1 // SPDX-License-Identifier: GPL-2.0
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
10 // Hash part based on omap-sham.c driver.
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/scatterlist.h>
27 #include <crypto/ctr.h>
28 #include <crypto/aes.h>
29 #include <crypto/algapi.h>
30 #include <crypto/scatterwalk.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/sha1.h>
35 #include <crypto/sha2.h>
36 #include <crypto/internal/hash.h>
38 #define _SBF(s, v) ((v) << (s))
40 /* Feed control registers */
41 #define SSS_REG_FCINTSTAT 0x0000
42 #define SSS_FCINTSTAT_HPARTINT BIT(7)
43 #define SSS_FCINTSTAT_HDONEINT BIT(5)
44 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
45 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
46 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
47 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
49 #define SSS_REG_FCINTENSET 0x0004
50 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
51 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
52 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
53 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
54 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
55 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
57 #define SSS_REG_FCINTENCLR 0x0008
58 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
59 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
60 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
61 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
62 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
63 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
65 #define SSS_REG_FCINTPEND 0x000C
66 #define SSS_FCINTPEND_HPARTINTP BIT(7)
67 #define SSS_FCINTPEND_HDONEINTP BIT(5)
68 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
69 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
70 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
71 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
73 #define SSS_REG_FCFIFOSTAT 0x0010
74 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
75 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
76 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
77 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
78 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
79 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
80 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
81 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
83 #define SSS_REG_FCFIFOCTRL 0x0014
84 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
85 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
86 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
87 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
88 #define SSS_HASHIN_MASK _SBF(0, 0x03)
90 #define SSS_REG_FCBRDMAS 0x0020
91 #define SSS_REG_FCBRDMAL 0x0024
92 #define SSS_REG_FCBRDMAC 0x0028
93 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
94 #define SSS_FCBRDMAC_FLUSH BIT(0)
96 #define SSS_REG_FCBTDMAS 0x0030
97 #define SSS_REG_FCBTDMAL 0x0034
98 #define SSS_REG_FCBTDMAC 0x0038
99 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
100 #define SSS_FCBTDMAC_FLUSH BIT(0)
102 #define SSS_REG_FCHRDMAS 0x0040
103 #define SSS_REG_FCHRDMAL 0x0044
104 #define SSS_REG_FCHRDMAC 0x0048
105 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
106 #define SSS_FCHRDMAC_FLUSH BIT(0)
108 #define SSS_REG_FCPKDMAS 0x0050
109 #define SSS_REG_FCPKDMAL 0x0054
110 #define SSS_REG_FCPKDMAC 0x0058
111 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
112 #define SSS_FCPKDMAC_DESCEND BIT(2)
113 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
114 #define SSS_FCPKDMAC_FLUSH BIT(0)
116 #define SSS_REG_FCPKDMAO 0x005C
119 #define SSS_REG_AES_CONTROL 0x00
120 #define SSS_AES_BYTESWAP_DI BIT(11)
121 #define SSS_AES_BYTESWAP_DO BIT(10)
122 #define SSS_AES_BYTESWAP_IV BIT(9)
123 #define SSS_AES_BYTESWAP_CNT BIT(8)
124 #define SSS_AES_BYTESWAP_KEY BIT(7)
125 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
126 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
127 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
128 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
129 #define SSS_AES_FIFO_MODE BIT(3)
130 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
131 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
132 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
133 #define SSS_AES_MODE_DECRYPT BIT(0)
135 #define SSS_REG_AES_STATUS 0x04
136 #define SSS_AES_BUSY BIT(2)
137 #define SSS_AES_INPUT_READY BIT(1)
138 #define SSS_AES_OUTPUT_READY BIT(0)
140 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
141 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
142 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
143 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
144 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
146 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
147 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
148 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
150 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
151 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
152 SSS_AES_REG(dev, reg))
154 /* HW engine modes */
155 #define FLAGS_AES_DECRYPT BIT(0)
156 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
157 #define FLAGS_AES_CBC _SBF(1, 0x01)
158 #define FLAGS_AES_CTR _SBF(1, 0x02)
160 #define AES_KEY_LEN 16
161 #define CRYPTO_QUEUE_LEN 1
164 #define SSS_REG_HASH_CTRL 0x00
166 #define SSS_HASH_USER_IV_EN BIT(5)
167 #define SSS_HASH_INIT_BIT BIT(4)
168 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
169 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
170 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
172 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
174 #define SSS_REG_HASH_CTRL_PAUSE 0x04
176 #define SSS_HASH_PAUSE BIT(0)
178 #define SSS_REG_HASH_CTRL_FIFO 0x08
180 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
181 #define SSS_HASH_FIFO_MODE_CPU 0
183 #define SSS_REG_HASH_CTRL_SWAP 0x0C
185 #define SSS_HASH_BYTESWAP_DI BIT(3)
186 #define SSS_HASH_BYTESWAP_DO BIT(2)
187 #define SSS_HASH_BYTESWAP_IV BIT(1)
188 #define SSS_HASH_BYTESWAP_KEY BIT(0)
190 #define SSS_REG_HASH_STATUS 0x10
192 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
193 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
194 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
196 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
197 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
199 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
200 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
202 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
203 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
205 #define HASH_BLOCK_SIZE 64
206 #define HASH_REG_SIZEOF 4
207 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
209 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
212 * HASH bit numbers, used by device, setting in dev->hash_flags with
213 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
214 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
215 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
217 #define HASH_FLAGS_BUSY 0
218 #define HASH_FLAGS_FINAL 1
219 #define HASH_FLAGS_DMA_ACTIVE 2
220 #define HASH_FLAGS_OUTPUT_READY 3
221 #define HASH_FLAGS_DMA_READY 4
222 #define HASH_FLAGS_SGS_COPIED 5
223 #define HASH_FLAGS_SGS_ALLOCED 6
225 /* HASH HW constants */
226 #define BUFLEN HASH_BLOCK_SIZE
228 #define SSS_HASH_DMA_LEN_ALIGN 8
229 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
231 #define SSS_HASH_QUEUE_LENGTH 10
234 * struct samsung_aes_variant - platform specific SSS driver data
235 * @aes_offset: AES register offset from SSS module's base.
236 * @hash_offset: HASH register offset from SSS module's base.
237 * @clk_names: names of clocks needed to run SSS IP
239 * Specifies platform specific configuration of SSS module.
240 * Note: A structure for driver specific platform data is used for future
241 * expansion of its usage.
243 struct samsung_aes_variant {
244 unsigned int aes_offset;
245 unsigned int hash_offset;
246 const char *clk_names[2];
249 struct s5p_aes_reqctx {
254 struct s5p_aes_dev *dev;
256 u8 aes_key[AES_MAX_KEY_SIZE];
257 u8 nonce[CTR_RFC3686_NONCE_SIZE];
262 * struct s5p_aes_dev - Crypto device state container
263 * @dev: Associated device
264 * @clk: Clock for accessing hardware
265 * @pclk: APB bus clock necessary to access the hardware
266 * @ioaddr: Mapped IO memory region
267 * @aes_ioaddr: Per-varian offset for AES block IO memory
268 * @irq_fc: Feed control interrupt line
269 * @req: Crypto request currently handled by the device
270 * @ctx: Configuration for currently handled crypto request
271 * @sg_src: Scatter list with source data for currently handled block
272 * in device. This is DMA-mapped into device.
273 * @sg_dst: Scatter list with destination data for currently handled block
274 * in device. This is DMA-mapped into device.
275 * @sg_src_cpy: In case of unaligned access, copied scatter list
277 * @sg_dst_cpy: In case of unaligned access, copied scatter list
278 * with destination data.
279 * @tasklet: New request scheduling jib
280 * @queue: Crypto queue
281 * @busy: Indicates whether the device is currently handling some request
282 * thus it uses some of the fields from this state, like:
283 * req, ctx, sg_src/dst (and copies). This essentially
284 * protects against concurrent access to these fields.
285 * @lock: Lock for protecting both access to device hardware registers
286 * and fields related to current request (including the busy field).
287 * @res: Resources for hash.
288 * @io_hash_base: Per-variant offset for HASH block IO memory.
289 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
291 * @hash_flags: Flags for current HASH op.
292 * @hash_queue: Async hash queue.
293 * @hash_tasklet: New HASH request scheduling job.
294 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
295 * @hash_req: Current request sending to SSS HASH block.
296 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
297 * @hash_sg_cnt: Counter for hash_sg_iter.
299 * @use_hash: true if HASH algs enabled
305 void __iomem *ioaddr;
306 void __iomem *aes_ioaddr;
309 struct skcipher_request *req;
310 struct s5p_aes_ctx *ctx;
311 struct scatterlist *sg_src;
312 struct scatterlist *sg_dst;
314 struct scatterlist *sg_src_cpy;
315 struct scatterlist *sg_dst_cpy;
317 struct tasklet_struct tasklet;
318 struct crypto_queue queue;
322 struct resource *res;
323 void __iomem *io_hash_base;
325 spinlock_t hash_lock; /* protect hash_ vars */
326 unsigned long hash_flags;
327 struct crypto_queue hash_queue;
328 struct tasklet_struct hash_tasklet;
331 struct ahash_request *hash_req;
332 struct scatterlist *hash_sg_iter;
333 unsigned int hash_sg_cnt;
339 * struct s5p_hash_reqctx - HASH request context
340 * @dd: Associated device
341 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
342 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
343 * @digest: Digest message or IV for partial result
344 * @nregs: Number of HW registers for digest or IV read/write
345 * @engine: Bits for selecting type of HASH in SSS block
346 * @sg: sg for DMA transfer
347 * @sg_len: Length of sg for DMA transfer
348 * @sgl: sg for joining buffer and req->src scatterlist
349 * @skip: Skip offset in req->src for current op
350 * @total: Total number of bytes for current request
351 * @finup: Keep state for finup or final.
352 * @error: Keep track of error.
353 * @bufcnt: Number of bytes holded in buffer[]
354 * @buffer: For byte(s) from end of req->src in UPDATE op
356 struct s5p_hash_reqctx {
357 struct s5p_aes_dev *dd;
361 u8 digest[SHA256_DIGEST_SIZE];
363 unsigned int nregs; /* digest_size / sizeof(reg) */
366 struct scatterlist *sg;
368 struct scatterlist sgl[2];
379 * struct s5p_hash_ctx - HASH transformation context
380 * @dd: Associated device
381 * @flags: Bits for algorithm HASH.
382 * @fallback: Software transformation for zero message or size < BUFLEN.
384 struct s5p_hash_ctx {
385 struct s5p_aes_dev *dd;
387 struct crypto_shash *fallback;
390 static const struct samsung_aes_variant s5p_aes_data = {
391 .aes_offset = 0x4000,
392 .hash_offset = 0x6000,
393 .clk_names = { "secss", },
396 static const struct samsung_aes_variant exynos_aes_data = {
398 .hash_offset = 0x400,
399 .clk_names = { "secss", },
402 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
404 .hash_offset = 0x800,
405 .clk_names = { "aclk", "pclk", },
408 static const struct of_device_id s5p_sss_dt_match[] = {
410 .compatible = "samsung,s5pv210-secss",
411 .data = &s5p_aes_data,
414 .compatible = "samsung,exynos4210-secss",
415 .data = &exynos_aes_data,
418 .compatible = "samsung,exynos5433-slim-sss",
419 .data = &exynos5433_slim_aes_data,
423 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
425 static inline const struct samsung_aes_variant *find_s5p_sss_version
426 (const struct platform_device *pdev)
428 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
429 return of_device_get_match_data(&pdev->dev);
431 return (const struct samsung_aes_variant *)
432 platform_get_device_id(pdev)->driver_data;
435 static struct s5p_aes_dev *s5p_dev;
437 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
438 const struct scatterlist *sg)
440 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
441 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
444 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
445 const struct scatterlist *sg)
447 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
448 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
451 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
458 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
459 free_pages((unsigned long)sg_virt(*sg), get_order(len));
465 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
466 unsigned int nbytes, int out)
468 struct scatter_walk walk;
473 scatterwalk_start(&walk, sg);
474 scatterwalk_copychunks(buf, &walk, nbytes, out);
475 scatterwalk_done(&walk, out, 0);
478 static void s5p_sg_done(struct s5p_aes_dev *dev)
480 struct skcipher_request *req = dev->req;
481 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
483 if (dev->sg_dst_cpy) {
485 "Copying %d bytes of output data back to original place\n",
487 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
488 dev->req->cryptlen, 1);
490 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
491 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
492 if (reqctx->mode & FLAGS_AES_CBC)
493 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
495 else if (reqctx->mode & FLAGS_AES_CTR)
496 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
499 /* Calls the completion. Cannot be called with dev->lock hold. */
500 static void s5p_aes_complete(struct skcipher_request *req, int err)
502 req->base.complete(&req->base, err);
505 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
507 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
510 static void s5p_unset_indata(struct s5p_aes_dev *dev)
512 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
515 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
516 struct scatterlist **dst)
521 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
525 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
526 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
533 s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
535 sg_init_table(*dst, 1);
536 sg_set_buf(*dst, pages, len);
541 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
546 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
554 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
559 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
568 * Returns -ERRNO on error (mapping of new data failed).
569 * On success returns:
570 * - 0 if there is no more data,
571 * - 1 if new transmitting (output) data is ready and its address+length
572 * have to be written to device (by calling s5p_set_dma_outdata()).
574 static int s5p_aes_tx(struct s5p_aes_dev *dev)
578 s5p_unset_outdata(dev);
580 if (!sg_is_last(dev->sg_dst)) {
581 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
590 * Returns -ERRNO on error (mapping of new data failed).
591 * On success returns:
592 * - 0 if there is no more data,
593 * - 1 if new receiving (input) data is ready and its address+length
594 * have to be written to device (by calling s5p_set_dma_indata()).
596 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
600 s5p_unset_indata(dev);
602 if (!sg_is_last(dev->sg_src)) {
603 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
611 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
613 return __raw_readl(dd->io_hash_base + offset);
616 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
617 u32 offset, u32 value)
619 __raw_writel(value, dd->io_hash_base + offset);
623 * s5p_set_dma_hashdata() - start DMA with sg
625 * @sg: scatterlist ready to DMA transmit
627 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
628 const struct scatterlist *sg)
631 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
632 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
636 * s5p_hash_rx() - get next hash_sg_iter
640 * 2 if there is no more data and it is UPDATE op
641 * 1 if new receiving (input) data is ready and can be written to device
642 * 0 if there is no more data and it is FINAL op
644 static int s5p_hash_rx(struct s5p_aes_dev *dev)
646 if (dev->hash_sg_cnt > 0) {
647 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
651 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
652 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
658 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
660 struct platform_device *pdev = dev_id;
661 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
662 struct skcipher_request *req;
672 spin_lock_irqsave(&dev->lock, flags);
675 * Handle rx or tx interrupt. If there is still data (scatterlist did not
676 * reach end), then map next scatterlist entry.
677 * In case of such mapping error, s5p_aes_complete() should be called.
679 * If there is no more data in tx scatter list, call s5p_aes_complete()
680 * and schedule new tasklet.
682 * Handle hx interrupt. If there is still data map next entry.
684 status = SSS_READ(dev, FCINTSTAT);
685 if (status & SSS_FCINTSTAT_BRDMAINT)
686 err_dma_rx = s5p_aes_rx(dev);
688 if (status & SSS_FCINTSTAT_BTDMAINT) {
689 if (sg_is_last(dev->sg_dst))
691 err_dma_tx = s5p_aes_tx(dev);
694 if (status & SSS_FCINTSTAT_HRDMAINT)
695 err_dma_hx = s5p_hash_rx(dev);
697 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
698 SSS_FCINTSTAT_HRDMAINT);
700 SSS_WRITE(dev, FCINTPEND, st_bits);
702 /* clear HASH irq bits */
703 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
704 /* cannot have both HPART and HDONE */
705 if (status & SSS_FCINTSTAT_HPARTINT)
706 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
708 if (status & SSS_FCINTSTAT_HDONEINT)
709 st_bits = SSS_HASH_STATUS_MSG_DONE;
711 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
712 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
714 /* when DONE or PART, do not handle HASH DMA */
718 if (err_dma_rx < 0) {
722 if (err_dma_tx < 0) {
730 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
732 spin_unlock_irqrestore(&dev->lock, flags);
734 s5p_aes_complete(dev->req, 0);
735 /* Device is still busy */
736 tasklet_schedule(&dev->tasklet);
739 * Writing length of DMA block (either receiving or
740 * transmitting) will start the operation immediately, so this
741 * should be done at the end (even after clearing pending
742 * interrupts to not miss the interrupt).
745 s5p_set_dma_outdata(dev, dev->sg_dst);
747 s5p_set_dma_indata(dev, dev->sg_src);
749 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
751 spin_unlock_irqrestore(&dev->lock, flags);
761 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
763 spin_unlock_irqrestore(&dev->lock, flags);
764 s5p_aes_complete(req, err);
768 * Note about else if:
769 * when hash_sg_iter reaches end and its UPDATE op,
770 * issue SSS_HASH_PAUSE and wait for HPART irq
773 tasklet_schedule(&dev->hash_tasklet);
774 else if (err_dma_hx == 2)
775 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
782 * s5p_hash_read_msg() - read message or IV from HW
783 * @req: AHASH request
785 static void s5p_hash_read_msg(struct ahash_request *req)
787 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
788 struct s5p_aes_dev *dd = ctx->dd;
789 u32 *hash = (u32 *)ctx->digest;
792 for (i = 0; i < ctx->nregs; i++)
793 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
797 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
799 * @ctx: request context
801 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
802 const struct s5p_hash_reqctx *ctx)
804 const u32 *hash = (const u32 *)ctx->digest;
807 for (i = 0; i < ctx->nregs; i++)
808 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
812 * s5p_hash_write_iv() - write IV for next partial/finup op.
813 * @req: AHASH request
815 static void s5p_hash_write_iv(struct ahash_request *req)
817 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
819 s5p_hash_write_ctx_iv(ctx->dd, ctx);
823 * s5p_hash_copy_result() - copy digest into req->result
824 * @req: AHASH request
826 static void s5p_hash_copy_result(struct ahash_request *req)
828 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
833 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
837 * s5p_hash_dma_flush() - flush HASH DMA
840 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
842 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
846 * s5p_hash_dma_enable() - enable DMA mode for HASH
849 * enable DMA mode for HASH
851 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
853 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
857 * s5p_hash_irq_disable() - disable irq HASH signals
859 * @flags: bitfield with irq's to be disabled
861 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
863 SSS_WRITE(dev, FCINTENCLR, flags);
867 * s5p_hash_irq_enable() - enable irq signals
869 * @flags: bitfield with irq's to be enabled
871 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
873 SSS_WRITE(dev, FCINTENSET, flags);
877 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
879 * @hashflow: HASH stream flow with/without crypto AES/DES
881 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
886 spin_lock_irqsave(&dev->lock, flags);
888 flow = SSS_READ(dev, FCFIFOCTRL);
889 flow &= ~SSS_HASHIN_MASK;
891 SSS_WRITE(dev, FCFIFOCTRL, flow);
893 spin_unlock_irqrestore(&dev->lock, flags);
897 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
899 * @hashflow: HASH stream flow with/without AES/DES
901 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
902 * enable HASH irq's HRDMA, HDONE, HPART
904 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
906 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
907 SSS_FCINTENCLR_HDONEINTENCLR |
908 SSS_FCINTENCLR_HPARTINTENCLR);
909 s5p_hash_dma_flush(dev);
911 s5p_hash_dma_enable(dev);
912 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
913 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
914 SSS_FCINTENSET_HDONEINTENSET |
915 SSS_FCINTENSET_HPARTINTENSET);
919 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
921 * @length: length for request
922 * @final: true if final op
924 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
925 * after previous updates, fill up IV words. For final, calculate and set
926 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
927 * length as 2^63 so it will be never reached and set to zero prelow and
930 * This function does not start DMA transfer.
932 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
935 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
936 u32 prelow, prehigh, low, high;
937 u32 configflags, swapflags;
940 configflags = ctx->engine | SSS_HASH_INIT_BIT;
942 if (likely(ctx->digcnt)) {
943 s5p_hash_write_ctx_iv(dd, ctx);
944 configflags |= SSS_HASH_USER_IV_EN;
948 /* number of bytes for last part */
951 /* total number of bits prev hashed */
952 tmplen = ctx->digcnt * 8;
953 prelow = (u32)tmplen;
954 prehigh = (u32)(tmplen >> 32);
962 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
963 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
965 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
966 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
967 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
968 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
970 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
971 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
975 * s5p_hash_xmit_dma() - start DMA hash processing
977 * @length: length for request
978 * @final: true if final op
980 * Update digcnt here, as it is needed for finup/final op.
982 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
985 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
988 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
990 dev_err(dd->dev, "dma_map_sg error\n");
995 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
996 dd->hash_sg_iter = ctx->sg;
997 dd->hash_sg_cnt = cnt;
998 s5p_hash_write_ctrl(dd, length, final);
999 ctx->digcnt += length;
1000 ctx->total -= length;
1002 /* catch last interrupt */
1004 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1006 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1008 return -EINPROGRESS;
1012 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1013 * @ctx: request context
1014 * @sg: source scatterlist request
1015 * @new_len: number of bytes to process from sg
1017 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1018 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1019 * with allocated buffer.
1021 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1023 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1024 struct scatterlist *sg, unsigned int new_len)
1026 unsigned int pages, len;
1029 len = new_len + ctx->bufcnt;
1030 pages = get_order(len);
1032 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1034 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1040 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1042 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1044 sg_init_table(ctx->sgl, 1);
1045 sg_set_buf(ctx->sgl, buf, len);
1050 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1056 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1057 * @ctx: request context
1058 * @sg: source scatterlist request
1059 * @new_len: number of bytes to process from sg
1061 * Allocate new scatterlist table, copy data for HASH into it. If there was
1062 * xmit_buf filled, prepare it first, then copy page, length and offset from
1063 * source sg into it, adjusting begin and/or end for skip offset and
1066 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1067 * it after irq ends processing.
1069 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1070 struct scatterlist *sg, unsigned int new_len)
1072 unsigned int skip = ctx->skip, n = sg_nents(sg);
1073 struct scatterlist *tmp;
1079 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1085 sg_init_table(ctx->sg, n);
1092 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1097 while (sg && skip >= sg->length) {
1102 while (sg && new_len) {
1103 len = sg->length - skip;
1108 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1118 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1124 * s5p_hash_prepare_sgs() - prepare sg for processing
1125 * @ctx: request context
1126 * @sg: source scatterlist request
1127 * @new_len: number of bytes to process from sg
1128 * @final: final flag
1130 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1131 * sg table have good aligned elements (list_ok). If one of this checks fails,
1132 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1133 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1134 * table and prepare sg elements.
1136 * For digest or finup all conditions can be good, and we may not need any
1139 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1140 struct scatterlist *sg,
1141 unsigned int new_len, bool final)
1143 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1144 bool aligned = true, list_ok = true;
1145 struct scatterlist *sg_tmp = sg;
1147 if (!sg || !sg->length || !new_len)
1153 while (nbytes > 0 && sg_tmp) {
1155 if (skip >= sg_tmp->length) {
1156 skip -= sg_tmp->length;
1157 if (!sg_tmp->length) {
1162 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1167 if (nbytes < sg_tmp->length - skip) {
1172 nbytes -= sg_tmp->length - skip;
1176 sg_tmp = sg_next(sg_tmp);
1180 return s5p_hash_copy_sgs(ctx, sg, new_len);
1182 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1185 * Have aligned data from previous operation and/or current
1186 * Note: will enter here only if (digest or finup) and aligned
1190 sg_init_table(ctx->sgl, 2);
1191 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1192 sg_chain(ctx->sgl, 2, sg);
1204 * s5p_hash_prepare_request() - prepare request for processing
1205 * @req: AHASH request
1206 * @update: true if UPDATE op
1208 * Note 1: we can have update flag _and_ final flag at the same time.
1209 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1210 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1213 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1215 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1216 bool final = ctx->finup;
1217 int xmit_len, hash_later, nbytes;
1221 nbytes = req->nbytes;
1225 ctx->total = nbytes + ctx->bufcnt;
1229 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1230 /* bytes left from previous request, so fill up to BUFLEN */
1231 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1236 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1246 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1248 xmit_len = ctx->total;
1252 if (IS_ALIGNED(xmit_len, BUFLEN))
1255 xmit_len -= xmit_len & (BUFLEN - 1);
1257 hash_later = ctx->total - xmit_len;
1258 /* copy hash_later bytes from end of req->src */
1259 /* previous bytes are in xmit_buf, so no overwrite */
1260 scatterwalk_map_and_copy(ctx->buffer, req->src,
1261 req->nbytes - hash_later,
1265 if (xmit_len > BUFLEN) {
1266 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1271 /* have buffered data only */
1272 if (unlikely(!ctx->bufcnt)) {
1273 /* first update didn't fill up buffer */
1274 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1278 sg_init_table(ctx->sgl, 1);
1279 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1285 ctx->bufcnt = hash_later;
1287 ctx->total = xmit_len;
1293 * s5p_hash_update_dma_stop() - unmap DMA
1296 * Unmap scatterlist ctx->sg.
1298 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1300 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1302 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1303 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1307 * s5p_hash_finish() - copy calculated digest to crypto layer
1308 * @req: AHASH request
1310 static void s5p_hash_finish(struct ahash_request *req)
1312 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1313 struct s5p_aes_dev *dd = ctx->dd;
1316 s5p_hash_copy_result(req);
1318 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1322 * s5p_hash_finish_req() - finish request
1323 * @req: AHASH request
1326 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1328 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1329 struct s5p_aes_dev *dd = ctx->dd;
1330 unsigned long flags;
1332 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1333 free_pages((unsigned long)sg_virt(ctx->sg),
1334 get_order(ctx->sg->length));
1336 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1340 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1341 BIT(HASH_FLAGS_SGS_COPIED));
1343 if (!err && !ctx->error) {
1344 s5p_hash_read_msg(req);
1345 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1346 s5p_hash_finish(req);
1351 spin_lock_irqsave(&dd->hash_lock, flags);
1352 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1353 BIT(HASH_FLAGS_DMA_READY) |
1354 BIT(HASH_FLAGS_OUTPUT_READY));
1355 spin_unlock_irqrestore(&dd->hash_lock, flags);
1357 if (req->base.complete)
1358 req->base.complete(&req->base, err);
1362 * s5p_hash_handle_queue() - handle hash queue
1363 * @dd: device s5p_aes_dev
1364 * @req: AHASH request
1366 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1367 * device then processes the first request from the dd->queue
1369 * Returns: see s5p_hash_final below.
1371 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1372 struct ahash_request *req)
1374 struct crypto_async_request *async_req, *backlog;
1375 struct s5p_hash_reqctx *ctx;
1376 unsigned long flags;
1377 int err = 0, ret = 0;
1380 spin_lock_irqsave(&dd->hash_lock, flags);
1382 ret = ahash_enqueue_request(&dd->hash_queue, req);
1384 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1385 spin_unlock_irqrestore(&dd->hash_lock, flags);
1389 backlog = crypto_get_backlog(&dd->hash_queue);
1390 async_req = crypto_dequeue_request(&dd->hash_queue);
1392 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1394 spin_unlock_irqrestore(&dd->hash_lock, flags);
1400 backlog->complete(backlog, -EINPROGRESS);
1402 req = ahash_request_cast(async_req);
1404 ctx = ahash_request_ctx(req);
1406 err = s5p_hash_prepare_request(req, ctx->op_update);
1407 if (err || !ctx->total)
1410 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1411 ctx->op_update, req->nbytes);
1413 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1415 s5p_hash_write_iv(req); /* restore hash IV */
1417 if (ctx->op_update) { /* HASH_OP_UPDATE */
1418 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1419 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1420 /* no final() after finup() */
1421 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1422 } else { /* HASH_OP_FINAL */
1423 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1426 if (err != -EINPROGRESS) {
1427 /* hash_tasklet_cb will not finish it, so do it here */
1428 s5p_hash_finish_req(req, err);
1432 * Execute next request immediately if there is anything
1442 * s5p_hash_tasklet_cb() - hash tasklet
1443 * @data: ptr to s5p_aes_dev
1445 static void s5p_hash_tasklet_cb(unsigned long data)
1447 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1449 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1450 s5p_hash_handle_queue(dd, NULL);
1454 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1455 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1457 s5p_hash_update_dma_stop(dd);
1460 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1462 /* hash or semi-hash ready */
1463 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1471 /* finish curent request */
1472 s5p_hash_finish_req(dd->hash_req, 0);
1474 /* If we are not busy, process next req */
1475 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1476 s5p_hash_handle_queue(dd, NULL);
1480 * s5p_hash_enqueue() - enqueue request
1481 * @req: AHASH request
1482 * @op: operation UPDATE (true) or FINAL (false)
1484 * Returns: see s5p_hash_final below.
1486 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1488 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1489 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1491 ctx->op_update = op;
1493 return s5p_hash_handle_queue(tctx->dd, req);
1497 * s5p_hash_update() - process the hash input data
1498 * @req: AHASH request
1500 * If request will fit in buffer, copy it and return immediately
1501 * else enqueue it with OP_UPDATE.
1503 * Returns: see s5p_hash_final below.
1505 static int s5p_hash_update(struct ahash_request *req)
1507 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1512 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1513 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1515 ctx->bufcnt += req->nbytes;
1519 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1523 * s5p_hash_final() - close up hash and calculate digest
1524 * @req: AHASH request
1526 * Note: in final req->src do not have any data, and req->nbytes can be
1529 * If there were no input data processed yet and the buffered hash data is
1530 * less than BUFLEN (64) then calculate the final hash immediately by using
1531 * SW algorithm fallback.
1533 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1534 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1535 * previous update op, so there are always some buffered bytes in ctx->buffer,
1536 * which means that ctx->bufcnt!=0
1539 * 0 if the request has been processed immediately,
1540 * -EINPROGRESS if the operation has been queued for later execution or is set
1541 * to processing by HW,
1542 * -EBUSY if queue is full and request should be resubmitted later,
1543 * other negative values denotes an error.
1545 static int s5p_hash_final(struct ahash_request *req)
1547 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1551 return -EINVAL; /* uncompleted hash is not needed */
1553 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1554 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1556 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1557 ctx->bufcnt, req->result);
1560 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1564 * s5p_hash_finup() - process last req->src and calculate digest
1565 * @req: AHASH request containing the last update data
1567 * Return values: see s5p_hash_final above.
1569 static int s5p_hash_finup(struct ahash_request *req)
1571 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1576 err1 = s5p_hash_update(req);
1577 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1581 * final() has to be always called to cleanup resources even if
1582 * update() failed, except EINPROGRESS or calculate digest for small
1585 err2 = s5p_hash_final(req);
1587 return err1 ?: err2;
1591 * s5p_hash_init() - initialize AHASH request contex
1592 * @req: AHASH request
1594 * Init async hash request context.
1596 static int s5p_hash_init(struct ahash_request *req)
1598 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1599 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1600 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1610 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1611 crypto_ahash_digestsize(tfm));
1613 switch (crypto_ahash_digestsize(tfm)) {
1614 case MD5_DIGEST_SIZE:
1615 ctx->engine = SSS_HASH_ENGINE_MD5;
1616 ctx->nregs = HASH_MD5_MAX_REG;
1618 case SHA1_DIGEST_SIZE:
1619 ctx->engine = SSS_HASH_ENGINE_SHA1;
1620 ctx->nregs = HASH_SHA1_MAX_REG;
1622 case SHA256_DIGEST_SIZE:
1623 ctx->engine = SSS_HASH_ENGINE_SHA256;
1624 ctx->nregs = HASH_SHA256_MAX_REG;
1635 * s5p_hash_digest - calculate digest from req->src
1636 * @req: AHASH request
1638 * Return values: see s5p_hash_final above.
1640 static int s5p_hash_digest(struct ahash_request *req)
1642 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1646 * s5p_hash_cra_init_alg - init crypto alg transformation
1647 * @tfm: crypto transformation
1649 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1651 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1652 const char *alg_name = crypto_tfm_alg_name(tfm);
1655 /* Allocate a fallback and abort if it failed. */
1656 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1657 CRYPTO_ALG_NEED_FALLBACK);
1658 if (IS_ERR(tctx->fallback)) {
1659 pr_err("fallback alloc fails for '%s'\n", alg_name);
1660 return PTR_ERR(tctx->fallback);
1663 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1664 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1670 * s5p_hash_cra_init - init crypto tfm
1671 * @tfm: crypto transformation
1673 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1675 return s5p_hash_cra_init_alg(tfm);
1679 * s5p_hash_cra_exit - exit crypto tfm
1680 * @tfm: crypto transformation
1682 * free allocated fallback
1684 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1686 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1688 crypto_free_shash(tctx->fallback);
1689 tctx->fallback = NULL;
1693 * s5p_hash_export - export hash state
1694 * @req: AHASH request
1695 * @out: buffer for exported state
1697 static int s5p_hash_export(struct ahash_request *req, void *out)
1699 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1701 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1707 * s5p_hash_import - import hash state
1708 * @req: AHASH request
1709 * @in: buffer with state to be imported from
1711 static int s5p_hash_import(struct ahash_request *req, const void *in)
1713 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1714 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1715 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1716 const struct s5p_hash_reqctx *ctx_in = in;
1718 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1719 if (ctx_in->bufcnt > BUFLEN) {
1730 static struct ahash_alg algs_sha1_md5_sha256[] = {
1732 .init = s5p_hash_init,
1733 .update = s5p_hash_update,
1734 .final = s5p_hash_final,
1735 .finup = s5p_hash_finup,
1736 .digest = s5p_hash_digest,
1737 .export = s5p_hash_export,
1738 .import = s5p_hash_import,
1739 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1740 .halg.digestsize = SHA1_DIGEST_SIZE,
1743 .cra_driver_name = "exynos-sha1",
1744 .cra_priority = 100,
1745 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1747 CRYPTO_ALG_NEED_FALLBACK,
1748 .cra_blocksize = HASH_BLOCK_SIZE,
1749 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1750 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1751 .cra_module = THIS_MODULE,
1752 .cra_init = s5p_hash_cra_init,
1753 .cra_exit = s5p_hash_cra_exit,
1757 .init = s5p_hash_init,
1758 .update = s5p_hash_update,
1759 .final = s5p_hash_final,
1760 .finup = s5p_hash_finup,
1761 .digest = s5p_hash_digest,
1762 .export = s5p_hash_export,
1763 .import = s5p_hash_import,
1764 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1765 .halg.digestsize = MD5_DIGEST_SIZE,
1768 .cra_driver_name = "exynos-md5",
1769 .cra_priority = 100,
1770 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1772 CRYPTO_ALG_NEED_FALLBACK,
1773 .cra_blocksize = HASH_BLOCK_SIZE,
1774 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1775 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1776 .cra_module = THIS_MODULE,
1777 .cra_init = s5p_hash_cra_init,
1778 .cra_exit = s5p_hash_cra_exit,
1782 .init = s5p_hash_init,
1783 .update = s5p_hash_update,
1784 .final = s5p_hash_final,
1785 .finup = s5p_hash_finup,
1786 .digest = s5p_hash_digest,
1787 .export = s5p_hash_export,
1788 .import = s5p_hash_import,
1789 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1790 .halg.digestsize = SHA256_DIGEST_SIZE,
1792 .cra_name = "sha256",
1793 .cra_driver_name = "exynos-sha256",
1794 .cra_priority = 100,
1795 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1797 CRYPTO_ALG_NEED_FALLBACK,
1798 .cra_blocksize = HASH_BLOCK_SIZE,
1799 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1800 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1801 .cra_module = THIS_MODULE,
1802 .cra_init = s5p_hash_cra_init,
1803 .cra_exit = s5p_hash_cra_exit,
1809 static void s5p_set_aes(struct s5p_aes_dev *dev,
1810 const u8 *key, const u8 *iv, const u8 *ctr,
1811 unsigned int keylen)
1813 void __iomem *keystart;
1816 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1820 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1823 if (keylen == AES_KEYSIZE_256)
1824 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1825 else if (keylen == AES_KEYSIZE_192)
1826 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1828 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1830 memcpy_toio(keystart, key, keylen);
1833 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1836 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1844 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1845 struct skcipher_request *req)
1847 struct scatterlist *sg;
1850 dev->sg_src_cpy = NULL;
1852 if (!s5p_is_sg_aligned(sg)) {
1854 "At least one unaligned source scatter list, making a copy\n");
1855 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1859 sg = dev->sg_src_cpy;
1862 err = s5p_set_indata(dev, sg);
1864 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1871 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1872 struct skcipher_request *req)
1874 struct scatterlist *sg;
1877 dev->sg_dst_cpy = NULL;
1879 if (!s5p_is_sg_aligned(sg)) {
1881 "At least one unaligned dest scatter list, making a copy\n");
1882 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1886 sg = dev->sg_dst_cpy;
1889 err = s5p_set_outdata(dev, sg);
1891 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1898 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1900 struct skcipher_request *req = dev->req;
1902 unsigned long flags;
1906 /* This sets bit [13:12] to 00, which selects 128-bit counter */
1907 aes_control = SSS_AES_KEY_CHANGE_MODE;
1908 if (mode & FLAGS_AES_DECRYPT)
1909 aes_control |= SSS_AES_MODE_DECRYPT;
1911 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1912 aes_control |= SSS_AES_CHAIN_MODE_CBC;
1915 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1916 aes_control |= SSS_AES_CHAIN_MODE_CTR;
1920 iv = NULL; /* AES_ECB */
1924 if (dev->ctx->keylen == AES_KEYSIZE_192)
1925 aes_control |= SSS_AES_KEY_SIZE_192;
1926 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1927 aes_control |= SSS_AES_KEY_SIZE_256;
1929 aes_control |= SSS_AES_FIFO_MODE;
1931 /* as a variant it is possible to use byte swapping on DMA side */
1932 aes_control |= SSS_AES_BYTESWAP_DI
1933 | SSS_AES_BYTESWAP_DO
1934 | SSS_AES_BYTESWAP_IV
1935 | SSS_AES_BYTESWAP_KEY
1936 | SSS_AES_BYTESWAP_CNT;
1938 spin_lock_irqsave(&dev->lock, flags);
1940 SSS_WRITE(dev, FCINTENCLR,
1941 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1942 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1944 err = s5p_set_indata_start(dev, req);
1948 err = s5p_set_outdata_start(dev, req);
1952 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1953 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1955 s5p_set_dma_indata(dev, dev->sg_src);
1956 s5p_set_dma_outdata(dev, dev->sg_dst);
1958 SSS_WRITE(dev, FCINTENSET,
1959 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1961 spin_unlock_irqrestore(&dev->lock, flags);
1966 s5p_unset_indata(dev);
1971 spin_unlock_irqrestore(&dev->lock, flags);
1972 s5p_aes_complete(req, err);
1975 static void s5p_tasklet_cb(unsigned long data)
1977 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1978 struct crypto_async_request *async_req, *backlog;
1979 struct s5p_aes_reqctx *reqctx;
1980 unsigned long flags;
1982 spin_lock_irqsave(&dev->lock, flags);
1983 backlog = crypto_get_backlog(&dev->queue);
1984 async_req = crypto_dequeue_request(&dev->queue);
1988 spin_unlock_irqrestore(&dev->lock, flags);
1991 spin_unlock_irqrestore(&dev->lock, flags);
1994 backlog->complete(backlog, -EINPROGRESS);
1996 dev->req = skcipher_request_cast(async_req);
1997 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1998 reqctx = skcipher_request_ctx(dev->req);
2000 s5p_aes_crypt_start(dev, reqctx->mode);
2003 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2004 struct skcipher_request *req)
2006 unsigned long flags;
2009 spin_lock_irqsave(&dev->lock, flags);
2010 err = crypto_enqueue_request(&dev->queue, &req->base);
2012 spin_unlock_irqrestore(&dev->lock, flags);
2017 spin_unlock_irqrestore(&dev->lock, flags);
2019 tasklet_schedule(&dev->tasklet);
2024 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2026 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2027 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2028 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2029 struct s5p_aes_dev *dev = ctx->dev;
2034 if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2035 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2036 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2040 reqctx->mode = mode;
2042 return s5p_aes_handle_req(dev, req);
2045 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2046 const u8 *key, unsigned int keylen)
2048 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2049 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2051 if (keylen != AES_KEYSIZE_128 &&
2052 keylen != AES_KEYSIZE_192 &&
2053 keylen != AES_KEYSIZE_256)
2056 memcpy(ctx->aes_key, key, keylen);
2057 ctx->keylen = keylen;
2062 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2064 return s5p_aes_crypt(req, 0);
2067 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2069 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2072 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2074 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2077 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2079 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2082 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2084 return s5p_aes_crypt(req, FLAGS_AES_CTR);
2087 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2089 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2092 crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2097 static struct skcipher_alg algs[] = {
2099 .base.cra_name = "ecb(aes)",
2100 .base.cra_driver_name = "ecb-aes-s5p",
2101 .base.cra_priority = 100,
2102 .base.cra_flags = CRYPTO_ALG_ASYNC |
2103 CRYPTO_ALG_KERN_DRIVER_ONLY,
2104 .base.cra_blocksize = AES_BLOCK_SIZE,
2105 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2106 .base.cra_alignmask = 0x0f,
2107 .base.cra_module = THIS_MODULE,
2109 .min_keysize = AES_MIN_KEY_SIZE,
2110 .max_keysize = AES_MAX_KEY_SIZE,
2111 .setkey = s5p_aes_setkey,
2112 .encrypt = s5p_aes_ecb_encrypt,
2113 .decrypt = s5p_aes_ecb_decrypt,
2114 .init = s5p_aes_init_tfm,
2117 .base.cra_name = "cbc(aes)",
2118 .base.cra_driver_name = "cbc-aes-s5p",
2119 .base.cra_priority = 100,
2120 .base.cra_flags = CRYPTO_ALG_ASYNC |
2121 CRYPTO_ALG_KERN_DRIVER_ONLY,
2122 .base.cra_blocksize = AES_BLOCK_SIZE,
2123 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2124 .base.cra_alignmask = 0x0f,
2125 .base.cra_module = THIS_MODULE,
2127 .min_keysize = AES_MIN_KEY_SIZE,
2128 .max_keysize = AES_MAX_KEY_SIZE,
2129 .ivsize = AES_BLOCK_SIZE,
2130 .setkey = s5p_aes_setkey,
2131 .encrypt = s5p_aes_cbc_encrypt,
2132 .decrypt = s5p_aes_cbc_decrypt,
2133 .init = s5p_aes_init_tfm,
2136 .base.cra_name = "ctr(aes)",
2137 .base.cra_driver_name = "ctr-aes-s5p",
2138 .base.cra_priority = 100,
2139 .base.cra_flags = CRYPTO_ALG_ASYNC |
2140 CRYPTO_ALG_KERN_DRIVER_ONLY,
2141 .base.cra_blocksize = 1,
2142 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2143 .base.cra_alignmask = 0x0f,
2144 .base.cra_module = THIS_MODULE,
2146 .min_keysize = AES_MIN_KEY_SIZE,
2147 .max_keysize = AES_MAX_KEY_SIZE,
2148 .ivsize = AES_BLOCK_SIZE,
2149 .setkey = s5p_aes_setkey,
2150 .encrypt = s5p_aes_ctr_crypt,
2151 .decrypt = s5p_aes_ctr_crypt,
2152 .init = s5p_aes_init_tfm,
2156 static int s5p_aes_probe(struct platform_device *pdev)
2158 struct device *dev = &pdev->dev;
2160 const struct samsung_aes_variant *variant;
2161 struct s5p_aes_dev *pdata;
2162 struct resource *res;
2163 unsigned int hash_i;
2168 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2172 variant = find_s5p_sss_version(pdev);
2173 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2178 * Note: HASH and PRNG uses the same registers in secss, avoid
2179 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2180 * is enabled in config. We need larger size for HASH registers in
2181 * secss, current describe only AES/DES
2183 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2184 if (variant == &exynos_aes_data) {
2186 pdata->use_hash = true;
2191 pdata->ioaddr = devm_ioremap_resource(dev, res);
2192 if (IS_ERR(pdata->ioaddr)) {
2193 if (!pdata->use_hash)
2194 return PTR_ERR(pdata->ioaddr);
2195 /* try AES without HASH */
2197 pdata->use_hash = false;
2198 pdata->ioaddr = devm_ioremap_resource(dev, res);
2199 if (IS_ERR(pdata->ioaddr))
2200 return PTR_ERR(pdata->ioaddr);
2203 pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2204 if (IS_ERR(pdata->clk))
2205 return dev_err_probe(dev, PTR_ERR(pdata->clk),
2206 "failed to find secss clock %s\n",
2207 variant->clk_names[0]);
2209 err = clk_prepare_enable(pdata->clk);
2211 dev_err(dev, "Enabling clock %s failed, err %d\n",
2212 variant->clk_names[0], err);
2216 if (variant->clk_names[1]) {
2217 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2218 if (IS_ERR(pdata->pclk)) {
2219 err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2220 "failed to find clock %s\n",
2221 variant->clk_names[1]);
2225 err = clk_prepare_enable(pdata->pclk);
2227 dev_err(dev, "Enabling clock %s failed, err %d\n",
2228 variant->clk_names[0], err);
2235 spin_lock_init(&pdata->lock);
2236 spin_lock_init(&pdata->hash_lock);
2238 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2239 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2241 pdata->irq_fc = platform_get_irq(pdev, 0);
2242 if (pdata->irq_fc < 0) {
2243 err = pdata->irq_fc;
2244 dev_warn(dev, "feed control interrupt is not available.\n");
2247 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2248 s5p_aes_interrupt, IRQF_ONESHOT,
2251 dev_warn(dev, "feed control interrupt is not available.\n");
2255 pdata->busy = false;
2257 platform_set_drvdata(pdev, pdata);
2260 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2261 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2263 for (i = 0; i < ARRAY_SIZE(algs); i++) {
2264 err = crypto_register_skcipher(&algs[i]);
2269 if (pdata->use_hash) {
2270 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2271 (unsigned long)pdata);
2272 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2274 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2276 struct ahash_alg *alg;
2278 alg = &algs_sha1_md5_sha256[hash_i];
2279 err = crypto_register_ahash(alg);
2281 dev_err(dev, "can't register '%s': %d\n",
2282 alg->halg.base.cra_driver_name, err);
2288 dev_info(dev, "s5p-sss driver registered\n");
2293 for (j = hash_i - 1; j >= 0; j--)
2294 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2296 tasklet_kill(&pdata->hash_tasklet);
2300 if (i < ARRAY_SIZE(algs))
2301 dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2304 for (j = 0; j < i; j++)
2305 crypto_unregister_skcipher(&algs[j]);
2307 tasklet_kill(&pdata->tasklet);
2310 clk_disable_unprepare(pdata->pclk);
2313 clk_disable_unprepare(pdata->clk);
2319 static int s5p_aes_remove(struct platform_device *pdev)
2321 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2324 for (i = 0; i < ARRAY_SIZE(algs); i++)
2325 crypto_unregister_skcipher(&algs[i]);
2327 tasklet_kill(&pdata->tasklet);
2328 if (pdata->use_hash) {
2329 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2330 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2332 pdata->res->end -= 0x300;
2333 tasklet_kill(&pdata->hash_tasklet);
2334 pdata->use_hash = false;
2337 clk_disable_unprepare(pdata->pclk);
2339 clk_disable_unprepare(pdata->clk);
2345 static struct platform_driver s5p_aes_crypto = {
2346 .probe = s5p_aes_probe,
2347 .remove = s5p_aes_remove,
2349 .name = "s5p-secss",
2350 .of_match_table = s5p_sss_dt_match,
2354 module_platform_driver(s5p_aes_crypto);
2356 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2357 MODULE_LICENSE("GPL v2");
2358 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2359 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");