20b5e276f184a17da95a7a3af54ea57705843cc5
[platform/kernel/linux-starfive.git] / drivers / crypto / nx / nx.c
1 /**
2  * Routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/hash.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/scatterwalk.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/types.h>
31 #include <linux/mm.h>
32 #include <linux/scatterlist.h>
33 #include <linux/device.h>
34 #include <linux/of.h>
35 #include <asm/hvcall.h>
36 #include <asm/vio.h>
37
38 #include "nx_csbcpb.h"
39 #include "nx.h"
40
41
42 /**
43  * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
44  *
45  * @nx_ctx: the crypto context handle
46  * @op: PFO operation struct to pass in
47  * @may_sleep: flag indicating the request can sleep
48  *
49  * Make the hcall, retrying while the hardware is busy. If we cannot yield
50  * the thread, limit the number of retries to 10 here.
51  */
52 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
53                   struct vio_pfo_op    *op,
54                   u32                   may_sleep)
55 {
56         int rc, retries = 10;
57         struct vio_dev *viodev = nx_driver.viodev;
58
59         atomic_inc(&(nx_ctx->stats->sync_ops));
60
61         do {
62                 rc = vio_h_cop_sync(viodev, op);
63         } while (rc == -EBUSY && !may_sleep && retries--);
64
65         if (rc) {
66                 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
67                         "hcall rc: %ld\n", rc, op->hcall_err);
68                 atomic_inc(&(nx_ctx->stats->errors));
69                 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
70                 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
71         }
72
73         return rc;
74 }
75
76 /**
77  * nx_build_sg_list - build an NX scatter list describing a single  buffer
78  *
79  * @sg_head: pointer to the first scatter list element to build
80  * @start_addr: pointer to the linear buffer
81  * @len: length of the data at @start_addr
82  * @sgmax: the largest number of scatter list elements we're allowed to create
83  *
84  * This function will start writing nx_sg elements at @sg_head and keep
85  * writing them until all of the data from @start_addr is described or
86  * until sgmax elements have been written. Scatter list elements will be
87  * created such that none of the elements describes a buffer that crosses a 4K
88  * boundary.
89  */
90 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
91                                u8           *start_addr,
92                                unsigned int *len,
93                                u32           sgmax)
94 {
95         unsigned int sg_len = 0;
96         struct nx_sg *sg;
97         u64 sg_addr = (u64)start_addr;
98         u64 end_addr;
99
100         /* determine the start and end for this address range - slightly
101          * different if this is in VMALLOC_REGION */
102         if (is_vmalloc_addr(start_addr))
103                 sg_addr = page_to_phys(vmalloc_to_page(start_addr))
104                           + offset_in_page(sg_addr);
105         else
106                 sg_addr = __pa(sg_addr);
107
108         end_addr = sg_addr + *len;
109
110         /* each iteration will write one struct nx_sg element and add the
111          * length of data described by that element to sg_len. Once @len bytes
112          * have been described (or @sgmax elements have been written), the
113          * loop ends. min_t is used to ensure @end_addr falls on the same page
114          * as sg_addr, if not, we need to create another nx_sg element for the
115          * data on the next page.
116          *
117          * Also when using vmalloc'ed data, every time that a system page
118          * boundary is crossed the physical address needs to be re-calculated.
119          */
120         for (sg = sg_head; sg_len < *len; sg++) {
121                 u64 next_page;
122
123                 sg->addr = sg_addr;
124                 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
125                                 end_addr);
126
127                 next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
128                 sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
129                 sg_len += sg->len;
130
131                 if (sg_addr >= next_page &&
132                                 is_vmalloc_addr(start_addr + sg_len)) {
133                         sg_addr = page_to_phys(vmalloc_to_page(
134                                                 start_addr + sg_len));
135                         end_addr = sg_addr + *len - sg_len;
136                 }
137
138                 if ((sg - sg_head) == sgmax) {
139                         pr_err("nx: scatter/gather list overflow, pid: %d\n",
140                                current->pid);
141                         sg++;
142                         break;
143                 }
144         }
145         *len = sg_len;
146
147         /* return the moved sg_head pointer */
148         return sg;
149 }
150
151 /**
152  * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
153  *
154  * @nx_dst: pointer to the first nx_sg element to write
155  * @sglen: max number of nx_sg entries we're allowed to write
156  * @sg_src: pointer to the source linux scatterlist to walk
157  * @start: number of bytes to fast-forward past at the beginning of @sg_src
158  * @src_len: number of bytes to walk in @sg_src
159  */
160 struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
161                                 unsigned int        sglen,
162                                 struct scatterlist *sg_src,
163                                 unsigned int        start,
164                                 unsigned int       *src_len)
165 {
166         struct scatter_walk walk;
167         struct nx_sg *nx_sg = nx_dst;
168         unsigned int n, offset = 0, len = *src_len;
169         char *dst;
170
171         /* we need to fast forward through @start bytes first */
172         for (;;) {
173                 scatterwalk_start(&walk, sg_src);
174
175                 if (start < offset + sg_src->length)
176                         break;
177
178                 offset += sg_src->length;
179                 sg_src = sg_next(sg_src);
180         }
181
182         /* start - offset is the number of bytes to advance in the scatterlist
183          * element we're currently looking at */
184         scatterwalk_advance(&walk, start - offset);
185
186         while (len && (nx_sg - nx_dst) < sglen) {
187                 n = scatterwalk_clamp(&walk, len);
188                 if (!n) {
189                         /* In cases where we have scatterlist chain sg_next
190                          * handles with it properly */
191                         scatterwalk_start(&walk, sg_next(walk.sg));
192                         n = scatterwalk_clamp(&walk, len);
193                 }
194                 dst = scatterwalk_map(&walk);
195
196                 nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
197                 len -= n;
198
199                 scatterwalk_unmap(dst);
200                 scatterwalk_advance(&walk, n);
201                 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
202         }
203         /* update to_process */
204         *src_len -= len;
205
206         /* return the moved destination pointer */
207         return nx_sg;
208 }
209
210 /**
211  * trim_sg_list - ensures the bound in sg list.
212  * @sg: sg list head
213  * @end: sg lisg end
214  * @delta:  is the amount we need to crop in order to bound the list.
215  *
216  */
217 static long int trim_sg_list(struct nx_sg *sg,
218                              struct nx_sg *end,
219                              unsigned int delta,
220                              unsigned int *nbytes)
221 {
222         long int oplen;
223         long int data_back;
224         unsigned int is_delta = delta;
225
226         while (delta && end > sg) {
227                 struct nx_sg *last = end - 1;
228
229                 if (last->len > delta) {
230                         last->len -= delta;
231                         delta = 0;
232                 } else {
233                         end--;
234                         delta -= last->len;
235                 }
236         }
237
238         /* There are cases where we need to crop list in order to make it
239          * a block size multiple, but we also need to align data. In order to
240          * that we need to calculate how much we need to put back to be
241          * processed
242          */
243         oplen = (sg - end) * sizeof(struct nx_sg);
244         if (is_delta) {
245                 data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
246                 data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
247                 *nbytes -= data_back;
248         }
249
250         return oplen;
251 }
252
253 /**
254  * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
255  *                     scatterlists based on them.
256  *
257  * @nx_ctx: NX crypto context for the lists we're building
258  * @desc: the block cipher descriptor for the operation
259  * @dst: destination scatterlist
260  * @src: source scatterlist
261  * @nbytes: length of data described in the scatterlists
262  * @offset: number of bytes to fast-forward past at the beginning of
263  *          scatterlists.
264  * @iv: destination for the iv data, if the algorithm requires it
265  *
266  * This is common code shared by all the AES algorithms. It uses the block
267  * cipher walk routines to traverse input and output scatterlists, building
268  * corresponding NX scatterlists
269  */
270 int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
271                       struct blkcipher_desc *desc,
272                       struct scatterlist    *dst,
273                       struct scatterlist    *src,
274                       unsigned int          *nbytes,
275                       unsigned int           offset,
276                       u8                    *iv)
277 {
278         unsigned int delta = 0;
279         unsigned int total = *nbytes;
280         struct nx_sg *nx_insg = nx_ctx->in_sg;
281         struct nx_sg *nx_outsg = nx_ctx->out_sg;
282         unsigned int max_sg_len;
283
284         max_sg_len = min_t(u64, nx_ctx->ap->sglen,
285                         nx_driver.of.max_sg_len/sizeof(struct nx_sg));
286         max_sg_len = min_t(u64, max_sg_len,
287                         nx_ctx->ap->databytelen/NX_PAGE_SIZE);
288
289         if (iv)
290                 memcpy(iv, desc->info, AES_BLOCK_SIZE);
291
292         *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
293
294         nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
295                                         offset, nbytes);
296         nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
297                                         offset, nbytes);
298
299         if (*nbytes < total)
300                 delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
301
302         /* these lengths should be negative, which will indicate to phyp that
303          * the input and output parameters are scatterlists, not linear
304          * buffers */
305         nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
306         nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
307
308         return 0;
309 }
310
311 /**
312  * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
313  *
314  * @nx_ctx: the nx context to initialize
315  * @function: the function code for the op
316  */
317 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
318 {
319         spin_lock_init(&nx_ctx->lock);
320         memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
321         nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
322
323         nx_ctx->op.flags = function;
324         nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
325         nx_ctx->op.in = __pa(nx_ctx->in_sg);
326         nx_ctx->op.out = __pa(nx_ctx->out_sg);
327
328         if (nx_ctx->csbcpb_aead) {
329                 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
330
331                 nx_ctx->op_aead.flags = function;
332                 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
333                 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
334                 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
335         }
336 }
337
338 static void nx_of_update_status(struct device   *dev,
339                                struct property *p,
340                                struct nx_of    *props)
341 {
342         if (!strncmp(p->value, "okay", p->length)) {
343                 props->status = NX_WAITING;
344                 props->flags |= NX_OF_FLAG_STATUS_SET;
345         } else {
346                 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
347                          (char *)p->value);
348         }
349 }
350
351 static void nx_of_update_sglen(struct device   *dev,
352                                struct property *p,
353                                struct nx_of    *props)
354 {
355         if (p->length != sizeof(props->max_sg_len)) {
356                 dev_err(dev, "%s: unexpected format for "
357                         "ibm,max-sg-len property\n", __func__);
358                 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
359                         "long, expected %zd bytes\n", __func__,
360                         p->length, sizeof(props->max_sg_len));
361                 return;
362         }
363
364         props->max_sg_len = *(u32 *)p->value;
365         props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
366 }
367
368 static void nx_of_update_msc(struct device   *dev,
369                              struct property *p,
370                              struct nx_of    *props)
371 {
372         struct msc_triplet *trip;
373         struct max_sync_cop *msc;
374         unsigned int bytes_so_far, i, lenp;
375
376         msc = (struct max_sync_cop *)p->value;
377         lenp = p->length;
378
379         /* You can't tell if the data read in for this property is sane by its
380          * size alone. This is because there are sizes embedded in the data
381          * structure. The best we can do is check lengths as we parse and bail
382          * as soon as a length error is detected. */
383         bytes_so_far = 0;
384
385         while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
386                 bytes_so_far += sizeof(struct max_sync_cop);
387
388                 trip = msc->trip;
389
390                 for (i = 0;
391                      ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
392                      i < msc->triplets;
393                      i++) {
394                         if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
395                                 dev_err(dev, "unknown function code/mode "
396                                         "combo: %d/%d (ignored)\n", msc->fc,
397                                         msc->mode);
398                                 goto next_loop;
399                         }
400
401                         if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
402                                 dev_warn(dev, "bogus sglen/databytelen: "
403                                          "%u/%u (ignored)\n", trip->sglen,
404                                          trip->databytelen);
405                                 goto next_loop;
406                         }
407
408                         switch (trip->keybitlen) {
409                         case 128:
410                         case 160:
411                                 props->ap[msc->fc][msc->mode][0].databytelen =
412                                         trip->databytelen;
413                                 props->ap[msc->fc][msc->mode][0].sglen =
414                                         trip->sglen;
415                                 break;
416                         case 192:
417                                 props->ap[msc->fc][msc->mode][1].databytelen =
418                                         trip->databytelen;
419                                 props->ap[msc->fc][msc->mode][1].sglen =
420                                         trip->sglen;
421                                 break;
422                         case 256:
423                                 if (msc->fc == NX_FC_AES) {
424                                         props->ap[msc->fc][msc->mode][2].
425                                                 databytelen = trip->databytelen;
426                                         props->ap[msc->fc][msc->mode][2].sglen =
427                                                 trip->sglen;
428                                 } else if (msc->fc == NX_FC_AES_HMAC ||
429                                            msc->fc == NX_FC_SHA) {
430                                         props->ap[msc->fc][msc->mode][1].
431                                                 databytelen = trip->databytelen;
432                                         props->ap[msc->fc][msc->mode][1].sglen =
433                                                 trip->sglen;
434                                 } else {
435                                         dev_warn(dev, "unknown function "
436                                                 "code/key bit len combo"
437                                                 ": (%u/256)\n", msc->fc);
438                                 }
439                                 break;
440                         case 512:
441                                 props->ap[msc->fc][msc->mode][2].databytelen =
442                                         trip->databytelen;
443                                 props->ap[msc->fc][msc->mode][2].sglen =
444                                         trip->sglen;
445                                 break;
446                         default:
447                                 dev_warn(dev, "unknown function code/key bit "
448                                          "len combo: (%u/%u)\n", msc->fc,
449                                          trip->keybitlen);
450                                 break;
451                         }
452 next_loop:
453                         bytes_so_far += sizeof(struct msc_triplet);
454                         trip++;
455                 }
456
457                 msc = (struct max_sync_cop *)trip;
458         }
459
460         props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
461 }
462
463 /**
464  * nx_of_init - read openFirmware values from the device tree
465  *
466  * @dev: device handle
467  * @props: pointer to struct to hold the properties values
468  *
469  * Called once at driver probe time, this function will read out the
470  * openFirmware properties we use at runtime. If all the OF properties are
471  * acceptable, when we exit this function props->flags will indicate that
472  * we're ready to register our crypto algorithms.
473  */
474 static void nx_of_init(struct device *dev, struct nx_of *props)
475 {
476         struct device_node *base_node = dev->of_node;
477         struct property *p;
478
479         p = of_find_property(base_node, "status", NULL);
480         if (!p)
481                 dev_info(dev, "%s: property 'status' not found\n", __func__);
482         else
483                 nx_of_update_status(dev, p, props);
484
485         p = of_find_property(base_node, "ibm,max-sg-len", NULL);
486         if (!p)
487                 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
488                          __func__);
489         else
490                 nx_of_update_sglen(dev, p, props);
491
492         p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
493         if (!p)
494                 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
495                          __func__);
496         else
497                 nx_of_update_msc(dev, p, props);
498 }
499
500 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
501 {
502         struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
503
504         if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
505                 if (dev)
506                         dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
507                                  "%u/%u (ignored)\n", fc, mode, slot,
508                                  props->sglen, props->databytelen);
509                 return false;
510         }
511
512         return true;
513 }
514
515 static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
516 {
517         int i;
518
519         for (i = 0; i < 3; i++)
520                 if (!nx_check_prop(dev, fc, mode, i))
521                         return false;
522
523         return true;
524 }
525
526 static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode)
527 {
528         return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
529                crypto_register_alg(alg) : 0;
530 }
531
532 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
533 {
534         return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
535                crypto_register_aead(alg) : 0;
536 }
537
538 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
539 {
540         return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
541                                           fc, mode, slot) :
542                             nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
543                crypto_register_shash(alg) : 0;
544 }
545
546 static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode)
547 {
548         if (nx_check_props(NULL, fc, mode))
549                 crypto_unregister_alg(alg);
550 }
551
552 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
553 {
554         if (nx_check_props(NULL, fc, mode))
555                 crypto_unregister_aead(alg);
556 }
557
558 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
559                                 int slot)
560 {
561         if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
562                         nx_check_props(NULL, fc, mode))
563                 crypto_unregister_shash(alg);
564 }
565
566 /**
567  * nx_register_algs - register algorithms with the crypto API
568  *
569  * Called from nx_probe()
570  *
571  * If all OF properties are in an acceptable state, the driver flags will
572  * indicate that we're ready and we'll create our debugfs files and register
573  * out crypto algorithms.
574  */
575 static int nx_register_algs(void)
576 {
577         int rc = -1;
578
579         if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
580                 goto out;
581
582         memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
583
584         NX_DEBUGFS_INIT(&nx_driver);
585
586         nx_driver.of.status = NX_OKAY;
587
588         rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
589         if (rc)
590                 goto out;
591
592         rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
593         if (rc)
594                 goto out_unreg_ecb;
595
596         rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
597         if (rc)
598                 goto out_unreg_cbc;
599
600         rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
601         if (rc)
602                 goto out_unreg_ctr3686;
603
604         rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
605         if (rc)
606                 goto out_unreg_gcm;
607
608         rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
609         if (rc)
610                 goto out_unreg_gcm4106;
611
612         rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
613         if (rc)
614                 goto out_unreg_ccm;
615
616         rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
617                                NX_PROPS_SHA256);
618         if (rc)
619                 goto out_unreg_ccm4309;
620
621         rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
622                                NX_PROPS_SHA512);
623         if (rc)
624                 goto out_unreg_s256;
625
626         rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
627                                NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
628         if (rc)
629                 goto out_unreg_s512;
630
631         goto out;
632
633 out_unreg_s512:
634         nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
635                             NX_PROPS_SHA512);
636 out_unreg_s256:
637         nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
638                             NX_PROPS_SHA256);
639 out_unreg_ccm4309:
640         nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
641 out_unreg_ccm:
642         nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
643 out_unreg_gcm4106:
644         nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
645 out_unreg_gcm:
646         nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
647 out_unreg_ctr3686:
648         nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
649 out_unreg_cbc:
650         nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
651 out_unreg_ecb:
652         nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
653 out:
654         return rc;
655 }
656
657 /**
658  * nx_crypto_ctx_init - create and initialize a crypto api context
659  *
660  * @nx_ctx: the crypto api context
661  * @fc: function code for the context
662  * @mode: the function code specific mode for this context
663  */
664 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
665 {
666         if (nx_driver.of.status != NX_OKAY) {
667                 pr_err("Attempt to initialize NX crypto context while device "
668                        "is not available!\n");
669                 return -ENODEV;
670         }
671
672         /* we need an extra page for csbcpb_aead for these modes */
673         if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
674                 nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
675                                    sizeof(struct nx_csbcpb);
676         else
677                 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
678                                    sizeof(struct nx_csbcpb);
679
680         nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
681         if (!nx_ctx->kmem)
682                 return -ENOMEM;
683
684         /* the csbcpb and scatterlists must be 4K aligned pages */
685         nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
686                                                        (u64)NX_PAGE_SIZE));
687         nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
688         nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
689
690         if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
691                 nx_ctx->csbcpb_aead =
692                         (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
693                                              NX_PAGE_SIZE);
694
695         /* give each context a pointer to global stats and their OF
696          * properties */
697         nx_ctx->stats = &nx_driver.stats;
698         memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
699                sizeof(struct alg_props) * 3);
700
701         return 0;
702 }
703
704 /* entry points from the crypto tfm initializers */
705 int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
706 {
707         crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
708         return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
709                                   NX_MODE_AES_CCM);
710 }
711
712 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
713 {
714         crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
715         return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
716                                   NX_MODE_AES_GCM);
717 }
718
719 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
720 {
721         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
722                                   NX_MODE_AES_CTR);
723 }
724
725 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
726 {
727         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
728                                   NX_MODE_AES_CBC);
729 }
730
731 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
732 {
733         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
734                                   NX_MODE_AES_ECB);
735 }
736
737 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
738 {
739         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
740 }
741
742 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
743 {
744         return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
745                                   NX_MODE_AES_XCBC_MAC);
746 }
747
748 /**
749  * nx_crypto_ctx_exit - destroy a crypto api context
750  *
751  * @tfm: the crypto transform pointer for the context
752  *
753  * As crypto API contexts are destroyed, this exit hook is called to free the
754  * memory associated with it.
755  */
756 void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
757 {
758         struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
759
760         kzfree(nx_ctx->kmem);
761         nx_ctx->csbcpb = NULL;
762         nx_ctx->csbcpb_aead = NULL;
763         nx_ctx->in_sg = NULL;
764         nx_ctx->out_sg = NULL;
765 }
766
767 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
768 {
769         struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
770
771         kzfree(nx_ctx->kmem);
772 }
773
774 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
775 {
776         dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
777                 viodev->name, viodev->resource_id);
778
779         if (nx_driver.viodev) {
780                 dev_err(&viodev->dev, "%s: Attempt to register more than one "
781                         "instance of the hardware\n", __func__);
782                 return -EINVAL;
783         }
784
785         nx_driver.viodev = viodev;
786
787         nx_of_init(&viodev->dev, &nx_driver.of);
788
789         return nx_register_algs();
790 }
791
792 static int nx_remove(struct vio_dev *viodev)
793 {
794         dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
795                 viodev->unit_address);
796
797         if (nx_driver.of.status == NX_OKAY) {
798                 NX_DEBUGFS_FINI(&nx_driver);
799
800                 nx_unregister_shash(&nx_shash_aes_xcbc_alg,
801                                     NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
802                 nx_unregister_shash(&nx_shash_sha512_alg,
803                                     NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
804                 nx_unregister_shash(&nx_shash_sha256_alg,
805                                     NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
806                 nx_unregister_aead(&nx_ccm4309_aes_alg,
807                                    NX_FC_AES, NX_MODE_AES_CCM);
808                 nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
809                 nx_unregister_aead(&nx_gcm4106_aes_alg,
810                                    NX_FC_AES, NX_MODE_AES_GCM);
811                 nx_unregister_aead(&nx_gcm_aes_alg,
812                                    NX_FC_AES, NX_MODE_AES_GCM);
813                 nx_unregister_alg(&nx_ctr3686_aes_alg,
814                                   NX_FC_AES, NX_MODE_AES_CTR);
815                 nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
816                 nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
817         }
818
819         return 0;
820 }
821
822
823 /* module wide initialization/cleanup */
824 static int __init nx_init(void)
825 {
826         return vio_register_driver(&nx_driver.viodriver);
827 }
828
829 static void __exit nx_fini(void)
830 {
831         vio_unregister_driver(&nx_driver.viodriver);
832 }
833
834 static const struct vio_device_id nx_crypto_driver_ids[] = {
835         { "ibm,sym-encryption-v1", "ibm,sym-encryption" },
836         { "", "" }
837 };
838 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
839
840 /* driver state structure */
841 struct nx_crypto_driver nx_driver = {
842         .viodriver = {
843                 .id_table = nx_crypto_driver_ids,
844                 .probe = nx_probe,
845                 .remove = nx_remove,
846                 .name  = NX_NAME,
847         },
848 };
849
850 module_init(nx_init);
851 module_exit(nx_fini);
852
853 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
854 MODULE_DESCRIPTION(NX_STRING);
855 MODULE_LICENSE("GPL");
856 MODULE_VERSION(NX_VERSION);