sched/numa: Track NUMA hinting faults on per-node basis
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34
35 #define MAX_KEYLEN 32
36
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40
41 #define NPE_OP_HASH_VERIFY   0x01
42 #define NPE_OP_CCM_ENABLE    0x04
43 #define NPE_OP_CRYPT_ENABLE  0x08
44 #define NPE_OP_HASH_ENABLE   0x10
45 #define NPE_OP_NOT_IN_PLACE  0x20
46 #define NPE_OP_HMAC_DISABLE  0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48
49 #define NPE_OP_CCM_GEN_MIC   0xcc
50 #define NPE_OP_HASH_GEN_ICV  0x50
51 #define NPE_OP_ENC_GEN_KEY   0xc9
52
53 #define MOD_ECB     0x0000
54 #define MOD_CTR     0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59
60 #define KEYLEN_128  4
61 #define KEYLEN_192  6
62 #define KEYLEN_256  8
63
64 #define CIPH_DECR   0x0000
65 #define CIPH_ENCR   0x0400
66
67 #define MOD_DES     0x0000
68 #define MOD_TDEA2   0x0100
69 #define MOD_3DES   0x0200
70 #define MOD_AES     0x0800
71 #define MOD_AES128  (0x0800 | KEYLEN_128)
72 #define MOD_AES192  (0x0900 | KEYLEN_192)
73 #define MOD_AES256  (0x0a00 | KEYLEN_256)
74
75 #define MAX_IVLEN   16
76 #define NPE_ID      2  /* NPE C */
77 #define NPE_QLEN    16
78 /* Space for registering when the first
79  * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81
82 #define SEND_QID    29
83 #define RECV_QID    30
84
85 #define CTL_FLAG_UNUSED         0x0000
86 #define CTL_FLAG_USED           0x1000
87 #define CTL_FLAG_PERFORM_ABLK   0x0001
88 #define CTL_FLAG_GEN_ICV        0x0002
89 #define CTL_FLAG_GEN_REVAES     0x0004
90 #define CTL_FLAG_PERFORM_AEAD   0x0008
91 #define CTL_FLAG_MASK           0x000f
92
93 #define HMAC_IPAD_VALUE   0x36
94 #define HMAC_OPAD_VALUE   0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96
97 #define MD5_DIGEST_SIZE   16
98
99 struct buffer_desc {
100         u32 phys_next;
101 #ifdef __ARMEB__
102         u16 buf_len;
103         u16 pkt_len;
104 #else
105         u16 pkt_len;
106         u16 buf_len;
107 #endif
108         u32 phys_addr;
109         u32 __reserved[4];
110         struct buffer_desc *next;
111         enum dma_data_direction dir;
112 };
113
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116         u8 mode;                /* NPE_OP_*  operation mode */
117         u8 init_len;
118         u16 reserved;
119 #else
120         u16 reserved;
121         u8 init_len;
122         u8 mode;                /* NPE_OP_*  operation mode */
123 #endif
124         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
125         u32 icv_rev_aes;        /* icv or rev aes */
126         u32 src_buf;
127         u32 dst_buf;
128 #ifdef __ARMEB__
129         u16 auth_offs;          /* Authentication start offset */
130         u16 auth_len;           /* Authentication data length */
131         u16 crypt_offs;         /* Cryption start offset */
132         u16 crypt_len;          /* Cryption data length */
133 #else
134         u16 auth_len;           /* Authentication data length */
135         u16 auth_offs;          /* Authentication start offset */
136         u16 crypt_len;          /* Cryption data length */
137         u16 crypt_offs;         /* Cryption start offset */
138 #endif
139         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
140         u32 crypto_ctx;         /* NPE Crypto Param structure address */
141
142         /* Used by Host: 4*4 bytes*/
143         unsigned ctl_flags;
144         union {
145                 struct ablkcipher_request *ablk_req;
146                 struct aead_request *aead_req;
147                 struct crypto_tfm *tfm;
148         } data;
149         struct buffer_desc *regist_buf;
150         u8 *regist_ptr;
151 };
152
153 struct ablk_ctx {
154         struct buffer_desc *src;
155         struct buffer_desc *dst;
156 };
157
158 struct aead_ctx {
159         struct buffer_desc *buffer;
160         struct scatterlist ivlist;
161         /* used when the hmac is not on one sg entry */
162         u8 *hmac_virt;
163         int encrypt;
164 };
165
166 struct ix_hash_algo {
167         u32 cfgword;
168         unsigned char *icv;
169 };
170
171 struct ix_sa_dir {
172         unsigned char *npe_ctx;
173         dma_addr_t npe_ctx_phys;
174         int npe_ctx_idx;
175         u8 npe_mode;
176 };
177
178 struct ixp_ctx {
179         struct ix_sa_dir encrypt;
180         struct ix_sa_dir decrypt;
181         int authkey_len;
182         u8 authkey[MAX_KEYLEN];
183         int enckey_len;
184         u8 enckey[MAX_KEYLEN];
185         u8 salt[MAX_IVLEN];
186         u8 nonce[CTR_RFC3686_NONCE_SIZE];
187         unsigned salted;
188         atomic_t configuring;
189         struct completion completion;
190 };
191
192 struct ixp_alg {
193         struct crypto_alg crypto;
194         const struct ix_hash_algo *hash;
195         u32 cfg_enc;
196         u32 cfg_dec;
197
198         int registered;
199 };
200
201 static const struct ix_hash_algo hash_alg_md5 = {
202         .cfgword        = 0xAA010004,
203         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
204                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
205 };
206 static const struct ix_hash_algo hash_alg_sha1 = {
207         .cfgword        = 0x00000005,
208         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
209                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
210 };
211
212 static struct npe *npe_c;
213 static struct dma_pool *buffer_pool = NULL;
214 static struct dma_pool *ctx_pool = NULL;
215
216 static struct crypt_ctl *crypt_virt = NULL;
217 static dma_addr_t crypt_phys;
218
219 static int support_aes = 1;
220
221 static void dev_release(struct device *dev)
222 {
223         return;
224 }
225
226 #define DRIVER_NAME "ixp4xx_crypto"
227 static struct platform_device pseudo_dev = {
228         .name = DRIVER_NAME,
229         .id   = 0,
230         .num_resources = 0,
231         .dev  = {
232                 .coherent_dma_mask = DMA_BIT_MASK(32),
233                 .release = dev_release,
234         }
235 };
236
237 static struct device *dev = &pseudo_dev.dev;
238
239 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
240 {
241         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
242 }
243
244 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
245 {
246         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
247 }
248
249 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
250 {
251         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
252 }
253
254 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
255 {
256         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
257 }
258
259 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
260 {
261         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
262 }
263
264 static int setup_crypt_desc(void)
265 {
266         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
267         crypt_virt = dma_alloc_coherent(dev,
268                         NPE_QLEN * sizeof(struct crypt_ctl),
269                         &crypt_phys, GFP_ATOMIC);
270         if (!crypt_virt)
271                 return -ENOMEM;
272         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
273         return 0;
274 }
275
276 static spinlock_t desc_lock;
277 static struct crypt_ctl *get_crypt_desc(void)
278 {
279         int i;
280         static int idx = 0;
281         unsigned long flags;
282
283         spin_lock_irqsave(&desc_lock, flags);
284
285         if (unlikely(!crypt_virt))
286                 setup_crypt_desc();
287         if (unlikely(!crypt_virt)) {
288                 spin_unlock_irqrestore(&desc_lock, flags);
289                 return NULL;
290         }
291         i = idx;
292         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
293                 if (++idx >= NPE_QLEN)
294                         idx = 0;
295                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
296                 spin_unlock_irqrestore(&desc_lock, flags);
297                 return crypt_virt +i;
298         } else {
299                 spin_unlock_irqrestore(&desc_lock, flags);
300                 return NULL;
301         }
302 }
303
304 static spinlock_t emerg_lock;
305 static struct crypt_ctl *get_crypt_desc_emerg(void)
306 {
307         int i;
308         static int idx = NPE_QLEN;
309         struct crypt_ctl *desc;
310         unsigned long flags;
311
312         desc = get_crypt_desc();
313         if (desc)
314                 return desc;
315         if (unlikely(!crypt_virt))
316                 return NULL;
317
318         spin_lock_irqsave(&emerg_lock, flags);
319         i = idx;
320         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
321                 if (++idx >= NPE_QLEN_TOTAL)
322                         idx = NPE_QLEN;
323                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
324                 spin_unlock_irqrestore(&emerg_lock, flags);
325                 return crypt_virt +i;
326         } else {
327                 spin_unlock_irqrestore(&emerg_lock, flags);
328                 return NULL;
329         }
330 }
331
332 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
333 {
334         while (buf) {
335                 struct buffer_desc *buf1;
336                 u32 phys1;
337
338                 buf1 = buf->next;
339                 phys1 = buf->phys_next;
340                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
341                 dma_pool_free(buffer_pool, buf, phys);
342                 buf = buf1;
343                 phys = phys1;
344         }
345 }
346
347 static struct tasklet_struct crypto_done_tasklet;
348
349 static void finish_scattered_hmac(struct crypt_ctl *crypt)
350 {
351         struct aead_request *req = crypt->data.aead_req;
352         struct aead_ctx *req_ctx = aead_request_ctx(req);
353         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
354         int authsize = crypto_aead_authsize(tfm);
355         int decryptlen = req->cryptlen - authsize;
356
357         if (req_ctx->encrypt) {
358                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
359                         req->src, decryptlen, authsize, 1);
360         }
361         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
362 }
363
364 static void one_packet(dma_addr_t phys)
365 {
366         struct crypt_ctl *crypt;
367         struct ixp_ctx *ctx;
368         int failed;
369
370         failed = phys & 0x1 ? -EBADMSG : 0;
371         phys &= ~0x3;
372         crypt = crypt_phys2virt(phys);
373
374         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
375         case CTL_FLAG_PERFORM_AEAD: {
376                 struct aead_request *req = crypt->data.aead_req;
377                 struct aead_ctx *req_ctx = aead_request_ctx(req);
378
379                 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
380                 if (req_ctx->hmac_virt) {
381                         finish_scattered_hmac(crypt);
382                 }
383                 req->base.complete(&req->base, failed);
384                 break;
385         }
386         case CTL_FLAG_PERFORM_ABLK: {
387                 struct ablkcipher_request *req = crypt->data.ablk_req;
388                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
389
390                 if (req_ctx->dst) {
391                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
392                 }
393                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
394                 req->base.complete(&req->base, failed);
395                 break;
396         }
397         case CTL_FLAG_GEN_ICV:
398                 ctx = crypto_tfm_ctx(crypt->data.tfm);
399                 dma_pool_free(ctx_pool, crypt->regist_ptr,
400                                 crypt->regist_buf->phys_addr);
401                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
402                 if (atomic_dec_and_test(&ctx->configuring))
403                         complete(&ctx->completion);
404                 break;
405         case CTL_FLAG_GEN_REVAES:
406                 ctx = crypto_tfm_ctx(crypt->data.tfm);
407                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
408                 if (atomic_dec_and_test(&ctx->configuring))
409                         complete(&ctx->completion);
410                 break;
411         default:
412                 BUG();
413         }
414         crypt->ctl_flags = CTL_FLAG_UNUSED;
415 }
416
417 static void irqhandler(void *_unused)
418 {
419         tasklet_schedule(&crypto_done_tasklet);
420 }
421
422 static void crypto_done_action(unsigned long arg)
423 {
424         int i;
425
426         for(i=0; i<4; i++) {
427                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
428                 if (!phys)
429                         return;
430                 one_packet(phys);
431         }
432         tasklet_schedule(&crypto_done_tasklet);
433 }
434
435 static int init_ixp_crypto(void)
436 {
437         int ret = -ENODEV;
438         u32 msg[2] = { 0, 0 };
439
440         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
441                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
442                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
443                 return ret;
444         }
445         npe_c = npe_request(NPE_ID);
446         if (!npe_c)
447                 return ret;
448
449         if (!npe_running(npe_c)) {
450                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
451                 if (ret) {
452                         return ret;
453                 }
454                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
455                         goto npe_error;
456         } else {
457                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
458                         goto npe_error;
459
460                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
461                         goto npe_error;
462         }
463
464         switch ((msg[1]>>16) & 0xff) {
465         case 3:
466                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
467                                 npe_name(npe_c));
468                 support_aes = 0;
469                 break;
470         case 4:
471         case 5:
472                 support_aes = 1;
473                 break;
474         default:
475                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
476                         npe_name(npe_c));
477                 return -ENODEV;
478         }
479         /* buffer_pool will also be used to sometimes store the hmac,
480          * so assure it is large enough
481          */
482         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
483         buffer_pool = dma_pool_create("buffer", dev,
484                         sizeof(struct buffer_desc), 32, 0);
485         ret = -ENOMEM;
486         if (!buffer_pool) {
487                 goto err;
488         }
489         ctx_pool = dma_pool_create("context", dev,
490                         NPE_CTX_LEN, 16, 0);
491         if (!ctx_pool) {
492                 goto err;
493         }
494         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
495                                  "ixp_crypto:out", NULL);
496         if (ret)
497                 goto err;
498         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
499                                  "ixp_crypto:in", NULL);
500         if (ret) {
501                 qmgr_release_queue(SEND_QID);
502                 goto err;
503         }
504         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
505         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
506
507         qmgr_enable_irq(RECV_QID);
508         return 0;
509
510 npe_error:
511         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
512         ret = -EIO;
513 err:
514         if (ctx_pool)
515                 dma_pool_destroy(ctx_pool);
516         if (buffer_pool)
517                 dma_pool_destroy(buffer_pool);
518         npe_release(npe_c);
519         return ret;
520 }
521
522 static void release_ixp_crypto(void)
523 {
524         qmgr_disable_irq(RECV_QID);
525         tasklet_kill(&crypto_done_tasklet);
526
527         qmgr_release_queue(SEND_QID);
528         qmgr_release_queue(RECV_QID);
529
530         dma_pool_destroy(ctx_pool);
531         dma_pool_destroy(buffer_pool);
532
533         npe_release(npe_c);
534
535         if (crypt_virt) {
536                 dma_free_coherent(dev,
537                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
538                         crypt_virt, crypt_phys);
539         }
540         return;
541 }
542
543 static void reset_sa_dir(struct ix_sa_dir *dir)
544 {
545         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
546         dir->npe_ctx_idx = 0;
547         dir->npe_mode = 0;
548 }
549
550 static int init_sa_dir(struct ix_sa_dir *dir)
551 {
552         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
553         if (!dir->npe_ctx) {
554                 return -ENOMEM;
555         }
556         reset_sa_dir(dir);
557         return 0;
558 }
559
560 static void free_sa_dir(struct ix_sa_dir *dir)
561 {
562         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
563         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
564 }
565
566 static int init_tfm(struct crypto_tfm *tfm)
567 {
568         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
569         int ret;
570
571         atomic_set(&ctx->configuring, 0);
572         ret = init_sa_dir(&ctx->encrypt);
573         if (ret)
574                 return ret;
575         ret = init_sa_dir(&ctx->decrypt);
576         if (ret) {
577                 free_sa_dir(&ctx->encrypt);
578         }
579         return ret;
580 }
581
582 static int init_tfm_ablk(struct crypto_tfm *tfm)
583 {
584         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
585         return init_tfm(tfm);
586 }
587
588 static int init_tfm_aead(struct crypto_tfm *tfm)
589 {
590         tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
591         return init_tfm(tfm);
592 }
593
594 static void exit_tfm(struct crypto_tfm *tfm)
595 {
596         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
597         free_sa_dir(&ctx->encrypt);
598         free_sa_dir(&ctx->decrypt);
599 }
600
601 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
602                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
603 {
604         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
605         struct crypt_ctl *crypt;
606         struct buffer_desc *buf;
607         int i;
608         u8 *pad;
609         u32 pad_phys, buf_phys;
610
611         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
612         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
613         if (!pad)
614                 return -ENOMEM;
615         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
616         if (!buf) {
617                 dma_pool_free(ctx_pool, pad, pad_phys);
618                 return -ENOMEM;
619         }
620         crypt = get_crypt_desc_emerg();
621         if (!crypt) {
622                 dma_pool_free(ctx_pool, pad, pad_phys);
623                 dma_pool_free(buffer_pool, buf, buf_phys);
624                 return -EAGAIN;
625         }
626
627         memcpy(pad, key, key_len);
628         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
629         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
630                 pad[i] ^= xpad;
631         }
632
633         crypt->data.tfm = tfm;
634         crypt->regist_ptr = pad;
635         crypt->regist_buf = buf;
636
637         crypt->auth_offs = 0;
638         crypt->auth_len = HMAC_PAD_BLOCKLEN;
639         crypt->crypto_ctx = ctx_addr;
640         crypt->src_buf = buf_phys;
641         crypt->icv_rev_aes = target;
642         crypt->mode = NPE_OP_HASH_GEN_ICV;
643         crypt->init_len = init_len;
644         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
645
646         buf->next = 0;
647         buf->buf_len = HMAC_PAD_BLOCKLEN;
648         buf->pkt_len = 0;
649         buf->phys_addr = pad_phys;
650
651         atomic_inc(&ctx->configuring);
652         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
653         BUG_ON(qmgr_stat_overflow(SEND_QID));
654         return 0;
655 }
656
657 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
658                 const u8 *key, int key_len, unsigned digest_len)
659 {
660         u32 itarget, otarget, npe_ctx_addr;
661         unsigned char *cinfo;
662         int init_len, ret = 0;
663         u32 cfgword;
664         struct ix_sa_dir *dir;
665         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
666         const struct ix_hash_algo *algo;
667
668         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
669         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
670         algo = ix_hash(tfm);
671
672         /* write cfg word to cryptinfo */
673         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
674 #ifndef __ARMEB__
675         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
676 #endif
677         *(u32*)cinfo = cpu_to_be32(cfgword);
678         cinfo += sizeof(cfgword);
679
680         /* write ICV to cryptinfo */
681         memcpy(cinfo, algo->icv, digest_len);
682         cinfo += digest_len;
683
684         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
685                                 + sizeof(algo->cfgword);
686         otarget = itarget + digest_len;
687         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
688         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
689
690         dir->npe_ctx_idx += init_len;
691         dir->npe_mode |= NPE_OP_HASH_ENABLE;
692
693         if (!encrypt)
694                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
695
696         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
697                         init_len, npe_ctx_addr, key, key_len);
698         if (ret)
699                 return ret;
700         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
701                         init_len, npe_ctx_addr, key, key_len);
702 }
703
704 static int gen_rev_aes_key(struct crypto_tfm *tfm)
705 {
706         struct crypt_ctl *crypt;
707         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
708         struct ix_sa_dir *dir = &ctx->decrypt;
709
710         crypt = get_crypt_desc_emerg();
711         if (!crypt) {
712                 return -EAGAIN;
713         }
714         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
715
716         crypt->data.tfm = tfm;
717         crypt->crypt_offs = 0;
718         crypt->crypt_len = AES_BLOCK128;
719         crypt->src_buf = 0;
720         crypt->crypto_ctx = dir->npe_ctx_phys;
721         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
722         crypt->mode = NPE_OP_ENC_GEN_KEY;
723         crypt->init_len = dir->npe_ctx_idx;
724         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
725
726         atomic_inc(&ctx->configuring);
727         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
728         BUG_ON(qmgr_stat_overflow(SEND_QID));
729         return 0;
730 }
731
732 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
733                 const u8 *key, int key_len)
734 {
735         u8 *cinfo;
736         u32 cipher_cfg;
737         u32 keylen_cfg = 0;
738         struct ix_sa_dir *dir;
739         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
740         u32 *flags = &tfm->crt_flags;
741
742         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
743         cinfo = dir->npe_ctx;
744
745         if (encrypt) {
746                 cipher_cfg = cipher_cfg_enc(tfm);
747                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
748         } else {
749                 cipher_cfg = cipher_cfg_dec(tfm);
750         }
751         if (cipher_cfg & MOD_AES) {
752                 switch (key_len) {
753                 case 16: keylen_cfg = MOD_AES128; break;
754                 case 24: keylen_cfg = MOD_AES192; break;
755                 case 32: keylen_cfg = MOD_AES256; break;
756                 default:
757                         *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
758                         return -EINVAL;
759                 }
760                 cipher_cfg |= keylen_cfg;
761         } else if (cipher_cfg & MOD_3DES) {
762                 const u32 *K = (const u32 *)key;
763                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
764                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
765                 {
766                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
767                         return -EINVAL;
768                 }
769         } else {
770                 u32 tmp[DES_EXPKEY_WORDS];
771                 if (des_ekey(tmp, key) == 0) {
772                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
773                 }
774         }
775         /* write cfg word to cryptinfo */
776         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
777         cinfo += sizeof(cipher_cfg);
778
779         /* write cipher key to cryptinfo */
780         memcpy(cinfo, key, key_len);
781         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
782         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
783                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
784                 key_len = DES3_EDE_KEY_SIZE;
785         }
786         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
787         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
788         if ((cipher_cfg & MOD_AES) && !encrypt) {
789                 return gen_rev_aes_key(tfm);
790         }
791         return 0;
792 }
793
794 static struct buffer_desc *chainup_buffers(struct device *dev,
795                 struct scatterlist *sg, unsigned nbytes,
796                 struct buffer_desc *buf, gfp_t flags,
797                 enum dma_data_direction dir)
798 {
799         for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
800                 unsigned len = min(nbytes, sg->length);
801                 struct buffer_desc *next_buf;
802                 u32 next_buf_phys;
803                 void *ptr;
804
805                 nbytes -= len;
806                 ptr = page_address(sg_page(sg)) + sg->offset;
807                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
808                 if (!next_buf) {
809                         buf = NULL;
810                         break;
811                 }
812                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
813                 buf->next = next_buf;
814                 buf->phys_next = next_buf_phys;
815                 buf = next_buf;
816
817                 buf->phys_addr = sg_dma_address(sg);
818                 buf->buf_len = len;
819                 buf->dir = dir;
820         }
821         buf->next = NULL;
822         buf->phys_next = 0;
823         return buf;
824 }
825
826 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
827                         unsigned int key_len)
828 {
829         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
830         u32 *flags = &tfm->base.crt_flags;
831         int ret;
832
833         init_completion(&ctx->completion);
834         atomic_inc(&ctx->configuring);
835
836         reset_sa_dir(&ctx->encrypt);
837         reset_sa_dir(&ctx->decrypt);
838
839         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
840         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
841
842         ret = setup_cipher(&tfm->base, 0, key, key_len);
843         if (ret)
844                 goto out;
845         ret = setup_cipher(&tfm->base, 1, key, key_len);
846         if (ret)
847                 goto out;
848
849         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
850                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
851                         ret = -EINVAL;
852                 } else {
853                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
854                 }
855         }
856 out:
857         if (!atomic_dec_and_test(&ctx->configuring))
858                 wait_for_completion(&ctx->completion);
859         return ret;
860 }
861
862 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
863                 unsigned int key_len)
864 {
865         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
866
867         /* the nonce is stored in bytes at end of key */
868         if (key_len < CTR_RFC3686_NONCE_SIZE)
869                 return -EINVAL;
870
871         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
872                         CTR_RFC3686_NONCE_SIZE);
873
874         key_len -= CTR_RFC3686_NONCE_SIZE;
875         return ablk_setkey(tfm, key, key_len);
876 }
877
878 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
879 {
880         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
881         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
882         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
883         struct ix_sa_dir *dir;
884         struct crypt_ctl *crypt;
885         unsigned int nbytes = req->nbytes;
886         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
887         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
888         struct buffer_desc src_hook;
889         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
890                                 GFP_KERNEL : GFP_ATOMIC;
891
892         if (qmgr_stat_full(SEND_QID))
893                 return -EAGAIN;
894         if (atomic_read(&ctx->configuring))
895                 return -EAGAIN;
896
897         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
898
899         crypt = get_crypt_desc();
900         if (!crypt)
901                 return -ENOMEM;
902
903         crypt->data.ablk_req = req;
904         crypt->crypto_ctx = dir->npe_ctx_phys;
905         crypt->mode = dir->npe_mode;
906         crypt->init_len = dir->npe_ctx_idx;
907
908         crypt->crypt_offs = 0;
909         crypt->crypt_len = nbytes;
910
911         BUG_ON(ivsize && !req->info);
912         memcpy(crypt->iv, req->info, ivsize);
913         if (req->src != req->dst) {
914                 struct buffer_desc dst_hook;
915                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
916                 /* This was never tested by Intel
917                  * for more than one dst buffer, I think. */
918                 BUG_ON(req->dst->length < nbytes);
919                 req_ctx->dst = NULL;
920                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
921                                         flags, DMA_FROM_DEVICE))
922                         goto free_buf_dest;
923                 src_direction = DMA_TO_DEVICE;
924                 req_ctx->dst = dst_hook.next;
925                 crypt->dst_buf = dst_hook.phys_next;
926         } else {
927                 req_ctx->dst = NULL;
928         }
929         req_ctx->src = NULL;
930         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
931                                 flags, src_direction))
932                 goto free_buf_src;
933
934         req_ctx->src = src_hook.next;
935         crypt->src_buf = src_hook.phys_next;
936         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
937         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
938         BUG_ON(qmgr_stat_overflow(SEND_QID));
939         return -EINPROGRESS;
940
941 free_buf_src:
942         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
943 free_buf_dest:
944         if (req->src != req->dst) {
945                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
946         }
947         crypt->ctl_flags = CTL_FLAG_UNUSED;
948         return -ENOMEM;
949 }
950
951 static int ablk_encrypt(struct ablkcipher_request *req)
952 {
953         return ablk_perform(req, 1);
954 }
955
956 static int ablk_decrypt(struct ablkcipher_request *req)
957 {
958         return ablk_perform(req, 0);
959 }
960
961 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
962 {
963         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
964         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
965         u8 iv[CTR_RFC3686_BLOCK_SIZE];
966         u8 *info = req->info;
967         int ret;
968
969         /* set up counter block */
970         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
971         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
972
973         /* initialize counter portion of counter block */
974         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
975                 cpu_to_be32(1);
976
977         req->info = iv;
978         ret = ablk_perform(req, 1);
979         req->info = info;
980         return ret;
981 }
982
983 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
984                 unsigned int nbytes)
985 {
986         int offset = 0;
987
988         if (!nbytes)
989                 return 0;
990
991         for (;;) {
992                 if (start < offset + sg->length)
993                         break;
994
995                 offset += sg->length;
996                 sg = scatterwalk_sg_next(sg);
997         }
998         return (start + nbytes > offset + sg->length);
999 }
1000
1001 static int aead_perform(struct aead_request *req, int encrypt,
1002                 int cryptoffset, int eff_cryptlen, u8 *iv)
1003 {
1004         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1005         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1006         unsigned ivsize = crypto_aead_ivsize(tfm);
1007         unsigned authsize = crypto_aead_authsize(tfm);
1008         struct ix_sa_dir *dir;
1009         struct crypt_ctl *crypt;
1010         unsigned int cryptlen;
1011         struct buffer_desc *buf, src_hook;
1012         struct aead_ctx *req_ctx = aead_request_ctx(req);
1013         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1014                                 GFP_KERNEL : GFP_ATOMIC;
1015
1016         if (qmgr_stat_full(SEND_QID))
1017                 return -EAGAIN;
1018         if (atomic_read(&ctx->configuring))
1019                 return -EAGAIN;
1020
1021         if (encrypt) {
1022                 dir = &ctx->encrypt;
1023                 cryptlen = req->cryptlen;
1024         } else {
1025                 dir = &ctx->decrypt;
1026                 /* req->cryptlen includes the authsize when decrypting */
1027                 cryptlen = req->cryptlen -authsize;
1028                 eff_cryptlen -= authsize;
1029         }
1030         crypt = get_crypt_desc();
1031         if (!crypt)
1032                 return -ENOMEM;
1033
1034         crypt->data.aead_req = req;
1035         crypt->crypto_ctx = dir->npe_ctx_phys;
1036         crypt->mode = dir->npe_mode;
1037         crypt->init_len = dir->npe_ctx_idx;
1038
1039         crypt->crypt_offs = cryptoffset;
1040         crypt->crypt_len = eff_cryptlen;
1041
1042         crypt->auth_offs = 0;
1043         crypt->auth_len = req->assoclen + ivsize + cryptlen;
1044         BUG_ON(ivsize && !req->iv);
1045         memcpy(crypt->iv, req->iv, ivsize);
1046
1047         if (req->src != req->dst) {
1048                 BUG(); /* -ENOTSUP because of my laziness */
1049         }
1050
1051         /* ASSOC data */
1052         buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1053                 flags, DMA_TO_DEVICE);
1054         req_ctx->buffer = src_hook.next;
1055         crypt->src_buf = src_hook.phys_next;
1056         if (!buf)
1057                 goto out;
1058         /* IV */
1059         sg_init_table(&req_ctx->ivlist, 1);
1060         sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1061         buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1062                         DMA_BIDIRECTIONAL);
1063         if (!buf)
1064                 goto free_chain;
1065         if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1066                 /* The 12 hmac bytes are scattered,
1067                  * we need to copy them into a safe buffer */
1068                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1069                                 &crypt->icv_rev_aes);
1070                 if (unlikely(!req_ctx->hmac_virt))
1071                         goto free_chain;
1072                 if (!encrypt) {
1073                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1074                                 req->src, cryptlen, authsize, 0);
1075                 }
1076                 req_ctx->encrypt = encrypt;
1077         } else {
1078                 req_ctx->hmac_virt = NULL;
1079         }
1080         /* Crypt */
1081         buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1082                         DMA_BIDIRECTIONAL);
1083         if (!buf)
1084                 goto free_hmac_virt;
1085         if (!req_ctx->hmac_virt) {
1086                 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1087         }
1088
1089         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1090         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1091         BUG_ON(qmgr_stat_overflow(SEND_QID));
1092         return -EINPROGRESS;
1093 free_hmac_virt:
1094         if (req_ctx->hmac_virt) {
1095                 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1096                                 crypt->icv_rev_aes);
1097         }
1098 free_chain:
1099         free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1100 out:
1101         crypt->ctl_flags = CTL_FLAG_UNUSED;
1102         return -ENOMEM;
1103 }
1104
1105 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1106 {
1107         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1108         u32 *flags = &tfm->base.crt_flags;
1109         unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1110         int ret;
1111
1112         if (!ctx->enckey_len && !ctx->authkey_len)
1113                 return 0;
1114         init_completion(&ctx->completion);
1115         atomic_inc(&ctx->configuring);
1116
1117         reset_sa_dir(&ctx->encrypt);
1118         reset_sa_dir(&ctx->decrypt);
1119
1120         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1121         if (ret)
1122                 goto out;
1123         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1124         if (ret)
1125                 goto out;
1126         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1127                         ctx->authkey_len, digest_len);
1128         if (ret)
1129                 goto out;
1130         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1131                         ctx->authkey_len, digest_len);
1132         if (ret)
1133                 goto out;
1134
1135         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1136                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1137                         ret = -EINVAL;
1138                         goto out;
1139                 } else {
1140                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1141                 }
1142         }
1143 out:
1144         if (!atomic_dec_and_test(&ctx->configuring))
1145                 wait_for_completion(&ctx->completion);
1146         return ret;
1147 }
1148
1149 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1150 {
1151         int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1152
1153         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1154                 return -EINVAL;
1155         return aead_setup(tfm, authsize);
1156 }
1157
1158 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1159                         unsigned int keylen)
1160 {
1161         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1162         struct rtattr *rta = (struct rtattr *)key;
1163         struct crypto_authenc_key_param *param;
1164
1165         if (!RTA_OK(rta, keylen))
1166                 goto badkey;
1167         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1168                 goto badkey;
1169         if (RTA_PAYLOAD(rta) < sizeof(*param))
1170                 goto badkey;
1171
1172         param = RTA_DATA(rta);
1173         ctx->enckey_len = be32_to_cpu(param->enckeylen);
1174
1175         key += RTA_ALIGN(rta->rta_len);
1176         keylen -= RTA_ALIGN(rta->rta_len);
1177
1178         if (keylen < ctx->enckey_len)
1179                 goto badkey;
1180
1181         ctx->authkey_len = keylen - ctx->enckey_len;
1182         memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1183         memcpy(ctx->authkey, key, ctx->authkey_len);
1184
1185         return aead_setup(tfm, crypto_aead_authsize(tfm));
1186 badkey:
1187         ctx->enckey_len = 0;
1188         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1189         return -EINVAL;
1190 }
1191
1192 static int aead_encrypt(struct aead_request *req)
1193 {
1194         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1195         return aead_perform(req, 1, req->assoclen + ivsize,
1196                         req->cryptlen, req->iv);
1197 }
1198
1199 static int aead_decrypt(struct aead_request *req)
1200 {
1201         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1202         return aead_perform(req, 0, req->assoclen + ivsize,
1203                         req->cryptlen, req->iv);
1204 }
1205
1206 static int aead_givencrypt(struct aead_givcrypt_request *req)
1207 {
1208         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1209         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1210         unsigned len, ivsize = crypto_aead_ivsize(tfm);
1211         __be64 seq;
1212
1213         /* copied from eseqiv.c */
1214         if (!ctx->salted) {
1215                 get_random_bytes(ctx->salt, ivsize);
1216                 ctx->salted = 1;
1217         }
1218         memcpy(req->areq.iv, ctx->salt, ivsize);
1219         len = ivsize;
1220         if (ivsize > sizeof(u64)) {
1221                 memset(req->giv, 0, ivsize - sizeof(u64));
1222                 len = sizeof(u64);
1223         }
1224         seq = cpu_to_be64(req->seq);
1225         memcpy(req->giv + ivsize - len, &seq, len);
1226         return aead_perform(&req->areq, 1, req->areq.assoclen,
1227                         req->areq.cryptlen +ivsize, req->giv);
1228 }
1229
1230 static struct ixp_alg ixp4xx_algos[] = {
1231 {
1232         .crypto = {
1233                 .cra_name       = "cbc(des)",
1234                 .cra_blocksize  = DES_BLOCK_SIZE,
1235                 .cra_u          = { .ablkcipher = {
1236                         .min_keysize    = DES_KEY_SIZE,
1237                         .max_keysize    = DES_KEY_SIZE,
1238                         .ivsize         = DES_BLOCK_SIZE,
1239                         .geniv          = "eseqiv",
1240                         }
1241                 }
1242         },
1243         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1244         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1245
1246 }, {
1247         .crypto = {
1248                 .cra_name       = "ecb(des)",
1249                 .cra_blocksize  = DES_BLOCK_SIZE,
1250                 .cra_u          = { .ablkcipher = {
1251                         .min_keysize    = DES_KEY_SIZE,
1252                         .max_keysize    = DES_KEY_SIZE,
1253                         }
1254                 }
1255         },
1256         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1257         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1258 }, {
1259         .crypto = {
1260                 .cra_name       = "cbc(des3_ede)",
1261                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1262                 .cra_u          = { .ablkcipher = {
1263                         .min_keysize    = DES3_EDE_KEY_SIZE,
1264                         .max_keysize    = DES3_EDE_KEY_SIZE,
1265                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1266                         .geniv          = "eseqiv",
1267                         }
1268                 }
1269         },
1270         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1271         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1272 }, {
1273         .crypto = {
1274                 .cra_name       = "ecb(des3_ede)",
1275                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1276                 .cra_u          = { .ablkcipher = {
1277                         .min_keysize    = DES3_EDE_KEY_SIZE,
1278                         .max_keysize    = DES3_EDE_KEY_SIZE,
1279                         }
1280                 }
1281         },
1282         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1283         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1284 }, {
1285         .crypto = {
1286                 .cra_name       = "cbc(aes)",
1287                 .cra_blocksize  = AES_BLOCK_SIZE,
1288                 .cra_u          = { .ablkcipher = {
1289                         .min_keysize    = AES_MIN_KEY_SIZE,
1290                         .max_keysize    = AES_MAX_KEY_SIZE,
1291                         .ivsize         = AES_BLOCK_SIZE,
1292                         .geniv          = "eseqiv",
1293                         }
1294                 }
1295         },
1296         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1297         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1298 }, {
1299         .crypto = {
1300                 .cra_name       = "ecb(aes)",
1301                 .cra_blocksize  = AES_BLOCK_SIZE,
1302                 .cra_u          = { .ablkcipher = {
1303                         .min_keysize    = AES_MIN_KEY_SIZE,
1304                         .max_keysize    = AES_MAX_KEY_SIZE,
1305                         }
1306                 }
1307         },
1308         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1309         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1310 }, {
1311         .crypto = {
1312                 .cra_name       = "ctr(aes)",
1313                 .cra_blocksize  = AES_BLOCK_SIZE,
1314                 .cra_u          = { .ablkcipher = {
1315                         .min_keysize    = AES_MIN_KEY_SIZE,
1316                         .max_keysize    = AES_MAX_KEY_SIZE,
1317                         .ivsize         = AES_BLOCK_SIZE,
1318                         .geniv          = "eseqiv",
1319                         }
1320                 }
1321         },
1322         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1323         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1324 }, {
1325         .crypto = {
1326                 .cra_name       = "rfc3686(ctr(aes))",
1327                 .cra_blocksize  = AES_BLOCK_SIZE,
1328                 .cra_u          = { .ablkcipher = {
1329                         .min_keysize    = AES_MIN_KEY_SIZE,
1330                         .max_keysize    = AES_MAX_KEY_SIZE,
1331                         .ivsize         = AES_BLOCK_SIZE,
1332                         .geniv          = "eseqiv",
1333                         .setkey         = ablk_rfc3686_setkey,
1334                         .encrypt        = ablk_rfc3686_crypt,
1335                         .decrypt        = ablk_rfc3686_crypt }
1336                 }
1337         },
1338         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1339         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1340 }, {
1341         .crypto = {
1342                 .cra_name       = "authenc(hmac(md5),cbc(des))",
1343                 .cra_blocksize  = DES_BLOCK_SIZE,
1344                 .cra_u          = { .aead = {
1345                         .ivsize         = DES_BLOCK_SIZE,
1346                         .maxauthsize    = MD5_DIGEST_SIZE,
1347                         }
1348                 }
1349         },
1350         .hash = &hash_alg_md5,
1351         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1352         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1353 }, {
1354         .crypto = {
1355                 .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1356                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1357                 .cra_u          = { .aead = {
1358                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1359                         .maxauthsize    = MD5_DIGEST_SIZE,
1360                         }
1361                 }
1362         },
1363         .hash = &hash_alg_md5,
1364         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1365         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1366 }, {
1367         .crypto = {
1368                 .cra_name       = "authenc(hmac(sha1),cbc(des))",
1369                 .cra_blocksize  = DES_BLOCK_SIZE,
1370                 .cra_u          = { .aead = {
1371                         .ivsize         = DES_BLOCK_SIZE,
1372                         .maxauthsize    = SHA1_DIGEST_SIZE,
1373                         }
1374                 }
1375         },
1376         .hash = &hash_alg_sha1,
1377         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1378         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1379 }, {
1380         .crypto = {
1381                 .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1382                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1383                 .cra_u          = { .aead = {
1384                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1385                         .maxauthsize    = SHA1_DIGEST_SIZE,
1386                         }
1387                 }
1388         },
1389         .hash = &hash_alg_sha1,
1390         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1391         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1392 }, {
1393         .crypto = {
1394                 .cra_name       = "authenc(hmac(md5),cbc(aes))",
1395                 .cra_blocksize  = AES_BLOCK_SIZE,
1396                 .cra_u          = { .aead = {
1397                         .ivsize         = AES_BLOCK_SIZE,
1398                         .maxauthsize    = MD5_DIGEST_SIZE,
1399                         }
1400                 }
1401         },
1402         .hash = &hash_alg_md5,
1403         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1404         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1405 }, {
1406         .crypto = {
1407                 .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1408                 .cra_blocksize  = AES_BLOCK_SIZE,
1409                 .cra_u          = { .aead = {
1410                         .ivsize         = AES_BLOCK_SIZE,
1411                         .maxauthsize    = SHA1_DIGEST_SIZE,
1412                         }
1413                 }
1414         },
1415         .hash = &hash_alg_sha1,
1416         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1417         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1418 } };
1419
1420 #define IXP_POSTFIX "-ixp4xx"
1421 static int __init ixp_module_init(void)
1422 {
1423         int num = ARRAY_SIZE(ixp4xx_algos);
1424         int i,err ;
1425
1426         if (platform_device_register(&pseudo_dev))
1427                 return -ENODEV;
1428
1429         spin_lock_init(&desc_lock);
1430         spin_lock_init(&emerg_lock);
1431
1432         err = init_ixp_crypto();
1433         if (err) {
1434                 platform_device_unregister(&pseudo_dev);
1435                 return err;
1436         }
1437         for (i=0; i< num; i++) {
1438                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1439
1440                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1441                         "%s"IXP_POSTFIX, cra->cra_name) >=
1442                         CRYPTO_MAX_ALG_NAME)
1443                 {
1444                         continue;
1445                 }
1446                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1447                         continue;
1448                 }
1449                 if (!ixp4xx_algos[i].hash) {
1450                         /* block ciphers */
1451                         cra->cra_type = &crypto_ablkcipher_type;
1452                         cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1453                                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1454                                          CRYPTO_ALG_ASYNC;
1455                         if (!cra->cra_ablkcipher.setkey)
1456                                 cra->cra_ablkcipher.setkey = ablk_setkey;
1457                         if (!cra->cra_ablkcipher.encrypt)
1458                                 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1459                         if (!cra->cra_ablkcipher.decrypt)
1460                                 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1461                         cra->cra_init = init_tfm_ablk;
1462                 } else {
1463                         /* authenc */
1464                         cra->cra_type = &crypto_aead_type;
1465                         cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1466                                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1467                                          CRYPTO_ALG_ASYNC;
1468                         cra->cra_aead.setkey = aead_setkey;
1469                         cra->cra_aead.setauthsize = aead_setauthsize;
1470                         cra->cra_aead.encrypt = aead_encrypt;
1471                         cra->cra_aead.decrypt = aead_decrypt;
1472                         cra->cra_aead.givencrypt = aead_givencrypt;
1473                         cra->cra_init = init_tfm_aead;
1474                 }
1475                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1476                 cra->cra_module = THIS_MODULE;
1477                 cra->cra_alignmask = 3;
1478                 cra->cra_priority = 300;
1479                 cra->cra_exit = exit_tfm;
1480                 if (crypto_register_alg(cra))
1481                         printk(KERN_ERR "Failed to register '%s'\n",
1482                                 cra->cra_name);
1483                 else
1484                         ixp4xx_algos[i].registered = 1;
1485         }
1486         return 0;
1487 }
1488
1489 static void __exit ixp_module_exit(void)
1490 {
1491         int num = ARRAY_SIZE(ixp4xx_algos);
1492         int i;
1493
1494         for (i=0; i< num; i++) {
1495                 if (ixp4xx_algos[i].registered)
1496                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1497         }
1498         release_ixp_crypto();
1499         platform_device_unregister(&pseudo_dev);
1500 }
1501
1502 module_init(ixp_module_init);
1503 module_exit(ixp_module_exit);
1504
1505 MODULE_LICENSE("GPL");
1506 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1507 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1508