2 * Support for Marvell's crypto engine which can be found on some Orion5X
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/clk.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
23 #include <linux/of_platform.h>
24 #include <linux/of_irq.h>
28 #define MV_CESA "MV-CESA:"
29 #define MAX_HW_HASH_SIZE 0xFFFF
30 #define MV_CESA_EXPIRE 500 /* msec */
34 * /---------------------------------------\
35 * | | request complete
37 * IDLE -> new request -> BUSY -> done -> DEQUEUE
39 * | | more scatter entries
49 * struct req_progress - used for every crypt request
50 * @src_sg_it: sg iterator for src
51 * @dst_sg_it: sg iterator for dst
52 * @sg_src_left: bytes left in src to process (scatter list)
53 * @src_start: offset to add to src start position (scatter list)
54 * @crypt_len: length of current hw crypt/hash process
55 * @hw_nbytes: total bytes to process in hw for this request
56 * @copy_back: whether to copy data back (crypt) or not (hash)
57 * @sg_dst_left: bytes left dst to process in this scatter list
58 * @dst_start: offset to add to dst start position (scatter list)
59 * @hw_processed_bytes: number of bytes processed by hw (request).
61 * sg helper are used to iterate over the scatterlist. Since the size of the
62 * SRAM may be less than the scatter size, this struct struct is used to keep
63 * track of progress within current scatterlist.
66 struct sg_mapping_iter src_sg_it;
67 struct sg_mapping_iter dst_sg_it;
68 void (*complete) (void);
69 void (*process) (int is_first);
80 int hw_processed_bytes;
88 struct task_struct *queue_th;
90 /* the lock protects queue and eng_st */
92 struct crypto_queue queue;
93 enum engine_status eng_st;
94 struct timer_list completion_timer;
95 struct crypto_async_request *cur_req;
96 struct req_progress p;
103 static struct crypto_priv *cpg;
106 u8 aes_enc_key[AES_KEY_LEN];
109 u32 need_calc_aes_dkey;
127 struct mv_tfm_hash_ctx {
128 struct crypto_shash *fallback;
129 struct crypto_shash *base_hash;
130 u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
135 struct mv_req_hash_ctx {
137 u32 state[SHA1_DIGEST_SIZE / 4];
138 u8 buffer[SHA1_BLOCK_SIZE];
139 int first_hash; /* marks that we don't have previous state */
140 int last_chunk; /* marks that this is the 'final' request */
141 int extra_bytes; /* unprocessed bytes in buffer */
146 static void mv_completion_timer_callback(unsigned long unused)
148 int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
150 printk(KERN_ERR MV_CESA
151 "completion timer expired (CESA %sactive), cleaning up.\n",
154 del_timer(&cpg->completion_timer);
155 writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
156 while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
157 printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
158 cpg->eng_st = ENGINE_W_DEQUEUE;
159 wake_up_process(cpg->queue_th);
162 static void mv_setup_timer(void)
164 setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
165 mod_timer(&cpg->completion_timer,
166 jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
169 static void compute_aes_dec_key(struct mv_ctx *ctx)
171 struct crypto_aes_ctx gen_aes_key;
174 if (!ctx->need_calc_aes_dkey)
177 crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
179 key_pos = ctx->key_len + 24;
180 memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
181 switch (ctx->key_len) {
182 case AES_KEYSIZE_256:
185 case AES_KEYSIZE_192:
187 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
191 ctx->need_calc_aes_dkey = 0;
194 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
197 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
198 struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
201 case AES_KEYSIZE_128:
202 case AES_KEYSIZE_192:
203 case AES_KEYSIZE_256:
206 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
210 ctx->need_calc_aes_dkey = 1;
212 memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
216 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
223 if (!p->sg_src_left) {
224 ret = sg_miter_next(&p->src_sg_it);
226 p->sg_src_left = p->src_sg_it.length;
230 sbuf = p->src_sg_it.addr + p->src_start;
232 copy_len = min(p->sg_src_left, len);
233 memcpy(dbuf, sbuf, copy_len);
235 p->src_start += copy_len;
236 p->sg_src_left -= copy_len;
243 static void setup_data_in(void)
245 struct req_progress *p = &cpg->p;
247 min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
248 copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
249 data_in_sram - p->crypt_len);
250 p->crypt_len = data_in_sram;
253 static void mv_process_current_q(int first_block)
255 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
256 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
257 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
258 struct sec_accel_config op;
260 switch (req_ctx->op) {
262 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
266 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
267 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
268 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
270 memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
273 if (req_ctx->decrypt) {
274 op.config |= CFG_DIR_DEC;
275 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
278 op.config |= CFG_DIR_ENC;
279 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
283 switch (ctx->key_len) {
284 case AES_KEYSIZE_128:
285 op.config |= CFG_AES_LEN_128;
287 case AES_KEYSIZE_192:
288 op.config |= CFG_AES_LEN_192;
290 case AES_KEYSIZE_256:
291 op.config |= CFG_AES_LEN_256;
294 op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
295 ENC_P_DST(SRAM_DATA_OUT_START);
296 op.enc_key_p = SRAM_DATA_KEY_P;
299 op.enc_len = cpg->p.crypt_len;
300 memcpy(cpg->sram + SRAM_CONFIG, &op,
301 sizeof(struct sec_accel_config));
305 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
308 static void mv_crypto_algo_completion(void)
310 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
311 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
313 sg_miter_stop(&cpg->p.src_sg_it);
314 sg_miter_stop(&cpg->p.dst_sg_it);
316 if (req_ctx->op != COP_AES_CBC)
319 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
322 static void mv_process_hash_current(int first_block)
324 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
325 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
326 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
327 struct req_progress *p = &cpg->p;
328 struct sec_accel_config op = { 0 };
331 switch (req_ctx->op) {
334 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
337 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
338 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
339 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
344 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
351 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
353 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
354 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
356 is_last = req_ctx->last_chunk
357 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
358 && (req_ctx->count <= MAX_HW_HASH_SIZE);
359 if (req_ctx->first_hash) {
361 op.config |= CFG_NOT_FRAG;
363 op.config |= CFG_FIRST_FRAG;
365 req_ctx->first_hash = 0;
368 op.config |= CFG_LAST_FRAG;
370 op.config |= CFG_MID_FRAG;
373 writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
374 writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
375 writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
376 writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
377 writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
381 memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
385 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
388 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
389 struct shash_desc *desc)
392 struct sha1_state shash_state;
394 shash_state.count = ctx->count + ctx->count_add;
395 for (i = 0; i < 5; i++)
396 shash_state.state[i] = ctx->state[i];
397 memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
398 return crypto_shash_import(desc, &shash_state);
401 static int mv_hash_final_fallback(struct ahash_request *req)
403 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
404 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
406 struct shash_desc shash;
407 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
411 desc.shash.tfm = tfm_ctx->fallback;
412 desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
413 if (unlikely(req_ctx->first_hash)) {
414 crypto_shash_init(&desc.shash);
415 crypto_shash_update(&desc.shash, req_ctx->buffer,
416 req_ctx->extra_bytes);
418 /* only SHA1 for now....
420 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
424 rc = crypto_shash_final(&desc.shash, req->result);
429 static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
431 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
432 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
433 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
434 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
435 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
438 static void mv_hash_algo_completion(void)
440 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
441 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
443 if (ctx->extra_bytes)
444 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
445 sg_miter_stop(&cpg->p.src_sg_it);
447 if (likely(ctx->last_chunk)) {
448 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
449 memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
450 crypto_ahash_digestsize(crypto_ahash_reqtfm
453 mv_save_digest_state(ctx);
454 mv_hash_final_fallback(req);
457 mv_save_digest_state(ctx);
461 static void dequeue_complete_req(void)
463 struct crypto_async_request *req = cpg->cur_req;
466 cpg->p.hw_processed_bytes += cpg->p.crypt_len;
467 if (cpg->p.copy_back) {
468 int need_copy_len = cpg->p.crypt_len;
473 if (!cpg->p.sg_dst_left) {
474 ret = sg_miter_next(&cpg->p.dst_sg_it);
476 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
477 cpg->p.dst_start = 0;
480 buf = cpg->p.dst_sg_it.addr;
481 buf += cpg->p.dst_start;
483 dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
486 cpg->sram + SRAM_DATA_OUT_START + sram_offset,
488 sram_offset += dst_copy;
489 cpg->p.sg_dst_left -= dst_copy;
490 need_copy_len -= dst_copy;
491 cpg->p.dst_start += dst_copy;
492 } while (need_copy_len > 0);
495 cpg->p.crypt_len = 0;
497 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
498 if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
499 /* process next scatter list entry */
500 cpg->eng_st = ENGINE_BUSY;
504 cpg->eng_st = ENGINE_IDLE;
506 req->complete(req, 0);
511 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
517 cur_len = sl[i].length;
519 if (total_bytes > cur_len)
520 total_bytes -= cur_len;
528 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
530 struct req_progress *p = &cpg->p;
533 cpg->cur_req = &req->base;
534 memset(p, 0, sizeof(struct req_progress));
535 p->hw_nbytes = req->nbytes;
536 p->complete = mv_crypto_algo_completion;
537 p->process = mv_process_current_q;
540 num_sgs = count_sgs(req->src, req->nbytes);
541 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
543 num_sgs = count_sgs(req->dst, req->nbytes);
544 sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
546 mv_process_current_q(1);
549 static void mv_start_new_hash_req(struct ahash_request *req)
551 struct req_progress *p = &cpg->p;
552 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
553 int num_sgs, hw_bytes, old_extra_bytes, rc;
554 cpg->cur_req = &req->base;
555 memset(p, 0, sizeof(struct req_progress));
556 hw_bytes = req->nbytes + ctx->extra_bytes;
557 old_extra_bytes = ctx->extra_bytes;
559 ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
560 if (ctx->extra_bytes != 0
561 && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
562 hw_bytes -= ctx->extra_bytes;
564 ctx->extra_bytes = 0;
566 num_sgs = count_sgs(req->src, req->nbytes);
567 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
570 p->hw_nbytes = hw_bytes;
571 p->complete = mv_hash_algo_completion;
572 p->process = mv_process_hash_current;
574 if (unlikely(old_extra_bytes)) {
575 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
577 p->crypt_len = old_extra_bytes;
580 mv_process_hash_current(1);
582 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
583 ctx->extra_bytes - old_extra_bytes);
584 sg_miter_stop(&p->src_sg_it);
586 rc = mv_hash_final_fallback(req);
589 cpg->eng_st = ENGINE_IDLE;
591 req->base.complete(&req->base, rc);
596 static int queue_manag(void *data)
598 cpg->eng_st = ENGINE_IDLE;
600 struct crypto_async_request *async_req = NULL;
601 struct crypto_async_request *backlog;
603 __set_current_state(TASK_INTERRUPTIBLE);
605 if (cpg->eng_st == ENGINE_W_DEQUEUE)
606 dequeue_complete_req();
608 spin_lock_irq(&cpg->lock);
609 if (cpg->eng_st == ENGINE_IDLE) {
610 backlog = crypto_get_backlog(&cpg->queue);
611 async_req = crypto_dequeue_request(&cpg->queue);
613 BUG_ON(cpg->eng_st != ENGINE_IDLE);
614 cpg->eng_st = ENGINE_BUSY;
617 spin_unlock_irq(&cpg->lock);
620 backlog->complete(backlog, -EINPROGRESS);
625 if (async_req->tfm->__crt_alg->cra_type !=
626 &crypto_ahash_type) {
627 struct ablkcipher_request *req =
628 ablkcipher_request_cast(async_req);
629 mv_start_new_crypt_req(req);
631 struct ahash_request *req =
632 ahash_request_cast(async_req);
633 mv_start_new_hash_req(req);
640 } while (!kthread_should_stop());
644 static int mv_handle_req(struct crypto_async_request *req)
649 spin_lock_irqsave(&cpg->lock, flags);
650 ret = crypto_enqueue_request(&cpg->queue, req);
651 spin_unlock_irqrestore(&cpg->lock, flags);
652 wake_up_process(cpg->queue_th);
656 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
658 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
660 req_ctx->op = COP_AES_ECB;
661 req_ctx->decrypt = 0;
663 return mv_handle_req(&req->base);
666 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
668 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
669 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
671 req_ctx->op = COP_AES_ECB;
672 req_ctx->decrypt = 1;
674 compute_aes_dec_key(ctx);
675 return mv_handle_req(&req->base);
678 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
680 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
682 req_ctx->op = COP_AES_CBC;
683 req_ctx->decrypt = 0;
685 return mv_handle_req(&req->base);
688 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
690 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
691 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
693 req_ctx->op = COP_AES_CBC;
694 req_ctx->decrypt = 1;
696 compute_aes_dec_key(ctx);
697 return mv_handle_req(&req->base);
700 static int mv_cra_init(struct crypto_tfm *tfm)
702 tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
706 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
707 int is_last, unsigned int req_len,
710 memset(ctx, 0, sizeof(*ctx));
712 ctx->count = req_len;
714 ctx->last_chunk = is_last;
715 ctx->count_add = count_add;
718 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
721 ctx->last_chunk = is_last;
722 ctx->count += req_len;
725 static int mv_hash_init(struct ahash_request *req)
727 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
728 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
733 static int mv_hash_update(struct ahash_request *req)
738 mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
739 return mv_handle_req(&req->base);
742 static int mv_hash_final(struct ahash_request *req)
744 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
746 ahash_request_set_crypt(req, NULL, req->result, 0);
747 mv_update_hash_req_ctx(ctx, 1, 0);
748 return mv_handle_req(&req->base);
751 static int mv_hash_finup(struct ahash_request *req)
753 mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
754 return mv_handle_req(&req->base);
757 static int mv_hash_digest(struct ahash_request *req)
759 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
760 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
761 req->nbytes, tfm_ctx->count_add);
762 return mv_handle_req(&req->base);
765 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
768 const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
770 for (i = 0; i < 5; i++) {
771 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
772 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
776 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
780 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
786 rc = crypto_shash_setkey(ctx->fallback, key, keylen);
790 /* Can't see a way to extract the ipad/opad from the fallback tfm
791 so I'm basically copying code from the hmac module */
792 bs = crypto_shash_blocksize(ctx->base_hash);
793 ds = crypto_shash_digestsize(ctx->base_hash);
794 ss = crypto_shash_statesize(ctx->base_hash);
798 struct shash_desc shash;
799 char ctx[crypto_shash_descsize(ctx->base_hash)];
805 desc.shash.tfm = ctx->base_hash;
806 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
807 CRYPTO_TFM_REQ_MAY_SLEEP;
813 crypto_shash_digest(&desc.shash, key, keylen, ipad);
819 memcpy(ipad, key, keylen);
821 memset(ipad + keylen, 0, bs - keylen);
822 memcpy(opad, ipad, bs);
824 for (i = 0; i < bs; i++) {
829 rc = crypto_shash_init(&desc.shash) ? :
830 crypto_shash_update(&desc.shash, ipad, bs) ? :
831 crypto_shash_export(&desc.shash, ipad) ? :
832 crypto_shash_init(&desc.shash) ? :
833 crypto_shash_update(&desc.shash, opad, bs) ? :
834 crypto_shash_export(&desc.shash, opad);
837 mv_hash_init_ivs(ctx, ipad, opad);
843 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
844 enum hash_op op, int count_add)
846 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
847 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
848 struct crypto_shash *fallback_tfm = NULL;
849 struct crypto_shash *base_hash = NULL;
853 ctx->count_add = count_add;
855 /* Allocate a fallback and abort if it failed. */
856 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
857 CRYPTO_ALG_NEED_FALLBACK);
858 if (IS_ERR(fallback_tfm)) {
859 printk(KERN_WARNING MV_CESA
860 "Fallback driver '%s' could not be loaded!\n",
861 fallback_driver_name);
862 err = PTR_ERR(fallback_tfm);
865 ctx->fallback = fallback_tfm;
867 if (base_hash_name) {
868 /* Allocate a hash to compute the ipad/opad of hmac. */
869 base_hash = crypto_alloc_shash(base_hash_name, 0,
870 CRYPTO_ALG_NEED_FALLBACK);
871 if (IS_ERR(base_hash)) {
872 printk(KERN_WARNING MV_CESA
873 "Base driver '%s' could not be loaded!\n",
875 err = PTR_ERR(base_hash);
879 ctx->base_hash = base_hash;
881 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
882 sizeof(struct mv_req_hash_ctx) +
883 crypto_shash_descsize(ctx->fallback));
886 crypto_free_shash(fallback_tfm);
891 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
893 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
895 crypto_free_shash(ctx->fallback);
897 crypto_free_shash(ctx->base_hash);
900 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
902 return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
905 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
907 return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
910 irqreturn_t crypto_int(int irq, void *priv)
914 val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
915 if (!(val & SEC_INT_ACCEL0_DONE))
918 if (!del_timer(&cpg->completion_timer)) {
919 printk(KERN_WARNING MV_CESA
920 "got an interrupt but no pending timer?\n");
922 val &= ~SEC_INT_ACCEL0_DONE;
923 writel(val, cpg->reg + FPGA_INT_STATUS);
924 writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
925 BUG_ON(cpg->eng_st != ENGINE_BUSY);
926 cpg->eng_st = ENGINE_W_DEQUEUE;
927 wake_up_process(cpg->queue_th);
931 struct crypto_alg mv_aes_alg_ecb = {
932 .cra_name = "ecb(aes)",
933 .cra_driver_name = "mv-ecb-aes",
935 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
936 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
938 .cra_ctxsize = sizeof(struct mv_ctx),
940 .cra_type = &crypto_ablkcipher_type,
941 .cra_module = THIS_MODULE,
942 .cra_init = mv_cra_init,
945 .min_keysize = AES_MIN_KEY_SIZE,
946 .max_keysize = AES_MAX_KEY_SIZE,
947 .setkey = mv_setkey_aes,
948 .encrypt = mv_enc_aes_ecb,
949 .decrypt = mv_dec_aes_ecb,
954 struct crypto_alg mv_aes_alg_cbc = {
955 .cra_name = "cbc(aes)",
956 .cra_driver_name = "mv-cbc-aes",
958 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
959 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
960 .cra_blocksize = AES_BLOCK_SIZE,
961 .cra_ctxsize = sizeof(struct mv_ctx),
963 .cra_type = &crypto_ablkcipher_type,
964 .cra_module = THIS_MODULE,
965 .cra_init = mv_cra_init,
968 .ivsize = AES_BLOCK_SIZE,
969 .min_keysize = AES_MIN_KEY_SIZE,
970 .max_keysize = AES_MAX_KEY_SIZE,
971 .setkey = mv_setkey_aes,
972 .encrypt = mv_enc_aes_cbc,
973 .decrypt = mv_dec_aes_cbc,
978 struct ahash_alg mv_sha1_alg = {
979 .init = mv_hash_init,
980 .update = mv_hash_update,
981 .final = mv_hash_final,
982 .finup = mv_hash_finup,
983 .digest = mv_hash_digest,
985 .digestsize = SHA1_DIGEST_SIZE,
988 .cra_driver_name = "mv-sha1",
991 CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
992 CRYPTO_ALG_NEED_FALLBACK,
993 .cra_blocksize = SHA1_BLOCK_SIZE,
994 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
995 .cra_init = mv_cra_hash_sha1_init,
996 .cra_exit = mv_cra_hash_exit,
997 .cra_module = THIS_MODULE,
1002 struct ahash_alg mv_hmac_sha1_alg = {
1003 .init = mv_hash_init,
1004 .update = mv_hash_update,
1005 .final = mv_hash_final,
1006 .finup = mv_hash_finup,
1007 .digest = mv_hash_digest,
1008 .setkey = mv_hash_setkey,
1010 .digestsize = SHA1_DIGEST_SIZE,
1012 .cra_name = "hmac(sha1)",
1013 .cra_driver_name = "mv-hmac-sha1",
1014 .cra_priority = 300,
1016 CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1017 CRYPTO_ALG_NEED_FALLBACK,
1018 .cra_blocksize = SHA1_BLOCK_SIZE,
1019 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1020 .cra_init = mv_cra_hash_hmac_sha1_init,
1021 .cra_exit = mv_cra_hash_exit,
1022 .cra_module = THIS_MODULE,
1027 static int mv_probe(struct platform_device *pdev)
1029 struct crypto_priv *cp;
1030 struct resource *res;
1035 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1039 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1043 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1047 spin_lock_init(&cp->lock);
1048 crypto_init_queue(&cp->queue, 50);
1049 cp->reg = ioremap(res->start, resource_size(res));
1055 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1060 cp->sram_size = resource_size(res);
1061 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1062 cp->sram = ioremap(res->start, cp->sram_size);
1068 if (pdev->dev.of_node)
1069 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1071 irq = platform_get_irq(pdev, 0);
1072 if (irq < 0 || irq == NO_IRQ) {
1074 goto err_unmap_sram;
1078 platform_set_drvdata(pdev, cp);
1081 cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1082 if (IS_ERR(cp->queue_th)) {
1083 ret = PTR_ERR(cp->queue_th);
1084 goto err_unmap_sram;
1087 ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1092 /* Not all platforms can gate the clock, so it is not
1093 an error if the clock does not exists. */
1094 cp->clk = clk_get(&pdev->dev, NULL);
1095 if (!IS_ERR(cp->clk))
1096 clk_prepare_enable(cp->clk);
1098 writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1099 writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1100 writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1101 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1103 ret = crypto_register_alg(&mv_aes_alg_ecb);
1105 printk(KERN_WARNING MV_CESA
1106 "Could not register aes-ecb driver\n");
1110 ret = crypto_register_alg(&mv_aes_alg_cbc);
1112 printk(KERN_WARNING MV_CESA
1113 "Could not register aes-cbc driver\n");
1117 ret = crypto_register_ahash(&mv_sha1_alg);
1121 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1123 ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1125 cpg->has_hmac_sha1 = 1;
1127 printk(KERN_WARNING MV_CESA
1128 "Could not register hmac-sha1 driver\n");
1133 crypto_unregister_alg(&mv_aes_alg_ecb);
1136 if (!IS_ERR(cp->clk)) {
1137 clk_disable_unprepare(cp->clk);
1141 kthread_stop(cp->queue_th);
1152 static int mv_remove(struct platform_device *pdev)
1154 struct crypto_priv *cp = platform_get_drvdata(pdev);
1156 crypto_unregister_alg(&mv_aes_alg_ecb);
1157 crypto_unregister_alg(&mv_aes_alg_cbc);
1159 crypto_unregister_ahash(&mv_sha1_alg);
1160 if (cp->has_hmac_sha1)
1161 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1162 kthread_stop(cp->queue_th);
1163 free_irq(cp->irq, cp);
1164 memset(cp->sram, 0, cp->sram_size);
1168 if (!IS_ERR(cp->clk)) {
1169 clk_disable_unprepare(cp->clk);
1178 static const struct of_device_id mv_cesa_of_match_table[] = {
1179 { .compatible = "marvell,orion-crypto", },
1182 MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
1184 static struct platform_driver marvell_crypto = {
1186 .remove = mv_remove,
1188 .owner = THIS_MODULE,
1189 .name = "mv_crypto",
1190 .of_match_table = of_match_ptr(mv_cesa_of_match_table),
1193 MODULE_ALIAS("platform:mv_crypto");
1195 module_platform_driver(marvell_crypto);
1197 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1198 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1199 MODULE_LICENSE("GPL");