Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[platform/kernel/linux-stable.git] / drivers / crypto / padlock-sha.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for VIA PadLock hardware crypto engine.
5  *
6  * Copyright (c) 2006  Michal Ludvig <michal@logix.cz>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  */
14
15 #include <crypto/internal/hash.h>
16 #include <crypto/padlock.h>
17 #include <crypto/sha.h>
18 #include <linux/err.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/scatterlist.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/i387.h>
27
28 struct padlock_sha_desc {
29         struct shash_desc fallback;
30 };
31
32 struct padlock_sha_ctx {
33         struct crypto_shash *fallback;
34 };
35
36 static int padlock_sha_init(struct shash_desc *desc)
37 {
38         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
39         struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
40
41         dctx->fallback.tfm = ctx->fallback;
42         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
43         return crypto_shash_init(&dctx->fallback);
44 }
45
46 static int padlock_sha_update(struct shash_desc *desc,
47                               const u8 *data, unsigned int length)
48 {
49         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
50
51         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
52         return crypto_shash_update(&dctx->fallback, data, length);
53 }
54
55 static int padlock_sha_export(struct shash_desc *desc, void *out)
56 {
57         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
58
59         return crypto_shash_export(&dctx->fallback, out);
60 }
61
62 static int padlock_sha_import(struct shash_desc *desc, const void *in)
63 {
64         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
65         struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
66
67         dctx->fallback.tfm = ctx->fallback;
68         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
69         return crypto_shash_import(&dctx->fallback, in);
70 }
71
72 static inline void padlock_output_block(uint32_t *src,
73                         uint32_t *dst, size_t count)
74 {
75         while (count--)
76                 *dst++ = swab32(*src++);
77 }
78
79 static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
80                               unsigned int count, u8 *out)
81 {
82         /* We can't store directly to *out as it may be unaligned. */
83         /* BTW Don't reduce the buffer size below 128 Bytes!
84          *     PadLock microcode needs it that big. */
85         char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
86                 ((aligned(STACK_ALIGN)));
87         char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
88         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
89         struct sha1_state state;
90         unsigned int space;
91         unsigned int leftover;
92         int ts_state;
93         int err;
94
95         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
96         err = crypto_shash_export(&dctx->fallback, &state);
97         if (err)
98                 goto out;
99
100         if (state.count + count > ULONG_MAX)
101                 return crypto_shash_finup(&dctx->fallback, in, count, out);
102
103         leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
104         space =  SHA1_BLOCK_SIZE - leftover;
105         if (space) {
106                 if (count > space) {
107                         err = crypto_shash_update(&dctx->fallback, in, space) ?:
108                               crypto_shash_export(&dctx->fallback, &state);
109                         if (err)
110                                 goto out;
111                         count -= space;
112                         in += space;
113                 } else {
114                         memcpy(state.buffer + leftover, in, count);
115                         in = state.buffer;
116                         count += leftover;
117                         state.count &= ~(SHA1_BLOCK_SIZE - 1);
118                 }
119         }
120
121         memcpy(result, &state.state, SHA1_DIGEST_SIZE);
122
123         /* prevent taking the spurious DNA fault with padlock. */
124         ts_state = irq_ts_save();
125         asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
126                       : \
127                       : "c"((unsigned long)state.count + count), \
128                         "a"((unsigned long)state.count), \
129                         "S"(in), "D"(result));
130         irq_ts_restore(ts_state);
131
132         padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
133
134 out:
135         return err;
136 }
137
138 static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
139 {
140         u8 buf[4];
141
142         return padlock_sha1_finup(desc, buf, 0, out);
143 }
144
145 static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
146                                 unsigned int count, u8 *out)
147 {
148         /* We can't store directly to *out as it may be unaligned. */
149         /* BTW Don't reduce the buffer size below 128 Bytes!
150          *     PadLock microcode needs it that big. */
151         char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
152                 ((aligned(STACK_ALIGN)));
153         char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
154         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
155         struct sha256_state state;
156         unsigned int space;
157         unsigned int leftover;
158         int ts_state;
159         int err;
160
161         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
162         err = crypto_shash_export(&dctx->fallback, &state);
163         if (err)
164                 goto out;
165
166         if (state.count + count > ULONG_MAX)
167                 return crypto_shash_finup(&dctx->fallback, in, count, out);
168
169         leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
170         space =  SHA256_BLOCK_SIZE - leftover;
171         if (space) {
172                 if (count > space) {
173                         err = crypto_shash_update(&dctx->fallback, in, space) ?:
174                               crypto_shash_export(&dctx->fallback, &state);
175                         if (err)
176                                 goto out;
177                         count -= space;
178                         in += space;
179                 } else {
180                         memcpy(state.buf + leftover, in, count);
181                         in = state.buf;
182                         count += leftover;
183                         state.count &= ~(SHA1_BLOCK_SIZE - 1);
184                 }
185         }
186
187         memcpy(result, &state.state, SHA256_DIGEST_SIZE);
188
189         /* prevent taking the spurious DNA fault with padlock. */
190         ts_state = irq_ts_save();
191         asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
192                       : \
193                       : "c"((unsigned long)state.count + count), \
194                         "a"((unsigned long)state.count), \
195                         "S"(in), "D"(result));
196         irq_ts_restore(ts_state);
197
198         padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
199
200 out:
201         return err;
202 }
203
204 static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
205 {
206         u8 buf[4];
207
208         return padlock_sha256_finup(desc, buf, 0, out);
209 }
210
211 static int padlock_cra_init(struct crypto_tfm *tfm)
212 {
213         struct crypto_shash *hash = __crypto_shash_cast(tfm);
214         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
215         struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
216         struct crypto_shash *fallback_tfm;
217         int err = -ENOMEM;
218
219         /* Allocate a fallback and abort if it failed. */
220         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
221                                           CRYPTO_ALG_NEED_FALLBACK);
222         if (IS_ERR(fallback_tfm)) {
223                 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
224                        fallback_driver_name);
225                 err = PTR_ERR(fallback_tfm);
226                 goto out;
227         }
228
229         ctx->fallback = fallback_tfm;
230         hash->descsize += crypto_shash_descsize(fallback_tfm);
231         return 0;
232
233 out:
234         return err;
235 }
236
237 static void padlock_cra_exit(struct crypto_tfm *tfm)
238 {
239         struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
240
241         crypto_free_shash(ctx->fallback);
242 }
243
244 static struct shash_alg sha1_alg = {
245         .digestsize     =       SHA1_DIGEST_SIZE,
246         .init           =       padlock_sha_init,
247         .update         =       padlock_sha_update,
248         .finup          =       padlock_sha1_finup,
249         .final          =       padlock_sha1_final,
250         .export         =       padlock_sha_export,
251         .import         =       padlock_sha_import,
252         .descsize       =       sizeof(struct padlock_sha_desc),
253         .statesize      =       sizeof(struct sha1_state),
254         .base           =       {
255                 .cra_name               =       "sha1",
256                 .cra_driver_name        =       "sha1-padlock",
257                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
258                 .cra_flags              =       CRYPTO_ALG_TYPE_SHASH |
259                                                 CRYPTO_ALG_NEED_FALLBACK,
260                 .cra_blocksize          =       SHA1_BLOCK_SIZE,
261                 .cra_ctxsize            =       sizeof(struct padlock_sha_ctx),
262                 .cra_module             =       THIS_MODULE,
263                 .cra_init               =       padlock_cra_init,
264                 .cra_exit               =       padlock_cra_exit,
265         }
266 };
267
268 static struct shash_alg sha256_alg = {
269         .digestsize     =       SHA256_DIGEST_SIZE,
270         .init           =       padlock_sha_init,
271         .update         =       padlock_sha_update,
272         .finup          =       padlock_sha256_finup,
273         .final          =       padlock_sha256_final,
274         .export         =       padlock_sha_export,
275         .import         =       padlock_sha_import,
276         .descsize       =       sizeof(struct padlock_sha_desc),
277         .statesize      =       sizeof(struct sha256_state),
278         .base           =       {
279                 .cra_name               =       "sha256",
280                 .cra_driver_name        =       "sha256-padlock",
281                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
282                 .cra_flags              =       CRYPTO_ALG_TYPE_SHASH |
283                                                 CRYPTO_ALG_NEED_FALLBACK,
284                 .cra_blocksize          =       SHA256_BLOCK_SIZE,
285                 .cra_ctxsize            =       sizeof(struct padlock_sha_ctx),
286                 .cra_module             =       THIS_MODULE,
287                 .cra_init               =       padlock_cra_init,
288                 .cra_exit               =       padlock_cra_exit,
289         }
290 };
291
292 /* Add two shash_alg instance for hardware-implemented *
293 * multiple-parts hash supported by VIA Nano Processor.*/
294 static int padlock_sha1_init_nano(struct shash_desc *desc)
295 {
296         struct sha1_state *sctx = shash_desc_ctx(desc);
297
298         *sctx = (struct sha1_state){
299                 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
300         };
301
302         return 0;
303 }
304
305 static int padlock_sha1_update_nano(struct shash_desc *desc,
306                         const u8 *data, unsigned int len)
307 {
308         struct sha1_state *sctx = shash_desc_ctx(desc);
309         unsigned int partial, done;
310         const u8 *src;
311         /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
312         u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
313                 ((aligned(STACK_ALIGN)));
314         u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
315         int ts_state;
316
317         partial = sctx->count & 0x3f;
318         sctx->count += len;
319         done = 0;
320         src = data;
321         memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
322
323         if ((partial + len) >= SHA1_BLOCK_SIZE) {
324
325                 /* Append the bytes in state's buffer to a block to handle */
326                 if (partial) {
327                         done = -partial;
328                         memcpy(sctx->buffer + partial, data,
329                                 done + SHA1_BLOCK_SIZE);
330                         src = sctx->buffer;
331                         ts_state = irq_ts_save();
332                         asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
333                         : "+S"(src), "+D"(dst) \
334                         : "a"((long)-1), "c"((unsigned long)1));
335                         irq_ts_restore(ts_state);
336                         done += SHA1_BLOCK_SIZE;
337                         src = data + done;
338                 }
339
340                 /* Process the left bytes from the input data */
341                 if (len - done >= SHA1_BLOCK_SIZE) {
342                         ts_state = irq_ts_save();
343                         asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
344                         : "+S"(src), "+D"(dst)
345                         : "a"((long)-1),
346                         "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
347                         irq_ts_restore(ts_state);
348                         done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
349                         src = data + done;
350                 }
351                 partial = 0;
352         }
353         memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
354         memcpy(sctx->buffer + partial, src, len - done);
355
356         return 0;
357 }
358
359 static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
360 {
361         struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
362         unsigned int partial, padlen;
363         __be64 bits;
364         static const u8 padding[64] = { 0x80, };
365
366         bits = cpu_to_be64(state->count << 3);
367
368         /* Pad out to 56 mod 64 */
369         partial = state->count & 0x3f;
370         padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
371         padlock_sha1_update_nano(desc, padding, padlen);
372
373         /* Append length field bytes */
374         padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
375
376         /* Swap to output */
377         padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
378
379         return 0;
380 }
381
382 static int padlock_sha256_init_nano(struct shash_desc *desc)
383 {
384         struct sha256_state *sctx = shash_desc_ctx(desc);
385
386         *sctx = (struct sha256_state){
387                 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
388                                 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
389         };
390
391         return 0;
392 }
393
394 static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
395                           unsigned int len)
396 {
397         struct sha256_state *sctx = shash_desc_ctx(desc);
398         unsigned int partial, done;
399         const u8 *src;
400         /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
401         u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
402                 ((aligned(STACK_ALIGN)));
403         u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
404         int ts_state;
405
406         partial = sctx->count & 0x3f;
407         sctx->count += len;
408         done = 0;
409         src = data;
410         memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
411
412         if ((partial + len) >= SHA256_BLOCK_SIZE) {
413
414                 /* Append the bytes in state's buffer to a block to handle */
415                 if (partial) {
416                         done = -partial;
417                         memcpy(sctx->buf + partial, data,
418                                 done + SHA256_BLOCK_SIZE);
419                         src = sctx->buf;
420                         ts_state = irq_ts_save();
421                         asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
422                         : "+S"(src), "+D"(dst)
423                         : "a"((long)-1), "c"((unsigned long)1));
424                         irq_ts_restore(ts_state);
425                         done += SHA256_BLOCK_SIZE;
426                         src = data + done;
427                 }
428
429                 /* Process the left bytes from input data*/
430                 if (len - done >= SHA256_BLOCK_SIZE) {
431                         ts_state = irq_ts_save();
432                         asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
433                         : "+S"(src), "+D"(dst)
434                         : "a"((long)-1),
435                         "c"((unsigned long)((len - done) / 64)));
436                         irq_ts_restore(ts_state);
437                         done += ((len - done) - (len - done) % 64);
438                         src = data + done;
439                 }
440                 partial = 0;
441         }
442         memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
443         memcpy(sctx->buf + partial, src, len - done);
444
445         return 0;
446 }
447
448 static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
449 {
450         struct sha256_state *state =
451                 (struct sha256_state *)shash_desc_ctx(desc);
452         unsigned int partial, padlen;
453         __be64 bits;
454         static const u8 padding[64] = { 0x80, };
455
456         bits = cpu_to_be64(state->count << 3);
457
458         /* Pad out to 56 mod 64 */
459         partial = state->count & 0x3f;
460         padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
461         padlock_sha256_update_nano(desc, padding, padlen);
462
463         /* Append length field bytes */
464         padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
465
466         /* Swap to output */
467         padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
468
469         return 0;
470 }
471
472 static int padlock_sha_export_nano(struct shash_desc *desc,
473                                 void *out)
474 {
475         int statesize = crypto_shash_statesize(desc->tfm);
476         void *sctx = shash_desc_ctx(desc);
477
478         memcpy(out, sctx, statesize);
479         return 0;
480 }
481
482 static int padlock_sha_import_nano(struct shash_desc *desc,
483                                 const void *in)
484 {
485         int statesize = crypto_shash_statesize(desc->tfm);
486         void *sctx = shash_desc_ctx(desc);
487
488         memcpy(sctx, in, statesize);
489         return 0;
490 }
491
492 static struct shash_alg sha1_alg_nano = {
493         .digestsize     =       SHA1_DIGEST_SIZE,
494         .init           =       padlock_sha1_init_nano,
495         .update         =       padlock_sha1_update_nano,
496         .final          =       padlock_sha1_final_nano,
497         .export         =       padlock_sha_export_nano,
498         .import         =       padlock_sha_import_nano,
499         .descsize       =       sizeof(struct sha1_state),
500         .statesize      =       sizeof(struct sha1_state),
501         .base           =       {
502                 .cra_name               =       "sha1",
503                 .cra_driver_name        =       "sha1-padlock-nano",
504                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
505                 .cra_flags              =       CRYPTO_ALG_TYPE_SHASH,
506                 .cra_blocksize          =       SHA1_BLOCK_SIZE,
507                 .cra_module             =       THIS_MODULE,
508         }
509 };
510
511 static struct shash_alg sha256_alg_nano = {
512         .digestsize     =       SHA256_DIGEST_SIZE,
513         .init           =       padlock_sha256_init_nano,
514         .update         =       padlock_sha256_update_nano,
515         .final          =       padlock_sha256_final_nano,
516         .export         =       padlock_sha_export_nano,
517         .import         =       padlock_sha_import_nano,
518         .descsize       =       sizeof(struct sha256_state),
519         .statesize      =       sizeof(struct sha256_state),
520         .base           =       {
521                 .cra_name               =       "sha256",
522                 .cra_driver_name        =       "sha256-padlock-nano",
523                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
524                 .cra_flags              =       CRYPTO_ALG_TYPE_SHASH,
525                 .cra_blocksize          =       SHA256_BLOCK_SIZE,
526                 .cra_module             =       THIS_MODULE,
527         }
528 };
529
530 static struct x86_cpu_id padlock_sha_ids[] = {
531         X86_FEATURE_MATCH(X86_FEATURE_PHE),
532         {}
533 };
534 MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
535
536 static int __init padlock_init(void)
537 {
538         int rc = -ENODEV;
539         struct cpuinfo_x86 *c = &cpu_data(0);
540         struct shash_alg *sha1;
541         struct shash_alg *sha256;
542
543         if (!x86_match_cpu(padlock_sha_ids) || !cpu_has_phe_enabled)
544                 return -ENODEV;
545
546         /* Register the newly added algorithm module if on *
547         * VIA Nano processor, or else just do as before */
548         if (c->x86_model < 0x0f) {
549                 sha1 = &sha1_alg;
550                 sha256 = &sha256_alg;
551         } else {
552                 sha1 = &sha1_alg_nano;
553                 sha256 = &sha256_alg_nano;
554         }
555
556         rc = crypto_register_shash(sha1);
557         if (rc)
558                 goto out;
559
560         rc = crypto_register_shash(sha256);
561         if (rc)
562                 goto out_unreg1;
563
564         printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
565
566         return 0;
567
568 out_unreg1:
569         crypto_unregister_shash(sha1);
570
571 out:
572         printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
573         return rc;
574 }
575
576 static void __exit padlock_fini(void)
577 {
578         struct cpuinfo_x86 *c = &cpu_data(0);
579
580         if (c->x86_model >= 0x0f) {
581                 crypto_unregister_shash(&sha1_alg_nano);
582                 crypto_unregister_shash(&sha256_alg_nano);
583         } else {
584                 crypto_unregister_shash(&sha1_alg);
585                 crypto_unregister_shash(&sha256_alg);
586         }
587 }
588
589 module_init(padlock_init);
590 module_exit(padlock_fini);
591
592 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
593 MODULE_LICENSE("GPL");
594 MODULE_AUTHOR("Michal Ludvig");
595
596 MODULE_ALIAS("sha1-all");
597 MODULE_ALIAS("sha256-all");
598 MODULE_ALIAS("sha1-padlock");
599 MODULE_ALIAS("sha256-padlock");