa_tfm_ctx *ctx = crypto_aead_ctx(authenc);
1805 struct crypto_authenc_keys keys;
1807 struct sa_cmdl_cfg cfg;
1810 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1813 /* Convert the key size (16/24/32) to the key size index (0/1/2) */
1814 key_idx = (keys.enckeylen >> 3) - 2;
1819 ad->enc_eng.eng_id = SA_ENG_ID_EM1;
1820 ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
1821 ad->auth_eng.eng_id = SA_ENG_ID_AM1;
1822 ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;
1823 ad->mci_enc = mci_cbc_enc_no_iv_array[key_idx];
1824 ad->mci_dec = mci_cbc_dec_no_iv_array[key_idx];
1826 ad->keyed_mac = true;
1827 ad->ealg_id = SA_EALG_ID_AES_CBC;
1828 ad->prep_iopad = sa_prepare_iopads;
1830 memset(&cfg, 0, sizeof(cfg));
1832 cfg.aalg = ad->aalg_id;
1833 cfg.enc_eng_id = ad->enc_eng.eng_id;
1834 cfg.auth_eng_id = ad->auth_eng.eng_id;
1835 cfg.iv_size = crypto_aead_ivsize(authenc);
1836 cfg.akey = keys.authkey;
1837 cfg.akey_len = keys.authkeylen;
1839 /* Setup Encryption Security Context & Command label template */
1840 if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, keys.enckey,
1841 keys.enckeylen, keys.authkey, keys.authkeylen,
1842 ad, 1, &ctx->enc.epib[1]))
1845 cmdl_len = sa_format_cmdl_gen(&cfg,
1846 (u8 *)ctx->enc.cmdl,
1847 &ctx->enc.cmdl_upd_info);
1848 if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
1851 ctx->enc.cmdl_size = cmdl_len;
1853 /* Setup Decryption Security Context & Command label template */
1854 if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, keys.enckey,
1855 keys.enckeylen, keys.authkey, keys.authkeylen,
1856 ad, 0, &ctx->dec.epib[1]))
1860 cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
1861 &ctx->dec.cmdl_upd_info);
1863 if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
1866 ctx->dec.cmdl_size = cmdl_len;
1868 crypto_aead_clear_flags(ctx->fallback.aead, CRYPTO_TFM_REQ_MASK);
1869 crypto_aead_set_flags(ctx->fallback.aead,
1870 crypto_aead_get_flags(authenc) &
1871 CRYPTO_TFM_REQ_MASK);
1872 crypto_aead_setkey(ctx->fallback.aead, key, keylen);
1877 static int sa_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1879 struct sa_tfm_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
1881 return crypto_aead_setauthsize(ctx->fallback.aead, authsize);
1884 static int sa_aead_cbc_sha1_setkey(struct crypto_aead *authenc,
1885 const u8 *key, unsigned int keylen)
1887 struct algo_data ad = { 0 };
1889 ad.ealg_id = SA_EALG_ID_AES_CBC;
1890 ad.aalg_id = SA_AALG_ID_HMAC_SHA1;
1891 ad.hash_size = SHA1_DIGEST_SIZE;
1892 ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;
1894 return sa_aead_setkey(authenc, key, keylen, &ad);
1897 static int sa_aead_cbc_sha256_setkey(struct crypto_aead *authenc,
1898 const u8 *key, unsigned int keylen)
1900 struct algo_data ad = { 0 };
1902 ad.ealg_id = SA_EALG_ID_AES_CBC;
1903 ad.aalg_id = SA_AALG_ID_HMAC_SHA2_256;
1904 ad.hash_size = SHA256_DIGEST_SIZE;
1905 ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;
1907 return sa_aead_setkey(authenc, key, keylen, &ad);
1910 static int sa_aead_run(struct aead_request *req, u8 *iv, int enc)
1912 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1913 struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
1914 struct sa_req sa_req = { 0 };
1915 size_t auth_size, enc_size;
1917 enc_size = req->cryptlen;
1918 auth_size = req->assoclen + req->cryptlen;
1921 enc_size -= crypto_aead_authsize(tfm);
1922 auth_size -= crypto_aead_authsize(tfm);
1925 if (auth_size > SA_MAX_DATA_SZ ||
1926 (auth_size >= SA_UNSAFE_DATA_SZ_MIN &&
1927 auth_size <= SA_UNSAFE_DATA_SZ_MAX)) {
1928 struct aead_request *subreq = aead_request_ctx(req);
1931 aead_request_set_tfm(subreq, ctx->fallback.aead);
1932 aead_request_set_callback(subreq, req->base.flags,
1933 req->base.complete, req->base.data);
1934 aead_request_set_crypt(subreq, req->src, req->dst,
1935 req->cryptlen, req->iv);
1936 aead_request_set_ad(subreq, req->assoclen);
1938 ret = enc ? crypto_aead_encrypt(subreq) :
1939 crypto_aead_decrypt(subreq);
1943 sa_req.enc_offset = req->assoclen;
1944 sa_req.enc_size = enc_size;
1945 sa_req.auth_size = auth_size;
1946 sa_req.size = auth_size;
1948 sa_req.type = CRYPTO_ALG_TYPE_AEAD;
1950 sa_req.callback = sa_aead_dma_in_callback;
1951 sa_req.mdata_size = 52;
1952 sa_req.base = &req->base;
1954 sa_req.src = req->src;
1955 sa_req.dst = req->dst;
1957 return sa_run(&sa_req);
1960 /* AEAD algorithm encrypt interface function */
1961 static int sa_aead_encrypt(struct aead_request *req)
1963 return sa_aead_run(req, req->iv, 1);
1966 /* AEAD algorithm decrypt interface function */
1967 static int sa_aead_decrypt(struct aead_request *req)
1969 return sa_aead_run(req, req->iv, 0);
1972 static struct sa_alg_tmpl sa_algs[] = {
1973 [SA_ALG_CBC_AES] = {
1974 .type = CRYPTO_ALG_TYPE_SKCIPHER,
1976 .base.cra_name = "cbc(aes)",
1977 .base.cra_driver_name = "cbc-aes-sa2ul",
1978 .base.cra_priority = 30000,
1979 .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
1980 CRYPTO_ALG_KERN_DRIVER_ONLY |
1982 CRYPTO_ALG_NEED_FALLBACK,
1983 .base.cra_blocksize = AES_BLOCK_SIZE,
1984 .base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
1985 .base.cra_module = THIS_MODULE,
1986 .init = sa_cipher_cra_init,
1987 .exit = sa_cipher_cra_exit,
1988 .min_keysize = AES_MIN_KEY_SIZE,
1989 .max_keysize = AES_MAX_KEY_SIZE,
1990 .ivsize = AES_BLOCK_SIZE,
1991 .setkey = sa_aes_cbc_setkey,
1992 .encrypt = sa_encrypt,
1993 .decrypt = sa_decrypt,
1996 [SA_ALG_EBC_AES] = {
1997 .type = CRYPTO_ALG_TYPE_SKCIPHER,
1999 .base.cra_name = "ecb(aes)",
2000 .base.cra_driver_name = "ecb-aes-sa2ul",
2001 .base.cra_priority = 30000,
2002 .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
2003 CRYPTO_ALG_KERN_DRIVER_ONLY |
2005 CRYPTO_ALG_NEED_FALLBACK,
2006 .base.cra_blocksize = AES_BLOCK_SIZE,
2007 .base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
2008 .base.cra_module = THIS_MODULE,
2009 .init = sa_cipher_cra_init,
2010 .exit = sa_cipher_cra_exit,
2011 .min_keysize = AES_MIN_KEY_SIZE,
2012 .max_keysize = AES_MAX_KEY_SIZE,
2013 .setkey = sa_aes_ecb_setkey,
2014 .encrypt = sa_encrypt,
2015 .decrypt = sa_decrypt,
2018 [SA_ALG_CBC_DES3] = {
2019 .type = CRYPTO_ALG_TYPE_SKCIPHER,
2021 .base.cra_name = "cbc(des3_ede)",
2022 .base.cra_driver_name = "cbc-des3-sa2ul",
2023 .base.cra_priority = 30000,
2024 .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
2025 CRYPTO_ALG_KERN_DRIVER_ONLY |
2027 CRYPTO_ALG_NEED_FALLBACK,
2028 .base.cra_blocksize = DES_BLOCK_SIZE,
2029 .base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
2030 .base.cra_module = THIS_MODULE,
2031 .init = sa_cipher_cra_init,
2032 .exit = sa_cipher_cra_exit,
2033 .min_keysize = 3 * DES_KEY_SIZE,
2034 .max_keysize = 3 * DES_KEY_SIZE,
2035 .ivsize = DES_BLOCK_SIZE,
2036 .setkey = sa_3des_cbc_setkey,
2037 .encrypt = sa_encrypt,
2038 .decrypt = sa_decrypt,
2041 [SA_ALG_ECB_DES3] = {
2042 .type = CRYPTO_ALG_TYPE_SKCIPHER,
2044 .base.cra_name = "ecb(des3_ede)",
2045 .base.cra_driver_name = "ecb-des3-sa2ul",
2046 .base.cra_priority = 30000,
2047 .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
2048 CRYPTO_ALG_KERN_DRIVER_ONLY |
2050 CRYPTO_ALG_NEED_FALLBACK,
2051 .base.cra_blocksize = DES_BLOCK_SIZE,
2052 .base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
2053 .base.cra_module = THIS_MODULE,
2054 .init = sa_cipher_cra_init,
2055 .exit = sa_cipher_cra_exit,
2056 .min_keysize = 3 * DES_KEY_SIZE,
2057 .max_keysize = 3 * DES_KEY_SIZE,
2058 .setkey = sa_3des_ecb_setkey,
2059 .encrypt = sa_encrypt,
2060 .decrypt = sa_decrypt,
2064 .type = CRYPTO_ALG_TYPE_AHASH,
2068 .cra_driver_name = "sha1-sa2ul",
2069 .cra_priority = 400,
2070 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
2072 CRYPTO_ALG_KERN_DRIVER_ONLY |
2073 CRYPTO_ALG_NEED_FALLBACK,
2074 .cra_blocksize = SHA1_BLOCK_SIZE,
2075 .cra_ctxsize = sizeof(struct sa_tfm_ctx),
2076 .cra_module = THIS_MODULE,
2077 .cra_init = sa_sha1_cra_init,
2078 .cra_exit = sa_sha_cra_exit,
2080 .halg.digestsize = SHA1_DIGEST_SIZE,
2081 .halg.statesize = sizeof(struct sa_sha_req_ctx) +
2082 sizeof(struct sha1_state),
2083 .init = sa_sha_init,
2084 .update = sa_sha_update,
2085 .final = sa_sha_final,
2086 .finup = sa_sha_finup,
2087 .digest = sa_sha_digest,
2088 .export = sa_sha_export,
2089 .import = sa_sha_import,
2093 .type = CRYPTO_ALG_TYPE_AHASH,
2096 .cra_name = "sha256",
2097 .cra_driver_name = "sha256-sa2ul",
2098 .cra_priority = 400,
2099 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
2101 CRYPTO_ALG_KERN_DRIVER_ONLY |
2102 CRYPTO_ALG_NEED_FALLBACK,
2103 .cra_blocksize = SHA256_BLOCK_SIZE,
2104 .cra_ctxsize = sizeof(struct sa_tfm_ctx),
2105 .cra_module = THIS_MODULE,
2106 .cra_init = sa_sha256_cra_init,
2107 .cra_exit = sa_sha_cra_exit,
2109 .halg.digestsize = SHA256_DIGEST_SIZE,
2110 .halg.statesize = sizeof(struct sa_sha_req_ctx) +
2111 sizeof(struct sha256_state),
2112 .init = sa_sha_init,
2113 .update = sa_sha_update,
2114 .final = sa_sha_final,
2115 .finup = sa_sha_finup,
2116 .digest = sa_sha_digest,
2117 .export = sa_sha_export,
2118 .import = sa_sha_import,
2122 .type = CRYPTO_ALG_TYPE_AHASH,
2125 .cra_name = "sha512",
2126 .cra_driver_name = "sha512-sa2ul",
2127 .cra_priority = 400,
2128 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
2130 CRYPTO_ALG_KERN_DRIVER_ONLY |
2131 CRYPTO_ALG_NEED_FALLBACK,
2132 .cra_blocksize = SHA512_BLOCK_SIZE,
2133 .cra_ctxsize = sizeof(struct sa_tfm_ctx),
2134 .cra_module = THIS_MODULE,
2135 .cra_init = sa_sha512_cra_init,
2136 .cra_exit = sa_sha_cra_exit,
2138 .halg.digestsize = SHA512_DIGEST_SIZE,
2139 .halg.statesize = sizeof(struct sa_sha_req_ctx) +
2140 sizeof(struct sha512_state),
2141 .init = sa_sha_init,
2142 .update = sa_sha_update,
2143 .final = sa_sha_final,
2144 .finup = sa_sha_finup,
2145 .digest = sa_sha_digest,
2146 .export = sa_sha_export,
2147 .import = sa_sha_import,
2150 [SA_ALG_AUTHENC_SHA1_AES] = {
2151 .type = CRYPTO_ALG_TYPE_AEAD,
2154 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2156 "authenc(hmac(sha1),cbc(aes))-sa2ul",
2157 .cra_blocksize = AES_BLOCK_SIZE,
2158 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
2159 CRYPTO_ALG_KERN_DRIVER_ONLY |
2161 CRYPTO_ALG_NEED_FALLBACK,
2162 .cra_ctxsize = sizeof(struct sa_tfm_ctx),
2163 .cra_module = THIS_MODULE,
2164 .cra_priority = 3000,
2166 .ivsize = AES_BLOCK_SIZE,
2167 .maxauthsize = SHA1_DIGEST_SIZE,
2169 .init = sa_cra_init_aead_sha1,
2170 .exit = sa_exit_tfm_aead,
2171 .setkey = sa_aead_cbc_sha1_setkey,
2172 .setauthsize = sa_aead_setauthsize,
2173 .encrypt = sa_aead_encrypt,
2174 .decrypt = sa_aead_decrypt,
2177 [SA_ALG_AUTHENC_SHA256_AES] = {
2178 .type = CRYPTO_ALG_TYPE_AEAD,
2181 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2183 "authenc(hmac(sha256),cbc(aes))-sa2ul",
2184 .cra_blocksize = AES_BLOCK_SIZE,
2185 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
2186 CRYPTO_ALG_KERN_DRIVER_ONLY |
2188 CRYPTO_ALG_NEED_FALLBACK,
2189 .cra_ctxsize = sizeof(struct sa_tfm_ctx),
2190 .cra_module = THIS_MODULE,
2192 .cra_priority = 3000,
2194 .ivsize = AES_BLOCK_SIZE,
2195 .maxauthsize = SHA256_DIGEST_SIZE,
2197 .init = sa_cra_init_aead_sha256,
2198 .exit = sa_exit_tfm_aead,
2199 .setkey = sa_aead_cbc_sha256_setkey,
2200 .setauthsize = sa_aead_setauthsize,
2201 .encrypt = sa_aead_encrypt,
2202 .decrypt = sa_aead_decrypt,
2207 /* Register the algorithms in crypto framework */
2208 static void sa_register_algos(struct sa_crypto_data *dev_data)
2210 const struct sa_match_data *match_data = dev_data->match_data;
2211 struct device *dev = dev_data->dev;
2216 for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
2217 /* Skip unsupported algos */
2218 if (!(match_data->supported_algos & BIT(i)))
2221 type = sa_algs[i].type;
2222 if (type == CRYPTO_ALG_TYPE_SKCIPHER) {
2223 alg_name = sa_algs[i].alg.skcipher.base.cra_name;
2224 err = crypto_register_skcipher(&sa_algs[i].alg.skcipher);
2225 } else if (type == CRYPTO_ALG_TYPE_AHASH) {
2226 alg_name = sa_algs[i].alg.ahash.halg.base.cra_name;
2227 err = crypto_register_ahash(&sa_algs[i].alg.ahash);
2228 } else if (type == CRYPTO_ALG_TYPE_AEAD) {
2229 alg_name = sa_algs[i].alg.aead.base.cra_name;
2230 err = crypto_register_aead(&sa_algs[i].alg.aead);
2233 "un-supported crypto algorithm (%d)",
2239 dev_err(dev, "Failed to register '%s'\n", alg_name);
2241 sa_algs[i].registered = true;
2245 /* Unregister the algorithms in crypto framework */
2246 static void sa_unregister_algos(const struct device *dev)
2251 for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
2252 type = sa_algs[i].type;
2253 if (!sa_algs[i].registered)
2255 if (type == CRYPTO_ALG_TYPE_SKCIPHER)
2256 crypto_unregister_skcipher(&sa_algs[i].alg.skcipher);
2257 else if (type == CRYPTO_ALG_TYPE_AHASH)
2258 crypto_unregister_ahash(&sa_algs[i].alg.ahash);
2259 else if (type == CRYPTO_ALG_TYPE_AEAD)
2260 crypto_unregister_aead(&sa_algs[i].alg.aead);
2262 sa_algs[i].registered = false;
2266 static int sa_init_mem(struct sa_crypto_data *dev_data)
2268 struct device *dev = &dev_data->pdev->dev;
2269 /* Setup dma pool for security context buffers */
2270 dev_data->sc_pool = dma_pool_create("keystone-sc", dev,
2271 SA_CTX_MAX_SZ, 64, 0);
2272 if (!dev_data->sc_pool) {
2273 dev_err(dev, "Failed to create dma pool");
2280 static int sa_dma_init(struct sa_crypto_data *dd)
2283 struct dma_slave_config cfg;
2289 ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48));
2293 dd->dma_rx1 = dma_request_chan(dd->dev, "rx1");
2294 if (IS_ERR(dd->dma_rx1))
2295 return dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx1),
2296 "Unable to request rx1 DMA channel\n");
2298 dd->dma_rx2 = dma_request_chan(dd->dev, "rx2");
2299 if (IS_ERR(dd->dma_rx2)) {
2300 ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx2),
2301 "Unable to request rx2 DMA channel\n");
2305 dd->dma_tx = dma_request_chan(dd->dev, "tx");
2306 if (IS_ERR(dd->dma_tx)) {
2307 ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_tx),
2308 "Unable to request tx DMA channel\n");
2312 memzero_explicit(&cfg, sizeof(cfg));
2314 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2315 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2316 cfg.src_maxburst = 4;
2317 cfg.dst_maxburst = 4;
2319 ret = dmaengine_slave_config(dd->dma_rx1, &cfg);
2321 dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
2323 goto err_dma_config;
2326 ret = dmaengine_slave_config(dd->dma_rx2, &cfg);
2328 dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
2330 goto err_dma_config;
2333 ret = dmaengine_slave_config(dd->dma_tx, &cfg);
2335 dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
2337 goto err_dma_config;
2343 dma_release_channel(dd->dma_tx);
2345 dma_release_channel(dd->dma_rx2);
2347 dma_release_channel(dd->dma_rx1);
2352 static int sa_link_child(struct device *dev, void *data)
2354 struct device *parent = data;
2356 device_link_add(dev, parent, DL_FLAG_AUTOPROBE_CONSUMER);
2361 static struct sa_match_data am654_match_data = {
2364 .supported_algos = GENMASK(SA_ALG_AUTHENC_SHA256_AES, 0),
2367 static struct sa_match_data am64_match_data = {
2370 .supported_algos = BIT(SA_ALG_CBC_AES) |
2371 BIT(SA_ALG_EBC_AES) |
2372 BIT(SA_ALG_SHA256) |
2373 BIT(SA_ALG_SHA512) |
2374 BIT(SA_ALG_AUTHENC_SHA256_AES),
2375 .skip_engine_control = true,
2378 static const struct of_device_id of_match[] = {
2379 { .compatible = "ti,j721e-sa2ul", .data = &am654_match_data, },
2380 { .compatible = "ti,am654-sa2ul", .data = &am654_match_data, },
2381 { .compatible = "ti,am64-sa2ul", .data = &am64_match_data, },
2382 { .compatible = "ti,am62-sa3ul", .data = &am64_match_data, },
2385 MODULE_DEVICE_TABLE(of, of_match);
2387 static int sa_ul_probe(struct platform_device *pdev)
2389 struct device *dev = &pdev->dev;
2390 struct device_node *node = dev->of_node;
2391 static void __iomem *saul_base;
2392 struct sa_crypto_data *dev_data;
2395 dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL);
2399 dev_data->match_data = of_device_get_match_data(dev);
2400 if (!dev_data->match_data)
2403 saul_base = devm_platform_ioremap_resource(pdev, 0);
2404 if (IS_ERR(saul_base))
2405 return PTR_ERR(saul_base);
2408 dev_data->dev = dev;
2409 dev_data->pdev = pdev;
2410 dev_data->base = saul_base;
2411 platform_set_drvdata(pdev, dev_data);
2412 dev_set_drvdata(sa_k3_dev, dev_data);
2414 pm_runtime_enable(dev);
2415 ret = pm_runtime_resume_and_get(dev);
2417 dev_err(dev, "%s: failed to get sync: %d\n", __func__, ret);
2418 pm_runtime_disable(dev);
2422 sa_init_mem(dev_data);
2423 ret = sa_dma_init(dev_data);
2425 goto destroy_dma_pool;
2427 spin_lock_init(&dev_data->scid_lock);
2429 if (!dev_data->match_data->skip_engine_control) {
2430 u32 val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN |
2431 SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN |
2434 writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL);
2437 sa_register_algos(dev_data);
2439 ret = of_platform_populate(node, NULL, NULL, dev);
2443 device_for_each_child(dev, dev, sa_link_child);
2448 sa_unregister_algos(dev);
2450 dma_release_channel(dev_data->dma_rx2);
2451 dma_release_channel(dev_data->dma_rx1);
2452 dma_release_channel(dev_data->dma_tx);
2455 dma_pool_destroy(dev_data->sc_pool);
2457 pm_runtime_put_sync(dev);
2458 pm_runtime_disable(dev);
2463 static int sa_ul_remove(struct platform_device *pdev)
2465 struct sa_crypto_data *dev_data = platform_get_drvdata(pdev);
2467 of_platform_depopulate(&pdev->dev);
2469 sa_unregister_algos(&pdev->dev);
2471 dma_release_channel(dev_data->dma_rx2);
2472 dma_release_channel(dev_data->dma_rx1);
2473 dma_release_channel(dev_data->dma_tx);
2475 dma_pool_destroy(dev_data->sc_pool);
2477 platform_set_drvdata(pdev, NULL);
2479 pm_runtime_put_sync(&pdev->dev);
2480 pm_runtime_disable(&pdev->dev);
2485 static struct platform_driver sa_ul_driver = {
2486 .probe = sa_ul_probe,
2487 .remove = sa_ul_remove,
2489 .name = "saul-crypto",
2490 .of_match_table = of_match,
2493 module_platform_driver(sa_ul_driver);
2494 MODULE_LICENSE("GPL v2");