1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
33 #define DRV_MODULE_NAME "n2_crypto"
34 #define DRV_MODULE_VERSION "0.2"
35 #define DRV_MODULE_RELDATE "July 28, 2011"
37 static char version[] __devinitdata =
38 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
45 #define N2_CRA_PRIORITY 300
47 static DEFINE_MUTEX(spu_lock);
51 unsigned long qhandle;
58 struct list_head jobs;
65 struct list_head list;
68 static struct spu_queue **cpu_to_cwq;
69 static struct spu_queue **cpu_to_mau;
71 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
73 if (q->q_type == HV_NCS_QTYPE_MAU) {
74 off += MAU_ENTRY_SIZE;
75 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
78 off += CWQ_ENTRY_SIZE;
79 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85 struct n2_request_common {
86 struct list_head entry;
89 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
91 /* An async job request records the final tail value it used in
92 * n2_request_common->offset, test to see if that offset is in
93 * the range old_head, new_head, inclusive.
95 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
96 unsigned long old_head, unsigned long new_head)
98 if (old_head <= new_head) {
99 if (offset > old_head && offset <= new_head)
102 if (offset > old_head || offset <= new_head)
108 /* When the HEAD marker is unequal to the actual HEAD, we get
109 * a virtual device INO interrupt. We should process the
110 * completed CWQ entries and adjust the HEAD marker to clear
113 static irqreturn_t cwq_intr(int irq, void *dev_id)
115 unsigned long off, new_head, hv_ret;
116 struct spu_queue *q = dev_id;
118 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
119 smp_processor_id(), q->qhandle);
123 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
125 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
126 smp_processor_id(), new_head, hv_ret);
128 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
132 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
133 if (hv_ret == HV_EOK)
136 spin_unlock(&q->lock);
141 static irqreturn_t mau_intr(int irq, void *dev_id)
143 struct spu_queue *q = dev_id;
144 unsigned long head, hv_ret;
148 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
149 smp_processor_id(), q->qhandle);
151 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
153 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
154 smp_processor_id(), head, hv_ret);
156 sun4v_ncs_sethead_marker(q->qhandle, head);
158 spin_unlock(&q->lock);
163 static void *spu_queue_next(struct spu_queue *q, void *cur)
165 return q->q + spu_next_offset(q, cur - q->q);
168 static int spu_queue_num_free(struct spu_queue *q)
170 unsigned long head = q->head;
171 unsigned long tail = q->tail;
172 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178 diff = (end - tail) + head;
180 return (diff / CWQ_ENTRY_SIZE) - 1;
183 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
185 int avail = spu_queue_num_free(q);
187 if (avail >= num_entries)
188 return q->q + q->tail;
193 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
195 unsigned long hv_ret, new_tail;
197 new_tail = spu_next_offset(q, last - q->q);
199 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
200 if (hv_ret == HV_EOK)
205 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
206 int enc_type, int auth_type,
207 unsigned int hash_len,
208 bool sfas, bool sob, bool eob, bool encrypt,
211 u64 word = (len - 1) & CONTROL_LEN;
213 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
214 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
215 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
217 word |= CONTROL_STORE_FINAL_AUTH_STATE;
219 word |= CONTROL_START_OF_BLOCK;
221 word |= CONTROL_END_OF_BLOCK;
223 word |= CONTROL_ENCRYPT;
225 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
227 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
235 if (this_len >= 64 ||
236 qp->head != qp->tail)
242 struct n2_ahash_alg {
243 struct list_head entry;
244 const char *hash_zero;
245 const u32 *hash_init;
250 struct ahash_alg alg;
253 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
255 struct crypto_alg *alg = tfm->__crt_alg;
256 struct ahash_alg *ahash_alg;
258 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
260 return container_of(ahash_alg, struct n2_ahash_alg, alg);
264 const char *child_alg;
265 struct n2_ahash_alg derived;
268 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
270 struct crypto_alg *alg = tfm->__crt_alg;
271 struct ahash_alg *ahash_alg;
273 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
275 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
279 struct crypto_ahash *fallback_tfm;
282 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
285 struct n2_hash_ctx base;
287 struct crypto_shash *child_shash;
290 unsigned char hash_key[N2_HASH_KEY_MAX];
293 struct n2_hash_req_ctx {
295 struct md5_state md5;
296 struct sha1_state sha1;
297 struct sha256_state sha256;
300 struct ahash_request fallback_req;
303 static int n2_hash_async_init(struct ahash_request *req)
305 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
306 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
307 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
309 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
310 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
312 return crypto_ahash_init(&rctx->fallback_req);
315 static int n2_hash_async_update(struct ahash_request *req)
317 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
318 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
319 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
321 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
322 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
323 rctx->fallback_req.nbytes = req->nbytes;
324 rctx->fallback_req.src = req->src;
326 return crypto_ahash_update(&rctx->fallback_req);
329 static int n2_hash_async_final(struct ahash_request *req)
331 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
332 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
333 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
335 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
336 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
337 rctx->fallback_req.result = req->result;
339 return crypto_ahash_final(&rctx->fallback_req);
342 static int n2_hash_async_finup(struct ahash_request *req)
344 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
345 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
346 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
348 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
349 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
350 rctx->fallback_req.nbytes = req->nbytes;
351 rctx->fallback_req.src = req->src;
352 rctx->fallback_req.result = req->result;
354 return crypto_ahash_finup(&rctx->fallback_req);
357 static int n2_hash_cra_init(struct crypto_tfm *tfm)
359 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
360 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
361 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
362 struct crypto_ahash *fallback_tfm;
365 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
366 CRYPTO_ALG_NEED_FALLBACK);
367 if (IS_ERR(fallback_tfm)) {
368 pr_warning("Fallback driver '%s' could not be loaded!\n",
369 fallback_driver_name);
370 err = PTR_ERR(fallback_tfm);
374 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
375 crypto_ahash_reqsize(fallback_tfm)));
377 ctx->fallback_tfm = fallback_tfm;
384 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
386 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
387 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
389 crypto_free_ahash(ctx->fallback_tfm);
392 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
394 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
395 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
396 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
397 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
398 struct crypto_ahash *fallback_tfm;
399 struct crypto_shash *child_shash;
402 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
403 CRYPTO_ALG_NEED_FALLBACK);
404 if (IS_ERR(fallback_tfm)) {
405 pr_warning("Fallback driver '%s' could not be loaded!\n",
406 fallback_driver_name);
407 err = PTR_ERR(fallback_tfm);
411 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
412 if (IS_ERR(child_shash)) {
413 pr_warning("Child shash '%s' could not be loaded!\n",
415 err = PTR_ERR(child_shash);
416 goto out_free_fallback;
419 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
420 crypto_ahash_reqsize(fallback_tfm)));
422 ctx->child_shash = child_shash;
423 ctx->base.fallback_tfm = fallback_tfm;
427 crypto_free_ahash(fallback_tfm);
433 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
435 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
436 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
438 crypto_free_ahash(ctx->base.fallback_tfm);
439 crypto_free_shash(ctx->child_shash);
442 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
445 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
446 struct crypto_shash *child_shash = ctx->child_shash;
447 struct crypto_ahash *fallback_tfm;
449 struct shash_desc shash;
450 char ctx[crypto_shash_descsize(child_shash)];
454 fallback_tfm = ctx->base.fallback_tfm;
455 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
459 desc.shash.tfm = child_shash;
460 desc.shash.flags = crypto_ahash_get_flags(tfm) &
461 CRYPTO_TFM_REQ_MAY_SLEEP;
463 bs = crypto_shash_blocksize(child_shash);
464 ds = crypto_shash_digestsize(child_shash);
465 BUG_ON(ds > N2_HASH_KEY_MAX);
467 err = crypto_shash_digest(&desc.shash, key, keylen,
472 } else if (keylen <= N2_HASH_KEY_MAX)
473 memcpy(ctx->hash_key, key, keylen);
475 ctx->hash_key_len = keylen;
480 static unsigned long wait_for_tail(struct spu_queue *qp)
482 unsigned long head, hv_ret;
485 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
486 if (hv_ret != HV_EOK) {
487 pr_err("Hypervisor error on gethead\n");
490 if (head == qp->tail) {
498 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
499 struct cwq_initial_entry *ent)
501 unsigned long hv_ret = spu_queue_submit(qp, ent);
503 if (hv_ret == HV_EOK)
504 hv_ret = wait_for_tail(qp);
509 static int n2_do_async_digest(struct ahash_request *req,
510 unsigned int auth_type, unsigned int digest_size,
511 unsigned int result_size, void *hash_loc,
512 unsigned long auth_key, unsigned int auth_key_len)
514 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
515 struct cwq_initial_entry *ent;
516 struct crypto_hash_walk walk;
517 struct spu_queue *qp;
522 /* The total effective length of the operation may not
525 if (unlikely(req->nbytes > (1 << 16))) {
526 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
527 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
529 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
530 rctx->fallback_req.base.flags =
531 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
532 rctx->fallback_req.nbytes = req->nbytes;
533 rctx->fallback_req.src = req->src;
534 rctx->fallback_req.result = req->result;
536 return crypto_ahash_digest(&rctx->fallback_req);
539 nbytes = crypto_hash_walk_first(req, &walk);
542 qp = cpu_to_cwq[cpu];
546 spin_lock_irqsave(&qp->lock, flags);
548 /* XXX can do better, improve this later by doing a by-hand scatterlist
551 ent = qp->q + qp->tail;
553 ent->control = control_word_base(nbytes, auth_key_len, 0,
554 auth_type, digest_size,
555 false, true, false, false,
558 ent->src_addr = __pa(walk.data);
559 ent->auth_key_addr = auth_key;
560 ent->auth_iv_addr = __pa(hash_loc);
561 ent->final_auth_state_addr = 0UL;
562 ent->enc_key_addr = 0UL;
563 ent->enc_iv_addr = 0UL;
564 ent->dest_addr = __pa(hash_loc);
566 nbytes = crypto_hash_walk_done(&walk, 0);
568 ent = spu_queue_next(qp, ent);
570 ent->control = (nbytes - 1);
571 ent->src_addr = __pa(walk.data);
572 ent->auth_key_addr = 0UL;
573 ent->auth_iv_addr = 0UL;
574 ent->final_auth_state_addr = 0UL;
575 ent->enc_key_addr = 0UL;
576 ent->enc_iv_addr = 0UL;
577 ent->dest_addr = 0UL;
579 nbytes = crypto_hash_walk_done(&walk, 0);
581 ent->control |= CONTROL_END_OF_BLOCK;
583 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
588 spin_unlock_irqrestore(&qp->lock, flags);
591 memcpy(req->result, hash_loc, result_size);
598 static int n2_hash_async_digest(struct ahash_request *req)
600 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
601 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
604 ds = n2alg->digest_size;
605 if (unlikely(req->nbytes == 0)) {
606 memcpy(req->result, n2alg->hash_zero, ds);
609 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
611 return n2_do_async_digest(req, n2alg->auth_type,
612 n2alg->hw_op_hashsz, ds,
616 static int n2_hmac_async_digest(struct ahash_request *req)
618 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
619 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
620 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
621 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
624 ds = n2alg->derived.digest_size;
625 if (unlikely(req->nbytes == 0) ||
626 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
627 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
628 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
630 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
631 rctx->fallback_req.base.flags =
632 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
633 rctx->fallback_req.nbytes = req->nbytes;
634 rctx->fallback_req.src = req->src;
635 rctx->fallback_req.result = req->result;
637 return crypto_ahash_digest(&rctx->fallback_req);
639 memcpy(&rctx->u, n2alg->derived.hash_init,
640 n2alg->derived.hw_op_hashsz);
642 return n2_do_async_digest(req, n2alg->derived.hmac_type,
643 n2alg->derived.hw_op_hashsz, ds,
645 __pa(&ctx->hash_key),
649 struct n2_cipher_context {
653 u8 aes[AES_MAX_KEY_SIZE];
654 u8 des[DES_KEY_SIZE];
655 u8 des3[3 * DES_KEY_SIZE];
656 u8 arc4[258]; /* S-box, X, Y */
660 #define N2_CHUNK_ARR_LEN 16
662 struct n2_crypto_chunk {
663 struct list_head entry;
664 unsigned long iv_paddr : 44;
665 unsigned long arr_len : 20;
666 unsigned long dest_paddr;
667 unsigned long dest_final;
669 unsigned long src_paddr : 44;
670 unsigned long src_len : 20;
671 } arr[N2_CHUNK_ARR_LEN];
674 struct n2_request_context {
675 struct ablkcipher_walk walk;
676 struct list_head chunk_list;
677 struct n2_crypto_chunk chunk;
681 /* The SPU allows some level of flexibility for partial cipher blocks
682 * being specified in a descriptor.
684 * It merely requires that every descriptor's length field is at least
685 * as large as the cipher block size. This means that a cipher block
686 * can span at most 2 descriptors. However, this does not allow a
687 * partial block to span into the final descriptor as that would
688 * violate the rule (since every descriptor's length must be at lest
689 * the block size). So, for example, assuming an 8 byte block size:
691 * 0xe --> 0xa --> 0x8
693 * is a valid length sequence, whereas:
695 * 0xe --> 0xb --> 0x7
697 * is not a valid sequence.
700 struct n2_cipher_alg {
701 struct list_head entry;
703 struct crypto_alg alg;
706 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
708 struct crypto_alg *alg = tfm->__crt_alg;
710 return container_of(alg, struct n2_cipher_alg, alg);
713 struct n2_cipher_request_context {
714 struct ablkcipher_walk walk;
717 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
720 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
721 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
722 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
724 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
727 case AES_KEYSIZE_128:
728 ctx->enc_type |= ENC_TYPE_ALG_AES128;
730 case AES_KEYSIZE_192:
731 ctx->enc_type |= ENC_TYPE_ALG_AES192;
733 case AES_KEYSIZE_256:
734 ctx->enc_type |= ENC_TYPE_ALG_AES256;
737 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
741 ctx->key_len = keylen;
742 memcpy(ctx->key.aes, key, keylen);
746 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
749 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
750 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
751 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
752 u32 tmp[DES_EXPKEY_WORDS];
755 ctx->enc_type = n2alg->enc_type;
757 if (keylen != DES_KEY_SIZE) {
758 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
762 err = des_ekey(tmp, key);
763 if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
764 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
768 ctx->key_len = keylen;
769 memcpy(ctx->key.des, key, keylen);
773 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
776 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
777 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
778 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
780 ctx->enc_type = n2alg->enc_type;
782 if (keylen != (3 * DES_KEY_SIZE)) {
783 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
786 ctx->key_len = keylen;
787 memcpy(ctx->key.des3, key, keylen);
791 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
794 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
795 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
796 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
797 u8 *s = ctx->key.arc4;
802 ctx->enc_type = n2alg->enc_type;
807 for (i = 0; i < 256; i++)
809 for (i = 0; i < 256; i++) {
811 j = (j + key[k] + a) & 0xff;
821 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
823 int this_len = nbytes;
825 this_len -= (nbytes & (block_size - 1));
826 return this_len > (1 << 16) ? (1 << 16) : this_len;
829 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
830 struct spu_queue *qp, bool encrypt)
832 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
833 struct cwq_initial_entry *ent;
837 ent = spu_queue_alloc(qp, cp->arr_len);
839 pr_info("queue_alloc() of %d fails\n",
844 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
846 ent->control = control_word_base(cp->arr[0].src_len,
847 0, ctx->enc_type, 0, 0,
848 false, true, false, encrypt,
850 (in_place ? OPCODE_INPLACE_BIT : 0));
851 ent->src_addr = cp->arr[0].src_paddr;
852 ent->auth_key_addr = 0UL;
853 ent->auth_iv_addr = 0UL;
854 ent->final_auth_state_addr = 0UL;
855 ent->enc_key_addr = __pa(&ctx->key);
856 ent->enc_iv_addr = cp->iv_paddr;
857 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
859 for (i = 1; i < cp->arr_len; i++) {
860 ent = spu_queue_next(qp, ent);
862 ent->control = cp->arr[i].src_len - 1;
863 ent->src_addr = cp->arr[i].src_paddr;
864 ent->auth_key_addr = 0UL;
865 ent->auth_iv_addr = 0UL;
866 ent->final_auth_state_addr = 0UL;
867 ent->enc_key_addr = 0UL;
868 ent->enc_iv_addr = 0UL;
869 ent->dest_addr = 0UL;
871 ent->control |= CONTROL_END_OF_BLOCK;
873 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
876 static int n2_compute_chunks(struct ablkcipher_request *req)
878 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
879 struct ablkcipher_walk *walk = &rctx->walk;
880 struct n2_crypto_chunk *chunk;
881 unsigned long dest_prev;
882 unsigned int tot_len;
886 ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
887 err = ablkcipher_walk_phys(req, walk);
891 INIT_LIST_HEAD(&rctx->chunk_list);
893 chunk = &rctx->chunk;
894 INIT_LIST_HEAD(&chunk->entry);
896 chunk->iv_paddr = 0UL;
898 chunk->dest_paddr = 0UL;
900 prev_in_place = false;
904 while ((nbytes = walk->nbytes) != 0) {
905 unsigned long dest_paddr, src_paddr;
909 src_paddr = (page_to_phys(walk->src.page) +
911 dest_paddr = (page_to_phys(walk->dst.page) +
913 in_place = (src_paddr == dest_paddr);
914 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
916 if (chunk->arr_len != 0) {
917 if (in_place != prev_in_place ||
919 dest_paddr != dest_prev) ||
920 chunk->arr_len == N2_CHUNK_ARR_LEN ||
921 tot_len + this_len > (1 << 16)) {
922 chunk->dest_final = dest_prev;
923 list_add_tail(&chunk->entry,
925 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
930 INIT_LIST_HEAD(&chunk->entry);
933 if (chunk->arr_len == 0) {
934 chunk->dest_paddr = dest_paddr;
937 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
938 chunk->arr[chunk->arr_len].src_len = this_len;
941 dest_prev = dest_paddr + this_len;
942 prev_in_place = in_place;
945 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
949 if (!err && chunk->arr_len != 0) {
950 chunk->dest_final = dest_prev;
951 list_add_tail(&chunk->entry, &rctx->chunk_list);
957 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
959 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
960 struct n2_crypto_chunk *c, *tmp;
963 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
965 ablkcipher_walk_complete(&rctx->walk);
966 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
968 if (unlikely(c != &rctx->chunk))
974 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
976 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
977 struct crypto_tfm *tfm = req->base.tfm;
978 int err = n2_compute_chunks(req);
979 struct n2_crypto_chunk *c, *tmp;
980 unsigned long flags, hv_ret;
981 struct spu_queue *qp;
986 qp = cpu_to_cwq[get_cpu()];
991 spin_lock_irqsave(&qp->lock, flags);
993 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
994 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
998 if (unlikely(c != &rctx->chunk))
1002 hv_ret = wait_for_tail(qp);
1003 if (hv_ret != HV_EOK)
1007 spin_unlock_irqrestore(&qp->lock, flags);
1012 n2_chunk_complete(req, NULL);
1016 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1018 return n2_do_ecb(req, true);
1021 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1023 return n2_do_ecb(req, false);
1026 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1028 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1029 struct crypto_tfm *tfm = req->base.tfm;
1030 unsigned long flags, hv_ret, iv_paddr;
1031 int err = n2_compute_chunks(req);
1032 struct n2_crypto_chunk *c, *tmp;
1033 struct spu_queue *qp;
1034 void *final_iv_addr;
1036 final_iv_addr = NULL;
1041 qp = cpu_to_cwq[get_cpu()];
1046 spin_lock_irqsave(&qp->lock, flags);
1049 iv_paddr = __pa(rctx->walk.iv);
1050 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1052 c->iv_paddr = iv_paddr;
1053 err = __n2_crypt_chunk(tfm, c, qp, true);
1056 iv_paddr = c->dest_final - rctx->walk.blocksize;
1057 list_del(&c->entry);
1058 if (unlikely(c != &rctx->chunk))
1061 final_iv_addr = __va(iv_paddr);
1063 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1065 if (c == &rctx->chunk) {
1066 iv_paddr = __pa(rctx->walk.iv);
1068 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069 tmp->arr[tmp->arr_len-1].src_len -
1070 rctx->walk.blocksize);
1072 if (!final_iv_addr) {
1075 pa = (c->arr[c->arr_len-1].src_paddr +
1076 c->arr[c->arr_len-1].src_len -
1077 rctx->walk.blocksize);
1078 final_iv_addr = rctx->temp_iv;
1079 memcpy(rctx->temp_iv, __va(pa),
1080 rctx->walk.blocksize);
1082 c->iv_paddr = iv_paddr;
1083 err = __n2_crypt_chunk(tfm, c, qp, false);
1086 list_del(&c->entry);
1087 if (unlikely(c != &rctx->chunk))
1092 hv_ret = wait_for_tail(qp);
1093 if (hv_ret != HV_EOK)
1097 spin_unlock_irqrestore(&qp->lock, flags);
1102 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1106 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1108 return n2_do_chaining(req, true);
1111 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1113 return n2_do_chaining(req, false);
1116 struct n2_cipher_tmpl {
1118 const char *drv_name;
1121 struct ablkcipher_alg ablkcipher;
1124 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1125 /* ARC4: only ECB is supported (chaining bits ignored) */
1126 { .name = "ecb(arc4)",
1127 .drv_name = "ecb-arc4",
1129 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1130 ENC_TYPE_CHAINING_ECB),
1134 .setkey = n2_arc4_setkey,
1135 .encrypt = n2_encrypt_ecb,
1136 .decrypt = n2_decrypt_ecb,
1140 /* DES: ECB CBC and CFB are supported */
1141 { .name = "ecb(des)",
1142 .drv_name = "ecb-des",
1143 .block_size = DES_BLOCK_SIZE,
1144 .enc_type = (ENC_TYPE_ALG_DES |
1145 ENC_TYPE_CHAINING_ECB),
1147 .min_keysize = DES_KEY_SIZE,
1148 .max_keysize = DES_KEY_SIZE,
1149 .setkey = n2_des_setkey,
1150 .encrypt = n2_encrypt_ecb,
1151 .decrypt = n2_decrypt_ecb,
1154 { .name = "cbc(des)",
1155 .drv_name = "cbc-des",
1156 .block_size = DES_BLOCK_SIZE,
1157 .enc_type = (ENC_TYPE_ALG_DES |
1158 ENC_TYPE_CHAINING_CBC),
1160 .ivsize = DES_BLOCK_SIZE,
1161 .min_keysize = DES_KEY_SIZE,
1162 .max_keysize = DES_KEY_SIZE,
1163 .setkey = n2_des_setkey,
1164 .encrypt = n2_encrypt_chaining,
1165 .decrypt = n2_decrypt_chaining,
1168 { .name = "cfb(des)",
1169 .drv_name = "cfb-des",
1170 .block_size = DES_BLOCK_SIZE,
1171 .enc_type = (ENC_TYPE_ALG_DES |
1172 ENC_TYPE_CHAINING_CFB),
1174 .min_keysize = DES_KEY_SIZE,
1175 .max_keysize = DES_KEY_SIZE,
1176 .setkey = n2_des_setkey,
1177 .encrypt = n2_encrypt_chaining,
1178 .decrypt = n2_decrypt_chaining,
1182 /* 3DES: ECB CBC and CFB are supported */
1183 { .name = "ecb(des3_ede)",
1184 .drv_name = "ecb-3des",
1185 .block_size = DES_BLOCK_SIZE,
1186 .enc_type = (ENC_TYPE_ALG_3DES |
1187 ENC_TYPE_CHAINING_ECB),
1189 .min_keysize = 3 * DES_KEY_SIZE,
1190 .max_keysize = 3 * DES_KEY_SIZE,
1191 .setkey = n2_3des_setkey,
1192 .encrypt = n2_encrypt_ecb,
1193 .decrypt = n2_decrypt_ecb,
1196 { .name = "cbc(des3_ede)",
1197 .drv_name = "cbc-3des",
1198 .block_size = DES_BLOCK_SIZE,
1199 .enc_type = (ENC_TYPE_ALG_3DES |
1200 ENC_TYPE_CHAINING_CBC),
1202 .ivsize = DES_BLOCK_SIZE,
1203 .min_keysize = 3 * DES_KEY_SIZE,
1204 .max_keysize = 3 * DES_KEY_SIZE,
1205 .setkey = n2_3des_setkey,
1206 .encrypt = n2_encrypt_chaining,
1207 .decrypt = n2_decrypt_chaining,
1210 { .name = "cfb(des3_ede)",
1211 .drv_name = "cfb-3des",
1212 .block_size = DES_BLOCK_SIZE,
1213 .enc_type = (ENC_TYPE_ALG_3DES |
1214 ENC_TYPE_CHAINING_CFB),
1216 .min_keysize = 3 * DES_KEY_SIZE,
1217 .max_keysize = 3 * DES_KEY_SIZE,
1218 .setkey = n2_3des_setkey,
1219 .encrypt = n2_encrypt_chaining,
1220 .decrypt = n2_decrypt_chaining,
1223 /* AES: ECB CBC and CTR are supported */
1224 { .name = "ecb(aes)",
1225 .drv_name = "ecb-aes",
1226 .block_size = AES_BLOCK_SIZE,
1227 .enc_type = (ENC_TYPE_ALG_AES128 |
1228 ENC_TYPE_CHAINING_ECB),
1230 .min_keysize = AES_MIN_KEY_SIZE,
1231 .max_keysize = AES_MAX_KEY_SIZE,
1232 .setkey = n2_aes_setkey,
1233 .encrypt = n2_encrypt_ecb,
1234 .decrypt = n2_decrypt_ecb,
1237 { .name = "cbc(aes)",
1238 .drv_name = "cbc-aes",
1239 .block_size = AES_BLOCK_SIZE,
1240 .enc_type = (ENC_TYPE_ALG_AES128 |
1241 ENC_TYPE_CHAINING_CBC),
1243 .ivsize = AES_BLOCK_SIZE,
1244 .min_keysize = AES_MIN_KEY_SIZE,
1245 .max_keysize = AES_MAX_KEY_SIZE,
1246 .setkey = n2_aes_setkey,
1247 .encrypt = n2_encrypt_chaining,
1248 .decrypt = n2_decrypt_chaining,
1251 { .name = "ctr(aes)",
1252 .drv_name = "ctr-aes",
1253 .block_size = AES_BLOCK_SIZE,
1254 .enc_type = (ENC_TYPE_ALG_AES128 |
1255 ENC_TYPE_CHAINING_COUNTER),
1257 .ivsize = AES_BLOCK_SIZE,
1258 .min_keysize = AES_MIN_KEY_SIZE,
1259 .max_keysize = AES_MAX_KEY_SIZE,
1260 .setkey = n2_aes_setkey,
1261 .encrypt = n2_encrypt_chaining,
1262 .decrypt = n2_encrypt_chaining,
1267 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1269 static LIST_HEAD(cipher_algs);
1271 struct n2_hash_tmpl {
1273 const char *hash_zero;
1274 const u32 *hash_init;
1282 static const char md5_zero[MD5_DIGEST_SIZE] = {
1283 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
1284 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e,
1286 static const u32 md5_init[MD5_HASH_WORDS] = {
1287 cpu_to_le32(0x67452301),
1288 cpu_to_le32(0xefcdab89),
1289 cpu_to_le32(0x98badcfe),
1290 cpu_to_le32(0x10325476),
1292 static const char sha1_zero[SHA1_DIGEST_SIZE] = {
1293 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32,
1294 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8,
1297 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1298 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1300 static const char sha256_zero[SHA256_DIGEST_SIZE] = {
1301 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a,
1302 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae,
1303 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99,
1304 0x1b, 0x78, 0x52, 0xb8, 0x55
1306 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1307 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1308 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1310 static const char sha224_zero[SHA224_DIGEST_SIZE] = {
1311 0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47,
1312 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2,
1313 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4,
1316 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1317 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1318 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1321 static const struct n2_hash_tmpl hash_tmpls[] = {
1323 .hash_zero = md5_zero,
1324 .hash_init = md5_init,
1325 .auth_type = AUTH_TYPE_MD5,
1326 .hmac_type = AUTH_TYPE_HMAC_MD5,
1327 .hw_op_hashsz = MD5_DIGEST_SIZE,
1328 .digest_size = MD5_DIGEST_SIZE,
1329 .block_size = MD5_HMAC_BLOCK_SIZE },
1331 .hash_zero = sha1_zero,
1332 .hash_init = sha1_init,
1333 .auth_type = AUTH_TYPE_SHA1,
1334 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1335 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1336 .digest_size = SHA1_DIGEST_SIZE,
1337 .block_size = SHA1_BLOCK_SIZE },
1339 .hash_zero = sha256_zero,
1340 .hash_init = sha256_init,
1341 .auth_type = AUTH_TYPE_SHA256,
1342 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1343 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1344 .digest_size = SHA256_DIGEST_SIZE,
1345 .block_size = SHA256_BLOCK_SIZE },
1347 .hash_zero = sha224_zero,
1348 .hash_init = sha224_init,
1349 .auth_type = AUTH_TYPE_SHA256,
1350 .hmac_type = AUTH_TYPE_RESERVED,
1351 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1352 .digest_size = SHA224_DIGEST_SIZE,
1353 .block_size = SHA224_BLOCK_SIZE },
1355 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1357 static LIST_HEAD(ahash_algs);
1358 static LIST_HEAD(hmac_algs);
1360 static int algs_registered;
1362 static void __n2_unregister_algs(void)
1364 struct n2_cipher_alg *cipher, *cipher_tmp;
1365 struct n2_ahash_alg *alg, *alg_tmp;
1366 struct n2_hmac_alg *hmac, *hmac_tmp;
1368 list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1369 crypto_unregister_alg(&cipher->alg);
1370 list_del(&cipher->entry);
1373 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1374 crypto_unregister_ahash(&hmac->derived.alg);
1375 list_del(&hmac->derived.entry);
1378 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1379 crypto_unregister_ahash(&alg->alg);
1380 list_del(&alg->entry);
1385 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1387 tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1391 static int __devinit __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1393 struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1394 struct crypto_alg *alg;
1402 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1403 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1404 alg->cra_priority = N2_CRA_PRIORITY;
1405 alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1406 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1407 alg->cra_blocksize = tmpl->block_size;
1408 p->enc_type = tmpl->enc_type;
1409 alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1410 alg->cra_type = &crypto_ablkcipher_type;
1411 alg->cra_u.ablkcipher = tmpl->ablkcipher;
1412 alg->cra_init = n2_cipher_cra_init;
1413 alg->cra_module = THIS_MODULE;
1415 list_add(&p->entry, &cipher_algs);
1416 err = crypto_register_alg(alg);
1418 pr_err("%s alg registration failed\n", alg->cra_name);
1419 list_del(&p->entry);
1422 pr_info("%s alg registered\n", alg->cra_name);
1427 static int __devinit __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1429 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1430 struct ahash_alg *ahash;
1431 struct crypto_alg *base;
1437 p->child_alg = n2ahash->alg.halg.base.cra_name;
1438 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1439 INIT_LIST_HEAD(&p->derived.entry);
1441 ahash = &p->derived.alg;
1442 ahash->digest = n2_hmac_async_digest;
1443 ahash->setkey = n2_hmac_async_setkey;
1445 base = &ahash->halg.base;
1446 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1447 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1449 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1450 base->cra_init = n2_hmac_cra_init;
1451 base->cra_exit = n2_hmac_cra_exit;
1453 list_add(&p->derived.entry, &hmac_algs);
1454 err = crypto_register_ahash(ahash);
1456 pr_err("%s alg registration failed\n", base->cra_name);
1457 list_del(&p->derived.entry);
1460 pr_info("%s alg registered\n", base->cra_name);
1465 static int __devinit __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1467 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1468 struct hash_alg_common *halg;
1469 struct crypto_alg *base;
1470 struct ahash_alg *ahash;
1476 p->hash_zero = tmpl->hash_zero;
1477 p->hash_init = tmpl->hash_init;
1478 p->auth_type = tmpl->auth_type;
1479 p->hmac_type = tmpl->hmac_type;
1480 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1481 p->digest_size = tmpl->digest_size;
1484 ahash->init = n2_hash_async_init;
1485 ahash->update = n2_hash_async_update;
1486 ahash->final = n2_hash_async_final;
1487 ahash->finup = n2_hash_async_finup;
1488 ahash->digest = n2_hash_async_digest;
1490 halg = &ahash->halg;
1491 halg->digestsize = tmpl->digest_size;
1494 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1495 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1496 base->cra_priority = N2_CRA_PRIORITY;
1497 base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1498 CRYPTO_ALG_KERN_DRIVER_ONLY |
1499 CRYPTO_ALG_NEED_FALLBACK;
1500 base->cra_blocksize = tmpl->block_size;
1501 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1502 base->cra_module = THIS_MODULE;
1503 base->cra_init = n2_hash_cra_init;
1504 base->cra_exit = n2_hash_cra_exit;
1506 list_add(&p->entry, &ahash_algs);
1507 err = crypto_register_ahash(ahash);
1509 pr_err("%s alg registration failed\n", base->cra_name);
1510 list_del(&p->entry);
1513 pr_info("%s alg registered\n", base->cra_name);
1515 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1516 err = __n2_register_one_hmac(p);
1520 static int __devinit n2_register_algs(void)
1524 mutex_lock(&spu_lock);
1525 if (algs_registered++)
1528 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1529 err = __n2_register_one_ahash(&hash_tmpls[i]);
1531 __n2_unregister_algs();
1535 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1536 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1538 __n2_unregister_algs();
1544 mutex_unlock(&spu_lock);
1548 static void __devexit n2_unregister_algs(void)
1550 mutex_lock(&spu_lock);
1551 if (!--algs_registered)
1552 __n2_unregister_algs();
1553 mutex_unlock(&spu_lock);
1556 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1557 * a devino. This isn't very useful to us because all of the
1558 * interrupts listed in the device_node have been translated to
1559 * Linux virtual IRQ cookie numbers.
1561 * So we have to back-translate, going through the 'intr' and 'ino'
1562 * property tables of the n2cp MDESC node, matching it with the OF
1563 * 'interrupts' property entries, in order to to figure out which
1564 * devino goes to which already-translated IRQ.
1566 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1567 unsigned long dev_ino)
1569 const unsigned int *dev_intrs;
1573 for (i = 0; i < ip->num_intrs; i++) {
1574 if (ip->ino_table[i].ino == dev_ino)
1577 if (i == ip->num_intrs)
1580 intr = ip->ino_table[i].intr;
1582 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1586 for (i = 0; i < dev->archdata.num_irqs; i++) {
1587 if (dev_intrs[i] == intr)
1594 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1595 const char *irq_name, struct spu_queue *p,
1596 irq_handler_t handler)
1601 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1605 index = find_devino_index(dev, ip, p->devino);
1609 p->irq = dev->archdata.irqs[index];
1611 sprintf(p->irq_name, "%s-%d", irq_name, index);
1613 return request_irq(p->irq, handler, IRQF_SAMPLE_RANDOM,
1617 static struct kmem_cache *queue_cache[2];
1619 static void *new_queue(unsigned long q_type)
1621 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1624 static void free_queue(void *p, unsigned long q_type)
1626 return kmem_cache_free(queue_cache[q_type - 1], p);
1629 static int queue_cache_init(void)
1631 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1632 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1633 kmem_cache_create("mau_queue",
1636 MAU_ENTRY_SIZE, 0, NULL);
1637 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1640 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1641 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1642 kmem_cache_create("cwq_queue",
1645 CWQ_ENTRY_SIZE, 0, NULL);
1646 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1647 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1653 static void queue_cache_destroy(void)
1655 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1656 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1659 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1661 cpumask_var_t old_allowed;
1662 unsigned long hv_ret;
1664 if (cpumask_empty(&p->sharing))
1667 if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
1670 cpumask_copy(old_allowed, ¤t->cpus_allowed);
1672 set_cpus_allowed_ptr(current, &p->sharing);
1674 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1675 CWQ_NUM_ENTRIES, &p->qhandle);
1677 sun4v_ncs_sethead_marker(p->qhandle, 0);
1679 set_cpus_allowed_ptr(current, old_allowed);
1681 free_cpumask_var(old_allowed);
1683 return (hv_ret ? -EINVAL : 0);
1686 static int spu_queue_setup(struct spu_queue *p)
1690 p->q = new_queue(p->q_type);
1694 err = spu_queue_register(p, p->q_type);
1696 free_queue(p->q, p->q_type);
1703 static void spu_queue_destroy(struct spu_queue *p)
1705 unsigned long hv_ret;
1710 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1713 free_queue(p->q, p->q_type);
1716 static void spu_list_destroy(struct list_head *list)
1718 struct spu_queue *p, *n;
1720 list_for_each_entry_safe(p, n, list, list) {
1723 for (i = 0; i < NR_CPUS; i++) {
1724 if (cpu_to_cwq[i] == p)
1725 cpu_to_cwq[i] = NULL;
1729 free_irq(p->irq, p);
1732 spu_queue_destroy(p);
1738 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1739 * gathering cpu membership information.
1741 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1742 struct platform_device *dev,
1743 u64 node, struct spu_queue *p,
1744 struct spu_queue **table)
1748 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1749 u64 tgt = mdesc_arc_target(mdesc, arc);
1750 const char *name = mdesc_node_name(mdesc, tgt);
1753 if (strcmp(name, "cpu"))
1755 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1756 if (table[*id] != NULL) {
1757 dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
1758 dev->dev.of_node->full_name);
1761 cpu_set(*id, p->sharing);
1767 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1768 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1769 struct platform_device *dev, struct mdesc_handle *mdesc,
1770 u64 node, const char *iname, unsigned long q_type,
1771 irq_handler_t handler, struct spu_queue **table)
1773 struct spu_queue *p;
1776 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1778 dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
1779 dev->dev.of_node->full_name);
1783 cpus_clear(p->sharing);
1784 spin_lock_init(&p->lock);
1786 INIT_LIST_HEAD(&p->jobs);
1787 list_add(&p->list, list);
1789 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1793 err = spu_queue_setup(p);
1797 return spu_map_ino(dev, ip, iname, p, handler);
1800 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1801 struct spu_mdesc_info *ip, struct list_head *list,
1802 const char *exec_name, unsigned long q_type,
1803 irq_handler_t handler, struct spu_queue **table)
1808 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1811 type = mdesc_get_property(mdesc, node, "type", NULL);
1812 if (!type || strcmp(type, exec_name))
1815 err = handle_exec_unit(ip, list, dev, mdesc, node,
1816 exec_name, q_type, handler, table);
1818 spu_list_destroy(list);
1826 static int __devinit get_irq_props(struct mdesc_handle *mdesc, u64 node,
1827 struct spu_mdesc_info *ip)
1833 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1835 printk("NO 'ino'\n");
1839 ip->num_intrs = ino_len / sizeof(u64);
1840 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1846 for (i = 0; i < ip->num_intrs; i++) {
1847 struct ino_blob *b = &ip->ino_table[i];
1855 static int __devinit grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1856 struct platform_device *dev,
1857 struct spu_mdesc_info *ip,
1858 const char *node_name)
1860 const unsigned int *reg;
1863 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1867 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1871 name = mdesc_get_property(mdesc, node, "name", NULL);
1872 if (!name || strcmp(name, node_name))
1874 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1875 if (!chdl || (*chdl != *reg))
1877 ip->cfg_handle = *chdl;
1878 return get_irq_props(mdesc, node, ip);
1884 static unsigned long n2_spu_hvapi_major;
1885 static unsigned long n2_spu_hvapi_minor;
1887 static int __devinit n2_spu_hvapi_register(void)
1891 n2_spu_hvapi_major = 2;
1892 n2_spu_hvapi_minor = 0;
1894 err = sun4v_hvapi_register(HV_GRP_NCS,
1896 &n2_spu_hvapi_minor);
1899 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1901 n2_spu_hvapi_minor);
1906 static void n2_spu_hvapi_unregister(void)
1908 sun4v_hvapi_unregister(HV_GRP_NCS);
1911 static int global_ref;
1913 static int __devinit grab_global_resources(void)
1917 mutex_lock(&spu_lock);
1922 err = n2_spu_hvapi_register();
1926 err = queue_cache_init();
1928 goto out_hvapi_release;
1931 cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1934 goto out_queue_cache_destroy;
1936 cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1939 goto out_free_cwq_table;
1946 mutex_unlock(&spu_lock);
1953 out_queue_cache_destroy:
1954 queue_cache_destroy();
1957 n2_spu_hvapi_unregister();
1961 static void release_global_resources(void)
1963 mutex_lock(&spu_lock);
1964 if (!--global_ref) {
1971 queue_cache_destroy();
1972 n2_spu_hvapi_unregister();
1974 mutex_unlock(&spu_lock);
1977 static struct n2_crypto * __devinit alloc_n2cp(void)
1979 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1982 INIT_LIST_HEAD(&np->cwq_list);
1987 static void free_n2cp(struct n2_crypto *np)
1989 if (np->cwq_info.ino_table) {
1990 kfree(np->cwq_info.ino_table);
1991 np->cwq_info.ino_table = NULL;
1997 static void __devinit n2_spu_driver_version(void)
1999 static int n2_spu_version_printed;
2001 if (n2_spu_version_printed++ == 0)
2002 pr_info("%s", version);
2005 static int __devinit n2_crypto_probe(struct platform_device *dev)
2007 struct mdesc_handle *mdesc;
2008 const char *full_name;
2009 struct n2_crypto *np;
2012 n2_spu_driver_version();
2014 full_name = dev->dev.of_node->full_name;
2015 pr_info("Found N2CP at %s\n", full_name);
2019 dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
2024 err = grab_global_resources();
2026 dev_err(&dev->dev, "%s: Unable to grab "
2027 "global resources.\n", full_name);
2031 mdesc = mdesc_grab();
2034 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2037 goto out_free_global;
2039 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2041 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2043 mdesc_release(mdesc);
2044 goto out_free_global;
2047 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2048 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2050 mdesc_release(mdesc);
2053 dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
2055 goto out_free_global;
2058 err = n2_register_algs();
2060 dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
2062 goto out_free_spu_list;
2065 dev_set_drvdata(&dev->dev, np);
2070 spu_list_destroy(&np->cwq_list);
2073 release_global_resources();
2081 static int __devexit n2_crypto_remove(struct platform_device *dev)
2083 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2085 n2_unregister_algs();
2087 spu_list_destroy(&np->cwq_list);
2089 release_global_resources();
2096 static struct n2_mau * __devinit alloc_ncp(void)
2098 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2101 INIT_LIST_HEAD(&mp->mau_list);
2106 static void free_ncp(struct n2_mau *mp)
2108 if (mp->mau_info.ino_table) {
2109 kfree(mp->mau_info.ino_table);
2110 mp->mau_info.ino_table = NULL;
2116 static int __devinit n2_mau_probe(struct platform_device *dev)
2118 struct mdesc_handle *mdesc;
2119 const char *full_name;
2123 n2_spu_driver_version();
2125 full_name = dev->dev.of_node->full_name;
2126 pr_info("Found NCP at %s\n", full_name);
2130 dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
2135 err = grab_global_resources();
2137 dev_err(&dev->dev, "%s: Unable to grab "
2138 "global resources.\n", full_name);
2142 mdesc = mdesc_grab();
2145 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2148 goto out_free_global;
2151 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2153 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2155 mdesc_release(mdesc);
2156 goto out_free_global;
2159 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2160 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2162 mdesc_release(mdesc);
2165 dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
2167 goto out_free_global;
2170 dev_set_drvdata(&dev->dev, mp);
2175 release_global_resources();
2183 static int __devexit n2_mau_remove(struct platform_device *dev)
2185 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2187 spu_list_destroy(&mp->mau_list);
2189 release_global_resources();
2196 static struct of_device_id n2_crypto_match[] = {
2199 .compatible = "SUNW,n2-cwq",
2203 .compatible = "SUNW,vf-cwq",
2207 .compatible = "SUNW,kt-cwq",
2212 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2214 static struct platform_driver n2_crypto_driver = {
2217 .owner = THIS_MODULE,
2218 .of_match_table = n2_crypto_match,
2220 .probe = n2_crypto_probe,
2221 .remove = __devexit_p(n2_crypto_remove),
2224 static struct of_device_id n2_mau_match[] = {
2227 .compatible = "SUNW,n2-mau",
2231 .compatible = "SUNW,vf-mau",
2235 .compatible = "SUNW,kt-mau",
2240 MODULE_DEVICE_TABLE(of, n2_mau_match);
2242 static struct platform_driver n2_mau_driver = {
2245 .owner = THIS_MODULE,
2246 .of_match_table = n2_mau_match,
2248 .probe = n2_mau_probe,
2249 .remove = __devexit_p(n2_mau_remove),
2252 static int __init n2_init(void)
2254 int err = platform_driver_register(&n2_crypto_driver);
2257 err = platform_driver_register(&n2_mau_driver);
2259 platform_driver_unregister(&n2_crypto_driver);
2264 static void __exit n2_exit(void)
2266 platform_driver_unregister(&n2_mau_driver);
2267 platform_driver_unregister(&n2_crypto_driver);
2270 module_init(n2_init);
2271 module_exit(n2_exit);