crypto: mv_cesa - initialise the interrupt status field to zero
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / crypto / mv_cesa.c
1 /*
2  * Support for Marvell's crypto engine which can be found on some Orion5X
3  * boards.
4  *
5  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6  * License: GPLv2
7  *
8  */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/clk.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22
23 #include "mv_cesa.h"
24
25 #define MV_CESA "MV-CESA:"
26 #define MAX_HW_HASH_SIZE        0xFFFF
27 #define MV_CESA_EXPIRE          500 /* msec */
28
29 /*
30  * STM:
31  *   /---------------------------------------\
32  *   |                                       | request complete
33  *  \./                                      |
34  * IDLE -> new request -> BUSY -> done -> DEQUEUE
35  *                         /°\               |
36  *                          |                | more scatter entries
37  *                          \________________/
38  */
39 enum engine_status {
40         ENGINE_IDLE,
41         ENGINE_BUSY,
42         ENGINE_W_DEQUEUE,
43 };
44
45 /**
46  * struct req_progress - used for every crypt request
47  * @src_sg_it:          sg iterator for src
48  * @dst_sg_it:          sg iterator for dst
49  * @sg_src_left:        bytes left in src to process (scatter list)
50  * @src_start:          offset to add to src start position (scatter list)
51  * @crypt_len:          length of current hw crypt/hash process
52  * @hw_nbytes:          total bytes to process in hw for this request
53  * @copy_back:          whether to copy data back (crypt) or not (hash)
54  * @sg_dst_left:        bytes left dst to process in this scatter list
55  * @dst_start:          offset to add to dst start position (scatter list)
56  * @hw_processed_bytes: number of bytes processed by hw (request).
57  *
58  * sg helper are used to iterate over the scatterlist. Since the size of the
59  * SRAM may be less than the scatter size, this struct struct is used to keep
60  * track of progress within current scatterlist.
61  */
62 struct req_progress {
63         struct sg_mapping_iter src_sg_it;
64         struct sg_mapping_iter dst_sg_it;
65         void (*complete) (void);
66         void (*process) (int is_first);
67
68         /* src mostly */
69         int sg_src_left;
70         int src_start;
71         int crypt_len;
72         int hw_nbytes;
73         /* dst mostly */
74         int copy_back;
75         int sg_dst_left;
76         int dst_start;
77         int hw_processed_bytes;
78 };
79
80 struct crypto_priv {
81         void __iomem *reg;
82         void __iomem *sram;
83         int irq;
84         struct clk *clk;
85         struct task_struct *queue_th;
86
87         /* the lock protects queue and eng_st */
88         spinlock_t lock;
89         struct crypto_queue queue;
90         enum engine_status eng_st;
91         struct timer_list completion_timer;
92         struct crypto_async_request *cur_req;
93         struct req_progress p;
94         int max_req_size;
95         int sram_size;
96         int has_sha1;
97         int has_hmac_sha1;
98 };
99
100 static struct crypto_priv *cpg;
101
102 struct mv_ctx {
103         u8 aes_enc_key[AES_KEY_LEN];
104         u32 aes_dec_key[8];
105         int key_len;
106         u32 need_calc_aes_dkey;
107 };
108
109 enum crypto_op {
110         COP_AES_ECB,
111         COP_AES_CBC,
112 };
113
114 struct mv_req_ctx {
115         enum crypto_op op;
116         int decrypt;
117 };
118
119 enum hash_op {
120         COP_SHA1,
121         COP_HMAC_SHA1
122 };
123
124 struct mv_tfm_hash_ctx {
125         struct crypto_shash *fallback;
126         struct crypto_shash *base_hash;
127         u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
128         int count_add;
129         enum hash_op op;
130 };
131
132 struct mv_req_hash_ctx {
133         u64 count;
134         u32 state[SHA1_DIGEST_SIZE / 4];
135         u8 buffer[SHA1_BLOCK_SIZE];
136         int first_hash;         /* marks that we don't have previous state */
137         int last_chunk;         /* marks that this is the 'final' request */
138         int extra_bytes;        /* unprocessed bytes in buffer */
139         enum hash_op op;
140         int count_add;
141 };
142
143 static void mv_completion_timer_callback(unsigned long unused)
144 {
145         int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
146
147         printk(KERN_ERR MV_CESA
148                "completion timer expired (CESA %sactive), cleaning up.\n",
149                active ? "" : "in");
150
151         del_timer(&cpg->completion_timer);
152         writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
153         while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
154                 printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
155         cpg->eng_st = ENGINE_W_DEQUEUE;
156         wake_up_process(cpg->queue_th);
157 }
158
159 static void mv_setup_timer(void)
160 {
161         setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
162         mod_timer(&cpg->completion_timer,
163                         jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
164 }
165
166 static void compute_aes_dec_key(struct mv_ctx *ctx)
167 {
168         struct crypto_aes_ctx gen_aes_key;
169         int key_pos;
170
171         if (!ctx->need_calc_aes_dkey)
172                 return;
173
174         crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
175
176         key_pos = ctx->key_len + 24;
177         memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
178         switch (ctx->key_len) {
179         case AES_KEYSIZE_256:
180                 key_pos -= 2;
181                 /* fall */
182         case AES_KEYSIZE_192:
183                 key_pos -= 2;
184                 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
185                                 4 * 4);
186                 break;
187         }
188         ctx->need_calc_aes_dkey = 0;
189 }
190
191 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
192                 unsigned int len)
193 {
194         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
195         struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
196
197         switch (len) {
198         case AES_KEYSIZE_128:
199         case AES_KEYSIZE_192:
200         case AES_KEYSIZE_256:
201                 break;
202         default:
203                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
204                 return -EINVAL;
205         }
206         ctx->key_len = len;
207         ctx->need_calc_aes_dkey = 1;
208
209         memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
210         return 0;
211 }
212
213 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
214 {
215         int ret;
216         void *sbuf;
217         int copy_len;
218
219         while (len) {
220                 if (!p->sg_src_left) {
221                         ret = sg_miter_next(&p->src_sg_it);
222                         BUG_ON(!ret);
223                         p->sg_src_left = p->src_sg_it.length;
224                         p->src_start = 0;
225                 }
226
227                 sbuf = p->src_sg_it.addr + p->src_start;
228
229                 copy_len = min(p->sg_src_left, len);
230                 memcpy(dbuf, sbuf, copy_len);
231
232                 p->src_start += copy_len;
233                 p->sg_src_left -= copy_len;
234
235                 len -= copy_len;
236                 dbuf += copy_len;
237         }
238 }
239
240 static void setup_data_in(void)
241 {
242         struct req_progress *p = &cpg->p;
243         int data_in_sram =
244             min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
245         copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
246                         data_in_sram - p->crypt_len);
247         p->crypt_len = data_in_sram;
248 }
249
250 static void mv_process_current_q(int first_block)
251 {
252         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
253         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
254         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
255         struct sec_accel_config op;
256
257         switch (req_ctx->op) {
258         case COP_AES_ECB:
259                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
260                 break;
261         case COP_AES_CBC:
262         default:
263                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
264                 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
265                         ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
266                 if (first_block)
267                         memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
268                 break;
269         }
270         if (req_ctx->decrypt) {
271                 op.config |= CFG_DIR_DEC;
272                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
273                                 AES_KEY_LEN);
274         } else {
275                 op.config |= CFG_DIR_ENC;
276                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
277                                 AES_KEY_LEN);
278         }
279
280         switch (ctx->key_len) {
281         case AES_KEYSIZE_128:
282                 op.config |= CFG_AES_LEN_128;
283                 break;
284         case AES_KEYSIZE_192:
285                 op.config |= CFG_AES_LEN_192;
286                 break;
287         case AES_KEYSIZE_256:
288                 op.config |= CFG_AES_LEN_256;
289                 break;
290         }
291         op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
292                 ENC_P_DST(SRAM_DATA_OUT_START);
293         op.enc_key_p = SRAM_DATA_KEY_P;
294
295         setup_data_in();
296         op.enc_len = cpg->p.crypt_len;
297         memcpy(cpg->sram + SRAM_CONFIG, &op,
298                         sizeof(struct sec_accel_config));
299
300         /* GO */
301         mv_setup_timer();
302         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
303 }
304
305 static void mv_crypto_algo_completion(void)
306 {
307         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
308         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
309
310         sg_miter_stop(&cpg->p.src_sg_it);
311         sg_miter_stop(&cpg->p.dst_sg_it);
312
313         if (req_ctx->op != COP_AES_CBC)
314                 return ;
315
316         memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
317 }
318
319 static void mv_process_hash_current(int first_block)
320 {
321         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
322         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
323         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
324         struct req_progress *p = &cpg->p;
325         struct sec_accel_config op = { 0 };
326         int is_last;
327
328         switch (req_ctx->op) {
329         case COP_SHA1:
330         default:
331                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
332                 break;
333         case COP_HMAC_SHA1:
334                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
335                 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
336                                 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
337                 break;
338         }
339
340         op.mac_src_p =
341                 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
342                 req_ctx->
343                 count);
344
345         setup_data_in();
346
347         op.mac_digest =
348                 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
349         op.mac_iv =
350                 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
351                 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
352
353         is_last = req_ctx->last_chunk
354                 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
355                 && (req_ctx->count <= MAX_HW_HASH_SIZE);
356         if (req_ctx->first_hash) {
357                 if (is_last)
358                         op.config |= CFG_NOT_FRAG;
359                 else
360                         op.config |= CFG_FIRST_FRAG;
361
362                 req_ctx->first_hash = 0;
363         } else {
364                 if (is_last)
365                         op.config |= CFG_LAST_FRAG;
366                 else
367                         op.config |= CFG_MID_FRAG;
368
369                 if (first_block) {
370                         writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
371                         writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
372                         writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
373                         writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
374                         writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
375                 }
376         }
377
378         memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
379
380         /* GO */
381         mv_setup_timer();
382         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
383 }
384
385 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
386                                           struct shash_desc *desc)
387 {
388         int i;
389         struct sha1_state shash_state;
390
391         shash_state.count = ctx->count + ctx->count_add;
392         for (i = 0; i < 5; i++)
393                 shash_state.state[i] = ctx->state[i];
394         memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
395         return crypto_shash_import(desc, &shash_state);
396 }
397
398 static int mv_hash_final_fallback(struct ahash_request *req)
399 {
400         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
401         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
402         struct {
403                 struct shash_desc shash;
404                 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
405         } desc;
406         int rc;
407
408         desc.shash.tfm = tfm_ctx->fallback;
409         desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
410         if (unlikely(req_ctx->first_hash)) {
411                 crypto_shash_init(&desc.shash);
412                 crypto_shash_update(&desc.shash, req_ctx->buffer,
413                                     req_ctx->extra_bytes);
414         } else {
415                 /* only SHA1 for now....
416                  */
417                 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
418                 if (rc)
419                         goto out;
420         }
421         rc = crypto_shash_final(&desc.shash, req->result);
422 out:
423         return rc;
424 }
425
426 static void mv_hash_algo_completion(void)
427 {
428         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
429         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
430
431         if (ctx->extra_bytes)
432                 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
433         sg_miter_stop(&cpg->p.src_sg_it);
434
435         if (likely(ctx->last_chunk)) {
436                 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
437                         memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
438                                crypto_ahash_digestsize(crypto_ahash_reqtfm
439                                                        (req)));
440                 } else
441                         mv_hash_final_fallback(req);
442         } else {
443                 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
444                 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
445                 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
446                 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
447                 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
448         }
449 }
450
451 static void dequeue_complete_req(void)
452 {
453         struct crypto_async_request *req = cpg->cur_req;
454         void *buf;
455         int ret;
456         cpg->p.hw_processed_bytes += cpg->p.crypt_len;
457         if (cpg->p.copy_back) {
458                 int need_copy_len = cpg->p.crypt_len;
459                 int sram_offset = 0;
460                 do {
461                         int dst_copy;
462
463                         if (!cpg->p.sg_dst_left) {
464                                 ret = sg_miter_next(&cpg->p.dst_sg_it);
465                                 BUG_ON(!ret);
466                                 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
467                                 cpg->p.dst_start = 0;
468                         }
469
470                         buf = cpg->p.dst_sg_it.addr;
471                         buf += cpg->p.dst_start;
472
473                         dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
474
475                         memcpy(buf,
476                                cpg->sram + SRAM_DATA_OUT_START + sram_offset,
477                                dst_copy);
478                         sram_offset += dst_copy;
479                         cpg->p.sg_dst_left -= dst_copy;
480                         need_copy_len -= dst_copy;
481                         cpg->p.dst_start += dst_copy;
482                 } while (need_copy_len > 0);
483         }
484
485         cpg->p.crypt_len = 0;
486
487         BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
488         if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
489                 /* process next scatter list entry */
490                 cpg->eng_st = ENGINE_BUSY;
491                 cpg->p.process(0);
492         } else {
493                 cpg->p.complete();
494                 cpg->eng_st = ENGINE_IDLE;
495                 local_bh_disable();
496                 req->complete(req, 0);
497                 local_bh_enable();
498         }
499 }
500
501 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
502 {
503         int i = 0;
504         size_t cur_len;
505
506         while (sl) {
507                 cur_len = sl[i].length;
508                 ++i;
509                 if (total_bytes > cur_len)
510                         total_bytes -= cur_len;
511                 else
512                         break;
513         }
514
515         return i;
516 }
517
518 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
519 {
520         struct req_progress *p = &cpg->p;
521         int num_sgs;
522
523         cpg->cur_req = &req->base;
524         memset(p, 0, sizeof(struct req_progress));
525         p->hw_nbytes = req->nbytes;
526         p->complete = mv_crypto_algo_completion;
527         p->process = mv_process_current_q;
528         p->copy_back = 1;
529
530         num_sgs = count_sgs(req->src, req->nbytes);
531         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
532
533         num_sgs = count_sgs(req->dst, req->nbytes);
534         sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
535
536         mv_process_current_q(1);
537 }
538
539 static void mv_start_new_hash_req(struct ahash_request *req)
540 {
541         struct req_progress *p = &cpg->p;
542         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
543         int num_sgs, hw_bytes, old_extra_bytes, rc;
544         cpg->cur_req = &req->base;
545         memset(p, 0, sizeof(struct req_progress));
546         hw_bytes = req->nbytes + ctx->extra_bytes;
547         old_extra_bytes = ctx->extra_bytes;
548
549         ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
550         if (ctx->extra_bytes != 0
551             && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
552                 hw_bytes -= ctx->extra_bytes;
553         else
554                 ctx->extra_bytes = 0;
555
556         num_sgs = count_sgs(req->src, req->nbytes);
557         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
558
559         if (hw_bytes) {
560                 p->hw_nbytes = hw_bytes;
561                 p->complete = mv_hash_algo_completion;
562                 p->process = mv_process_hash_current;
563
564                 if (unlikely(old_extra_bytes)) {
565                         memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
566                                old_extra_bytes);
567                         p->crypt_len = old_extra_bytes;
568                 }
569
570                 mv_process_hash_current(1);
571         } else {
572                 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
573                                 ctx->extra_bytes - old_extra_bytes);
574                 sg_miter_stop(&p->src_sg_it);
575                 if (ctx->last_chunk)
576                         rc = mv_hash_final_fallback(req);
577                 else
578                         rc = 0;
579                 cpg->eng_st = ENGINE_IDLE;
580                 local_bh_disable();
581                 req->base.complete(&req->base, rc);
582                 local_bh_enable();
583         }
584 }
585
586 static int queue_manag(void *data)
587 {
588         cpg->eng_st = ENGINE_IDLE;
589         do {
590                 struct crypto_async_request *async_req = NULL;
591                 struct crypto_async_request *backlog;
592
593                 __set_current_state(TASK_INTERRUPTIBLE);
594
595                 if (cpg->eng_st == ENGINE_W_DEQUEUE)
596                         dequeue_complete_req();
597
598                 spin_lock_irq(&cpg->lock);
599                 if (cpg->eng_st == ENGINE_IDLE) {
600                         backlog = crypto_get_backlog(&cpg->queue);
601                         async_req = crypto_dequeue_request(&cpg->queue);
602                         if (async_req) {
603                                 BUG_ON(cpg->eng_st != ENGINE_IDLE);
604                                 cpg->eng_st = ENGINE_BUSY;
605                         }
606                 }
607                 spin_unlock_irq(&cpg->lock);
608
609                 if (backlog) {
610                         backlog->complete(backlog, -EINPROGRESS);
611                         backlog = NULL;
612                 }
613
614                 if (async_req) {
615                         if (async_req->tfm->__crt_alg->cra_type !=
616                             &crypto_ahash_type) {
617                                 struct ablkcipher_request *req =
618                                     ablkcipher_request_cast(async_req);
619                                 mv_start_new_crypt_req(req);
620                         } else {
621                                 struct ahash_request *req =
622                                     ahash_request_cast(async_req);
623                                 mv_start_new_hash_req(req);
624                         }
625                         async_req = NULL;
626                 }
627
628                 schedule();
629
630         } while (!kthread_should_stop());
631         return 0;
632 }
633
634 static int mv_handle_req(struct crypto_async_request *req)
635 {
636         unsigned long flags;
637         int ret;
638
639         spin_lock_irqsave(&cpg->lock, flags);
640         ret = crypto_enqueue_request(&cpg->queue, req);
641         spin_unlock_irqrestore(&cpg->lock, flags);
642         wake_up_process(cpg->queue_th);
643         return ret;
644 }
645
646 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
647 {
648         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
649
650         req_ctx->op = COP_AES_ECB;
651         req_ctx->decrypt = 0;
652
653         return mv_handle_req(&req->base);
654 }
655
656 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
657 {
658         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
659         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
660
661         req_ctx->op = COP_AES_ECB;
662         req_ctx->decrypt = 1;
663
664         compute_aes_dec_key(ctx);
665         return mv_handle_req(&req->base);
666 }
667
668 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
669 {
670         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
671
672         req_ctx->op = COP_AES_CBC;
673         req_ctx->decrypt = 0;
674
675         return mv_handle_req(&req->base);
676 }
677
678 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
679 {
680         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
681         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
682
683         req_ctx->op = COP_AES_CBC;
684         req_ctx->decrypt = 1;
685
686         compute_aes_dec_key(ctx);
687         return mv_handle_req(&req->base);
688 }
689
690 static int mv_cra_init(struct crypto_tfm *tfm)
691 {
692         tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
693         return 0;
694 }
695
696 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
697                                  int is_last, unsigned int req_len,
698                                  int count_add)
699 {
700         memset(ctx, 0, sizeof(*ctx));
701         ctx->op = op;
702         ctx->count = req_len;
703         ctx->first_hash = 1;
704         ctx->last_chunk = is_last;
705         ctx->count_add = count_add;
706 }
707
708 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
709                                    unsigned req_len)
710 {
711         ctx->last_chunk = is_last;
712         ctx->count += req_len;
713 }
714
715 static int mv_hash_init(struct ahash_request *req)
716 {
717         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
718         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
719                              tfm_ctx->count_add);
720         return 0;
721 }
722
723 static int mv_hash_update(struct ahash_request *req)
724 {
725         if (!req->nbytes)
726                 return 0;
727
728         mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
729         return mv_handle_req(&req->base);
730 }
731
732 static int mv_hash_final(struct ahash_request *req)
733 {
734         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
735
736         ahash_request_set_crypt(req, NULL, req->result, 0);
737         mv_update_hash_req_ctx(ctx, 1, 0);
738         return mv_handle_req(&req->base);
739 }
740
741 static int mv_hash_finup(struct ahash_request *req)
742 {
743         mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
744         return mv_handle_req(&req->base);
745 }
746
747 static int mv_hash_digest(struct ahash_request *req)
748 {
749         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
750         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
751                              req->nbytes, tfm_ctx->count_add);
752         return mv_handle_req(&req->base);
753 }
754
755 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
756                              const void *ostate)
757 {
758         const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
759         int i;
760         for (i = 0; i < 5; i++) {
761                 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
762                 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
763         }
764 }
765
766 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
767                           unsigned int keylen)
768 {
769         int rc;
770         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
771         int bs, ds, ss;
772
773         if (!ctx->base_hash)
774                 return 0;
775
776         rc = crypto_shash_setkey(ctx->fallback, key, keylen);
777         if (rc)
778                 return rc;
779
780         /* Can't see a way to extract the ipad/opad from the fallback tfm
781            so I'm basically copying code from the hmac module */
782         bs = crypto_shash_blocksize(ctx->base_hash);
783         ds = crypto_shash_digestsize(ctx->base_hash);
784         ss = crypto_shash_statesize(ctx->base_hash);
785
786         {
787                 struct {
788                         struct shash_desc shash;
789                         char ctx[crypto_shash_descsize(ctx->base_hash)];
790                 } desc;
791                 unsigned int i;
792                 char ipad[ss];
793                 char opad[ss];
794
795                 desc.shash.tfm = ctx->base_hash;
796                 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
797                     CRYPTO_TFM_REQ_MAY_SLEEP;
798
799                 if (keylen > bs) {
800                         int err;
801
802                         err =
803                             crypto_shash_digest(&desc.shash, key, keylen, ipad);
804                         if (err)
805                                 return err;
806
807                         keylen = ds;
808                 } else
809                         memcpy(ipad, key, keylen);
810
811                 memset(ipad + keylen, 0, bs - keylen);
812                 memcpy(opad, ipad, bs);
813
814                 for (i = 0; i < bs; i++) {
815                         ipad[i] ^= 0x36;
816                         opad[i] ^= 0x5c;
817                 }
818
819                 rc = crypto_shash_init(&desc.shash) ? :
820                     crypto_shash_update(&desc.shash, ipad, bs) ? :
821                     crypto_shash_export(&desc.shash, ipad) ? :
822                     crypto_shash_init(&desc.shash) ? :
823                     crypto_shash_update(&desc.shash, opad, bs) ? :
824                     crypto_shash_export(&desc.shash, opad);
825
826                 if (rc == 0)
827                         mv_hash_init_ivs(ctx, ipad, opad);
828
829                 return rc;
830         }
831 }
832
833 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
834                             enum hash_op op, int count_add)
835 {
836         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
837         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
838         struct crypto_shash *fallback_tfm = NULL;
839         struct crypto_shash *base_hash = NULL;
840         int err = -ENOMEM;
841
842         ctx->op = op;
843         ctx->count_add = count_add;
844
845         /* Allocate a fallback and abort if it failed. */
846         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
847                                           CRYPTO_ALG_NEED_FALLBACK);
848         if (IS_ERR(fallback_tfm)) {
849                 printk(KERN_WARNING MV_CESA
850                        "Fallback driver '%s' could not be loaded!\n",
851                        fallback_driver_name);
852                 err = PTR_ERR(fallback_tfm);
853                 goto out;
854         }
855         ctx->fallback = fallback_tfm;
856
857         if (base_hash_name) {
858                 /* Allocate a hash to compute the ipad/opad of hmac. */
859                 base_hash = crypto_alloc_shash(base_hash_name, 0,
860                                                CRYPTO_ALG_NEED_FALLBACK);
861                 if (IS_ERR(base_hash)) {
862                         printk(KERN_WARNING MV_CESA
863                                "Base driver '%s' could not be loaded!\n",
864                                base_hash_name);
865                         err = PTR_ERR(base_hash);
866                         goto err_bad_base;
867                 }
868         }
869         ctx->base_hash = base_hash;
870
871         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
872                                  sizeof(struct mv_req_hash_ctx) +
873                                  crypto_shash_descsize(ctx->fallback));
874         return 0;
875 err_bad_base:
876         crypto_free_shash(fallback_tfm);
877 out:
878         return err;
879 }
880
881 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
882 {
883         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
884
885         crypto_free_shash(ctx->fallback);
886         if (ctx->base_hash)
887                 crypto_free_shash(ctx->base_hash);
888 }
889
890 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
891 {
892         return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
893 }
894
895 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
896 {
897         return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
898 }
899
900 irqreturn_t crypto_int(int irq, void *priv)
901 {
902         u32 val;
903
904         val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
905         if (!(val & SEC_INT_ACCEL0_DONE))
906                 return IRQ_NONE;
907
908         if (!del_timer(&cpg->completion_timer)) {
909                 printk(KERN_WARNING MV_CESA
910                        "got an interrupt but no pending timer?\n");
911         }
912         val &= ~SEC_INT_ACCEL0_DONE;
913         writel(val, cpg->reg + FPGA_INT_STATUS);
914         writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
915         BUG_ON(cpg->eng_st != ENGINE_BUSY);
916         cpg->eng_st = ENGINE_W_DEQUEUE;
917         wake_up_process(cpg->queue_th);
918         return IRQ_HANDLED;
919 }
920
921 struct crypto_alg mv_aes_alg_ecb = {
922         .cra_name               = "ecb(aes)",
923         .cra_driver_name        = "mv-ecb-aes",
924         .cra_priority   = 300,
925         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
926                           CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
927         .cra_blocksize  = 16,
928         .cra_ctxsize    = sizeof(struct mv_ctx),
929         .cra_alignmask  = 0,
930         .cra_type       = &crypto_ablkcipher_type,
931         .cra_module     = THIS_MODULE,
932         .cra_init       = mv_cra_init,
933         .cra_u          = {
934                 .ablkcipher = {
935                         .min_keysize    =       AES_MIN_KEY_SIZE,
936                         .max_keysize    =       AES_MAX_KEY_SIZE,
937                         .setkey         =       mv_setkey_aes,
938                         .encrypt        =       mv_enc_aes_ecb,
939                         .decrypt        =       mv_dec_aes_ecb,
940                 },
941         },
942 };
943
944 struct crypto_alg mv_aes_alg_cbc = {
945         .cra_name               = "cbc(aes)",
946         .cra_driver_name        = "mv-cbc-aes",
947         .cra_priority   = 300,
948         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
949                           CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
950         .cra_blocksize  = AES_BLOCK_SIZE,
951         .cra_ctxsize    = sizeof(struct mv_ctx),
952         .cra_alignmask  = 0,
953         .cra_type       = &crypto_ablkcipher_type,
954         .cra_module     = THIS_MODULE,
955         .cra_init       = mv_cra_init,
956         .cra_u          = {
957                 .ablkcipher = {
958                         .ivsize         =       AES_BLOCK_SIZE,
959                         .min_keysize    =       AES_MIN_KEY_SIZE,
960                         .max_keysize    =       AES_MAX_KEY_SIZE,
961                         .setkey         =       mv_setkey_aes,
962                         .encrypt        =       mv_enc_aes_cbc,
963                         .decrypt        =       mv_dec_aes_cbc,
964                 },
965         },
966 };
967
968 struct ahash_alg mv_sha1_alg = {
969         .init = mv_hash_init,
970         .update = mv_hash_update,
971         .final = mv_hash_final,
972         .finup = mv_hash_finup,
973         .digest = mv_hash_digest,
974         .halg = {
975                  .digestsize = SHA1_DIGEST_SIZE,
976                  .base = {
977                           .cra_name = "sha1",
978                           .cra_driver_name = "mv-sha1",
979                           .cra_priority = 300,
980                           .cra_flags =
981                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
982                           CRYPTO_ALG_NEED_FALLBACK,
983                           .cra_blocksize = SHA1_BLOCK_SIZE,
984                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
985                           .cra_init = mv_cra_hash_sha1_init,
986                           .cra_exit = mv_cra_hash_exit,
987                           .cra_module = THIS_MODULE,
988                           }
989                  }
990 };
991
992 struct ahash_alg mv_hmac_sha1_alg = {
993         .init = mv_hash_init,
994         .update = mv_hash_update,
995         .final = mv_hash_final,
996         .finup = mv_hash_finup,
997         .digest = mv_hash_digest,
998         .setkey = mv_hash_setkey,
999         .halg = {
1000                  .digestsize = SHA1_DIGEST_SIZE,
1001                  .base = {
1002                           .cra_name = "hmac(sha1)",
1003                           .cra_driver_name = "mv-hmac-sha1",
1004                           .cra_priority = 300,
1005                           .cra_flags =
1006                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1007                           CRYPTO_ALG_NEED_FALLBACK,
1008                           .cra_blocksize = SHA1_BLOCK_SIZE,
1009                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1010                           .cra_init = mv_cra_hash_hmac_sha1_init,
1011                           .cra_exit = mv_cra_hash_exit,
1012                           .cra_module = THIS_MODULE,
1013                           }
1014                  }
1015 };
1016
1017 static int mv_probe(struct platform_device *pdev)
1018 {
1019         struct crypto_priv *cp;
1020         struct resource *res;
1021         int irq;
1022         int ret;
1023
1024         if (cpg) {
1025                 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1026                 return -EEXIST;
1027         }
1028
1029         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1030         if (!res)
1031                 return -ENXIO;
1032
1033         cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1034         if (!cp)
1035                 return -ENOMEM;
1036
1037         spin_lock_init(&cp->lock);
1038         crypto_init_queue(&cp->queue, 50);
1039         cp->reg = ioremap(res->start, resource_size(res));
1040         if (!cp->reg) {
1041                 ret = -ENOMEM;
1042                 goto err;
1043         }
1044
1045         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1046         if (!res) {
1047                 ret = -ENXIO;
1048                 goto err_unmap_reg;
1049         }
1050         cp->sram_size = resource_size(res);
1051         cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1052         cp->sram = ioremap(res->start, cp->sram_size);
1053         if (!cp->sram) {
1054                 ret = -ENOMEM;
1055                 goto err_unmap_reg;
1056         }
1057
1058         irq = platform_get_irq(pdev, 0);
1059         if (irq < 0 || irq == NO_IRQ) {
1060                 ret = irq;
1061                 goto err_unmap_sram;
1062         }
1063         cp->irq = irq;
1064
1065         platform_set_drvdata(pdev, cp);
1066         cpg = cp;
1067
1068         cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1069         if (IS_ERR(cp->queue_th)) {
1070                 ret = PTR_ERR(cp->queue_th);
1071                 goto err_unmap_sram;
1072         }
1073
1074         ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1075                         cp);
1076         if (ret)
1077                 goto err_thread;
1078
1079         /* Not all platforms can gate the clock, so it is not
1080            an error if the clock does not exists. */
1081         cp->clk = clk_get(&pdev->dev, NULL);
1082         if (!IS_ERR(cp->clk))
1083                 clk_prepare_enable(cp->clk);
1084
1085         writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1086         writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1087         writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1088         writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1089
1090         ret = crypto_register_alg(&mv_aes_alg_ecb);
1091         if (ret) {
1092                 printk(KERN_WARNING MV_CESA
1093                        "Could not register aes-ecb driver\n");
1094                 goto err_irq;
1095         }
1096
1097         ret = crypto_register_alg(&mv_aes_alg_cbc);
1098         if (ret) {
1099                 printk(KERN_WARNING MV_CESA
1100                        "Could not register aes-cbc driver\n");
1101                 goto err_unreg_ecb;
1102         }
1103
1104         ret = crypto_register_ahash(&mv_sha1_alg);
1105         if (ret == 0)
1106                 cpg->has_sha1 = 1;
1107         else
1108                 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1109
1110         ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1111         if (ret == 0) {
1112                 cpg->has_hmac_sha1 = 1;
1113         } else {
1114                 printk(KERN_WARNING MV_CESA
1115                        "Could not register hmac-sha1 driver\n");
1116         }
1117
1118         return 0;
1119 err_unreg_ecb:
1120         crypto_unregister_alg(&mv_aes_alg_ecb);
1121 err_irq:
1122         free_irq(irq, cp);
1123 err_thread:
1124         kthread_stop(cp->queue_th);
1125 err_unmap_sram:
1126         iounmap(cp->sram);
1127 err_unmap_reg:
1128         iounmap(cp->reg);
1129 err:
1130         kfree(cp);
1131         cpg = NULL;
1132         platform_set_drvdata(pdev, NULL);
1133         return ret;
1134 }
1135
1136 static int mv_remove(struct platform_device *pdev)
1137 {
1138         struct crypto_priv *cp = platform_get_drvdata(pdev);
1139
1140         crypto_unregister_alg(&mv_aes_alg_ecb);
1141         crypto_unregister_alg(&mv_aes_alg_cbc);
1142         if (cp->has_sha1)
1143                 crypto_unregister_ahash(&mv_sha1_alg);
1144         if (cp->has_hmac_sha1)
1145                 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1146         kthread_stop(cp->queue_th);
1147         free_irq(cp->irq, cp);
1148         memset(cp->sram, 0, cp->sram_size);
1149         iounmap(cp->sram);
1150         iounmap(cp->reg);
1151
1152         if (!IS_ERR(cp->clk)) {
1153                 clk_disable_unprepare(cp->clk);
1154                 clk_put(cp->clk);
1155         }
1156
1157         kfree(cp);
1158         cpg = NULL;
1159         return 0;
1160 }
1161
1162 static struct platform_driver marvell_crypto = {
1163         .probe          = mv_probe,
1164         .remove         = mv_remove,
1165         .driver         = {
1166                 .owner  = THIS_MODULE,
1167                 .name   = "mv_crypto",
1168         },
1169 };
1170 MODULE_ALIAS("platform:mv_crypto");
1171
1172 module_platform_driver(marvell_crypto);
1173
1174 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1175 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1176 MODULE_LICENSE("GPL");