crypto: qat - use masks for AE groups
[platform/kernel/linux-rpi.git] / drivers / crypto / hifn_795x.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4  * All rights reserved.
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
26
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30                  "PLL reference clock (pci[freq] or ext[freq], default ext)");
31
32 static atomic_t hifn_dev_number;
33
34 #define ACRYPTO_OP_DECRYPT      0
35 #define ACRYPTO_OP_ENCRYPT      1
36 #define ACRYPTO_OP_HMAC         2
37 #define ACRYPTO_OP_RNG          3
38
39 #define ACRYPTO_MODE_ECB                0
40 #define ACRYPTO_MODE_CBC                1
41 #define ACRYPTO_MODE_CFB                2
42 #define ACRYPTO_MODE_OFB                3
43
44 #define ACRYPTO_TYPE_AES_128    0
45 #define ACRYPTO_TYPE_AES_192    1
46 #define ACRYPTO_TYPE_AES_256    2
47 #define ACRYPTO_TYPE_3DES       3
48 #define ACRYPTO_TYPE_DES        4
49
50 #define PCI_VENDOR_ID_HIFN              0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955         0x0020
52 #define PCI_DEVICE_ID_HIFN_7956         0x001d
53
54 /* I/O region sizes */
55
56 #define HIFN_BAR0_SIZE                  0x1000
57 #define HIFN_BAR1_SIZE                  0x2000
58 #define HIFN_BAR2_SIZE                  0x8000
59
60 /* DMA registres */
61
62 #define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
67 #define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
70 #define HIFN_CHIP_ID                    0x98    /* Chip ID */
71
72 /*
73  * Processing Unit Registers (offset from BASEREG0)
74  */
75 #define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
76 #define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
77 #define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
78 #define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
79 #define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
80 #define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
81 #define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
82 #define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
83 #define HIFN_0_SPACESIZE        0x20    /* Register space size */
84
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
87 #define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
88 #define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
89 #define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
90 #define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
91
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
94 #define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
95 #define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
96 #define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
97 #define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
98 #define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
99 #define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
100 #define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
101 #define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
102 #define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
103
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
106 #define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
107 #define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
108 #define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
109 #define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
110 #define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
111 #define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
112 #define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
113 #define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
114 #define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
115 #define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
116 #define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
117 #define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
118 #define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
119 #define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
120 #define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
121 #define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
122 #define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
123 #define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
124 #define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
125 #define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
126 #define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
127 #define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
128
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
131 #define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
132 #define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
133 #define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
134 #define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
135 #define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
136 #define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
137 #define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
138 #define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
139 #define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
140
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
143 #define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
144 #define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
145 #define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
146 #define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
147 #define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
148 #define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
149 #define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
150 #define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
151 #define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
152 #define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
153 #define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
154 #define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
155 #define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
156 #define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
157 #define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
158 #define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
159
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
162 #define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
163
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
166
167 /*
168  * DMA Interface Registers (offset from BASEREG1)
169  */
170 #define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
171 #define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
172 #define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
173 #define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
174 #define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
175 #define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
176 #define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
177 #define HIFN_1_PLL              0x4c    /* 795x: PLL config */
178 #define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
179 #define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
180 #define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
181 #define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
182 #define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
183 #define HIFN_1_REVID            0x98    /* Revision ID */
184 #define HIFN_1_UNLOCK_SECRET1   0xf4
185 #define HIFN_1_UNLOCK_SECRET2   0xfc
186 #define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
187 #define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
188 #define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
189 #define HIFN_1_PUB_OP           0x308   /* Public Operand */
190 #define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
191 #define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
192 #define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
193 #define HIFN_1_RNG_DATA         0x318   /* RNG data */
194 #define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
195 #define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
196
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
199 #define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
200 #define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
201 #define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
202 #define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
203 #define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
204 #define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
205 #define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
206 #define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
207 #define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
208 #define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
209 #define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
210 #define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
211 #define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
212 #define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
213 #define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
214 #define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
215 #define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
216 #define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
217 #define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
218 #define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
219 #define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
220 #define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
221 #define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
222 #define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
223 #define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
224 #define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
225 #define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
226 #define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
227 #define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
228 #define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
229 #define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
230 #define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
231 #define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
232 #define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
233 #define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
234 #define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
235 #define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
236
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
239 #define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
240 #define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
241 #define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
242 #define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
243 #define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
244 #define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
245 #define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
246 #define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
247 #define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
248 #define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
249 #define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
250 #define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
251 #define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
252 #define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
253 #define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
254 #define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
255 #define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
256 #define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
257 #define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
258 #define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
259 #define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
260
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
263 #define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
264 #define HIFN_DMACNFG_UNLOCK     0x00000800
265 #define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
266 #define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
267 #define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
268 #define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
269 #define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
270
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
274 #define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
289
290 #define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
291
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
294
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
297
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
300 #define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
301 #define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
302 #define HIFN_PUBOPLEN_EXP_S     7               /* exponent length shift */
303 #define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
304 #define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
305
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
308 #define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
309 #define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
310 #define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
311 #define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
312 #define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
313 #define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
314 #define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
315 #define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
316 #define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
317 #define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
318 #define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
319 #define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
320 #define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
321 #define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
322 #define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
323 #define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
324 #define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
325 #define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
326 #define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
327
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
330 #define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
331
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
334
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
337
338 #define HIFN_NAMESIZE                   32
339 #define HIFN_MAX_RESULT_ORDER           5
340
341 #define HIFN_D_CMD_RSIZE                (24 * 1)
342 #define HIFN_D_SRC_RSIZE                (80 * 1)
343 #define HIFN_D_DST_RSIZE                (80 * 1)
344 #define HIFN_D_RES_RSIZE                (24 * 1)
345
346 #define HIFN_D_DST_DALIGN               4
347
348 #define HIFN_QUEUE_LENGTH               (HIFN_D_CMD_RSIZE - 1)
349
350 #define AES_MIN_KEY_SIZE                16
351 #define AES_MAX_KEY_SIZE                32
352
353 #define HIFN_DES_KEY_LENGTH             8
354 #define HIFN_3DES_KEY_LENGTH            24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH                  8
357 #define HIFN_AES_IV_LENGTH              16
358 #define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
359
360 #define HIFN_MAC_KEY_LENGTH             64
361 #define HIFN_MD5_LENGTH                 16
362 #define HIFN_SHA1_LENGTH                20
363 #define HIFN_MAC_TRUNC_LENGTH           12
364
365 #define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
366 #define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT                12
368
369 struct hifn_desc {
370         volatile __le32         l;
371         volatile __le32         p;
372 };
373
374 struct hifn_dma {
375         struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE + 1];
376         struct hifn_desc        srcr[HIFN_D_SRC_RSIZE + 1];
377         struct hifn_desc        dstr[HIFN_D_DST_RSIZE + 1];
378         struct hifn_desc        resr[HIFN_D_RES_RSIZE + 1];
379
380         u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381         u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382
383         /*
384          *  Our current positions for insertion and removal from the descriptor
385          *  rings.
386          */
387         volatile int            cmdi, srci, dsti, resi;
388         volatile int            cmdu, srcu, dstu, resu;
389         int                     cmdk, srck, dstk, resk;
390 };
391
392 #define HIFN_FLAG_CMD_BUSY      (1 << 0)
393 #define HIFN_FLAG_SRC_BUSY      (1 << 1)
394 #define HIFN_FLAG_DST_BUSY      (1 << 2)
395 #define HIFN_FLAG_RES_BUSY      (1 << 3)
396 #define HIFN_FLAG_OLD_KEY       (1 << 4)
397
398 #define HIFN_DEFAULT_ACTIVE_NUM 5
399
400 struct hifn_device {
401         char                    name[HIFN_NAMESIZE];
402
403         int                     irq;
404
405         struct pci_dev          *pdev;
406         void __iomem            *bar[3];
407
408         void                    *desc_virt;
409         dma_addr_t              desc_dma;
410
411         u32                     dmareg;
412
413         void                    *sa[HIFN_D_RES_RSIZE];
414
415         spinlock_t              lock;
416
417         u32                     flags;
418         int                     active, started;
419         struct delayed_work     work;
420         unsigned long           reset;
421         unsigned long           success;
422         unsigned long           prev_success;
423
424         u8                      snum;
425
426         struct tasklet_struct   tasklet;
427
428         struct crypto_queue     queue;
429         struct list_head        alg_list;
430
431         unsigned int            pk_clk_freq;
432
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434         unsigned int            rng_wait_time;
435         ktime_t                 rngtime;
436         struct hwrng            rng;
437 #endif
438 };
439
440 #define HIFN_D_LENGTH                   0x0000ffff
441 #define HIFN_D_NOINVALID                0x01000000
442 #define HIFN_D_MASKDONEIRQ              0x02000000
443 #define HIFN_D_DESTOVER                 0x04000000
444 #define HIFN_D_OVER                     0x08000000
445 #define HIFN_D_LAST                     0x20000000
446 #define HIFN_D_JUMP                     0x40000000
447 #define HIFN_D_VALID                    0x80000000
448
449 struct hifn_base_command {
450         volatile __le16         masks;
451         volatile __le16         session_num;
452         volatile __le16         total_source_count;
453         volatile __le16         total_dest_count;
454 };
455
456 #define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
457 #define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
458 #define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
459 #define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
460 #define HIFN_BASE_CMD_DECODE            0x2000
461 #define HIFN_BASE_CMD_SRCLEN_M          0xc000
462 #define HIFN_BASE_CMD_SRCLEN_S          14
463 #define HIFN_BASE_CMD_DSTLEN_M          0x3000
464 #define HIFN_BASE_CMD_DSTLEN_S          12
465 #define HIFN_BASE_CMD_LENMASK_HI        0x30000
466 #define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
467
468 /*
469  * Structure to help build up the command data structure.
470  */
471 struct hifn_crypt_command {
472         volatile __le16         masks;
473         volatile __le16         header_skip;
474         volatile __le16         source_count;
475         volatile __le16         reserved;
476 };
477
478 #define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
479 #define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
480 #define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
481 #define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
482 #define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
483 #define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
484 #define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
485 #define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
486 #define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
487 #define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
488 #define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
489 #define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
490 #define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
491 #define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
492 #define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
493 #define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
494 #define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
495 #define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
496 #define HIFN_CRYPT_CMD_SRCLEN_S         14
497
498 /*
499  * Structure to help build up the command data structure.
500  */
501 struct hifn_mac_command {
502         volatile __le16 masks;
503         volatile __le16 header_skip;
504         volatile __le16 source_count;
505         volatile __le16 reserved;
506 };
507
508 #define HIFN_MAC_CMD_ALG_MASK           0x0001
509 #define HIFN_MAC_CMD_ALG_SHA1           0x0000
510 #define HIFN_MAC_CMD_ALG_MD5            0x0001
511 #define HIFN_MAC_CMD_MODE_MASK          0x000c
512 #define HIFN_MAC_CMD_MODE_HMAC          0x0000
513 #define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
514 #define HIFN_MAC_CMD_MODE_HASH          0x0008
515 #define HIFN_MAC_CMD_MODE_FULL          0x0004
516 #define HIFN_MAC_CMD_TRUNC              0x0010
517 #define HIFN_MAC_CMD_RESULT             0x0020
518 #define HIFN_MAC_CMD_APPEND             0x0040
519 #define HIFN_MAC_CMD_SRCLEN_M           0xc000
520 #define HIFN_MAC_CMD_SRCLEN_S           14
521
522 /*
523  * MAC POS IPsec initiates authentication after encryption on encodes
524  * and before decryption on decodes.
525  */
526 #define HIFN_MAC_CMD_POS_IPSEC          0x0200
527 #define HIFN_MAC_CMD_NEW_KEY            0x0800
528
529 struct hifn_comp_command {
530         volatile __le16         masks;
531         volatile __le16         header_skip;
532         volatile __le16         source_count;
533         volatile __le16         reserved;
534 };
535
536 #define HIFN_COMP_CMD_SRCLEN_M          0xc000
537 #define HIFN_COMP_CMD_SRCLEN_S          14
538 #define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
539 #define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
540 #define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
541 #define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
542 #define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
543 #define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
544 #define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
545 #define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
546
547 struct hifn_base_result {
548         volatile __le16         flags;
549         volatile __le16         session;
550         volatile __le16         src_cnt;                /* 15:0 of source count */
551         volatile __le16         dst_cnt;                /* 15:0 of dest count */
552 };
553
554 #define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
555 #define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
556 #define HIFN_BASE_RES_SRCLEN_S          14
557 #define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
558 #define HIFN_BASE_RES_DSTLEN_S          12
559
560 struct hifn_comp_result {
561         volatile __le16         flags;
562         volatile __le16         crc;
563 };
564
565 #define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
566 #define HIFN_COMP_RES_LCB_S             8
567 #define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
568 #define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
569 #define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
570
571 struct hifn_mac_result {
572         volatile __le16         flags;
573         volatile __le16         reserved;
574         /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
575 };
576
577 #define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
578 #define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
579
580 struct hifn_crypt_result {
581         volatile __le16         flags;
582         volatile __le16         reserved;
583 };
584
585 #define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
586
587 #ifndef HIFN_POLL_FREQUENCY
588 #define HIFN_POLL_FREQUENCY     0x1
589 #endif
590
591 #ifndef HIFN_POLL_SCALAR
592 #define HIFN_POLL_SCALAR        0x0
593 #endif
594
595 #define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
596 #define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
597
598 struct hifn_crypto_alg {
599         struct list_head        entry;
600         struct skcipher_alg     alg;
601         struct hifn_device      *dev;
602 };
603
604 #define ASYNC_SCATTERLIST_CACHE 16
605
606 #define ASYNC_FLAGS_MISALIGNED  (1 << 0)
607
608 struct hifn_cipher_walk {
609         struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
610         u32                     flags;
611         int                     num;
612 };
613
614 struct hifn_context {
615         u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH];
616         struct hifn_device      *dev;
617         unsigned int            keysize;
618 };
619
620 struct hifn_request_context {
621         u8                      *iv;
622         unsigned int            ivsize;
623         u8                      op, type, mode, unused;
624         struct hifn_cipher_walk walk;
625 };
626
627 #define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
628
629 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
630 {
631         return readl(dev->bar[0] + reg);
632 }
633
634 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
635 {
636         return readl(dev->bar[1] + reg);
637 }
638
639 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
640 {
641         writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
642 }
643
644 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
645 {
646         writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
647 }
648
649 static void hifn_wait_puc(struct hifn_device *dev)
650 {
651         int i;
652         u32 ret;
653
654         for (i = 10000; i > 0; --i) {
655                 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
656                 if (!(ret & HIFN_PUCTRL_RESET))
657                         break;
658
659                 udelay(1);
660         }
661
662         if (!i)
663                 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
664 }
665
666 static void hifn_reset_puc(struct hifn_device *dev)
667 {
668         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
669         hifn_wait_puc(dev);
670 }
671
672 static void hifn_stop_device(struct hifn_device *dev)
673 {
674         hifn_write_1(dev, HIFN_1_DMA_CSR,
675                 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
676                 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
677         hifn_write_0(dev, HIFN_0_PUIER, 0);
678         hifn_write_1(dev, HIFN_1_DMA_IER, 0);
679 }
680
681 static void hifn_reset_dma(struct hifn_device *dev, int full)
682 {
683         hifn_stop_device(dev);
684
685         /*
686          * Setting poll frequency and others to 0.
687          */
688         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
689                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
690         mdelay(1);
691
692         /*
693          * Reset DMA.
694          */
695         if (full) {
696                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
697                 mdelay(1);
698         } else {
699                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
700                                 HIFN_DMACNFG_MSTRESET);
701                 hifn_reset_puc(dev);
702         }
703
704         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
705                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
706
707         hifn_reset_puc(dev);
708 }
709
710 static u32 hifn_next_signature(u32 a, u_int cnt)
711 {
712         int i;
713         u32 v;
714
715         for (i = 0; i < cnt; i++) {
716                 /* get the parity */
717                 v = a & 0x80080125;
718                 v ^= v >> 16;
719                 v ^= v >> 8;
720                 v ^= v >> 4;
721                 v ^= v >> 2;
722                 v ^= v >> 1;
723
724                 a = (v & 1) ^ (a << 1);
725         }
726
727         return a;
728 }
729
730 static struct pci2id {
731         u_short         pci_vendor;
732         u_short         pci_prod;
733         char            card_id[13];
734 } pci2id[] = {
735         {
736                 PCI_VENDOR_ID_HIFN,
737                 PCI_DEVICE_ID_HIFN_7955,
738                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
739                   0x00, 0x00, 0x00, 0x00, 0x00 }
740         },
741         {
742                 PCI_VENDOR_ID_HIFN,
743                 PCI_DEVICE_ID_HIFN_7956,
744                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
745                   0x00, 0x00, 0x00, 0x00, 0x00 }
746         }
747 };
748
749 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
750 static int hifn_rng_data_present(struct hwrng *rng, int wait)
751 {
752         struct hifn_device *dev = (struct hifn_device *)rng->priv;
753         s64 nsec;
754
755         nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
756         nsec -= dev->rng_wait_time;
757         if (nsec <= 0)
758                 return 1;
759         if (!wait)
760                 return 0;
761         ndelay(nsec);
762         return 1;
763 }
764
765 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
766 {
767         struct hifn_device *dev = (struct hifn_device *)rng->priv;
768
769         *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
770         dev->rngtime = ktime_get();
771         return 4;
772 }
773
774 static int hifn_register_rng(struct hifn_device *dev)
775 {
776         /*
777          * We must wait at least 256 Pk_clk cycles between two reads of the rng.
778          */
779         dev->rng_wait_time      = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
780                                                    dev->pk_clk_freq) * 256;
781
782         dev->rng.name           = dev->name;
783         dev->rng.data_present   = hifn_rng_data_present;
784         dev->rng.data_read      = hifn_rng_data_read;
785         dev->rng.priv           = (unsigned long)dev;
786
787         return hwrng_register(&dev->rng);
788 }
789
790 static void hifn_unregister_rng(struct hifn_device *dev)
791 {
792         hwrng_unregister(&dev->rng);
793 }
794 #else
795 #define hifn_register_rng(dev)          0
796 #define hifn_unregister_rng(dev)
797 #endif
798
799 static int hifn_init_pubrng(struct hifn_device *dev)
800 {
801         int i;
802
803         hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
804                         HIFN_PUBRST_RESET);
805
806         for (i = 100; i > 0; --i) {
807                 mdelay(1);
808
809                 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
810                         break;
811         }
812
813         if (!i) {
814                 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
815         } else {
816                 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
817                 dev->dmareg |= HIFN_DMAIER_PUBDONE;
818                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
819
820                 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
821         }
822
823         /* Enable RNG engine. */
824
825         hifn_write_1(dev, HIFN_1_RNG_CONFIG,
826                         hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
827         dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
828
829 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
830         /* First value must be discarded */
831         hifn_read_1(dev, HIFN_1_RNG_DATA);
832         dev->rngtime = ktime_get();
833 #endif
834         return 0;
835 }
836
837 static int hifn_enable_crypto(struct hifn_device *dev)
838 {
839         u32 dmacfg, addr;
840         char *offtbl = NULL;
841         int i;
842
843         for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
844                 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
845                                 pci2id[i].pci_prod == dev->pdev->device) {
846                         offtbl = pci2id[i].card_id;
847                         break;
848                 }
849         }
850
851         if (!offtbl) {
852                 dev_err(&dev->pdev->dev, "Unknown card!\n");
853                 return -ENODEV;
854         }
855
856         dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
857
858         hifn_write_1(dev, HIFN_1_DMA_CNFG,
859                         HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
860                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
861         mdelay(1);
862         addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
863         mdelay(1);
864         hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
865         mdelay(1);
866
867         for (i = 0; i < 12; ++i) {
868                 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
869                 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
870
871                 mdelay(1);
872         }
873         hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
874
875         dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
876
877         return 0;
878 }
879
880 static void hifn_init_dma(struct hifn_device *dev)
881 {
882         struct hifn_dma *dma = dev->desc_virt;
883         u32 dptr = dev->desc_dma;
884         int i;
885
886         for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
887                 dma->cmdr[i].p = __cpu_to_le32(dptr +
888                                 offsetof(struct hifn_dma, command_bufs[i][0]));
889         for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
890                 dma->resr[i].p = __cpu_to_le32(dptr +
891                                 offsetof(struct hifn_dma, result_bufs[i][0]));
892
893         /* Setup LAST descriptors. */
894         dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
895                         offsetof(struct hifn_dma, cmdr[0]));
896         dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
897                         offsetof(struct hifn_dma, srcr[0]));
898         dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
899                         offsetof(struct hifn_dma, dstr[0]));
900         dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
901                         offsetof(struct hifn_dma, resr[0]));
902
903         dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
904         dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
905         dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
906 }
907
908 /*
909  * Initialize the PLL. We need to know the frequency of the reference clock
910  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
911  * allows us to operate without the risk of overclocking the chip. If it
912  * actually uses 33MHz, the chip will operate at half the speed, this can be
913  * overridden by specifying the frequency as module parameter (pci33).
914  *
915  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
916  * stable clock and the PCI clock frequency may vary, so the default is the
917  * external clock. There is no way to find out its frequency, we default to
918  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
919  * has an external crystal populated at 66MHz.
920  */
921 static void hifn_init_pll(struct hifn_device *dev)
922 {
923         unsigned int freq, m;
924         u32 pllcfg;
925
926         pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
927
928         if (strncmp(hifn_pll_ref, "ext", 3) == 0)
929                 pllcfg |= HIFN_PLL_REF_CLK_PLL;
930         else
931                 pllcfg |= HIFN_PLL_REF_CLK_HBI;
932
933         if (hifn_pll_ref[3] != '\0')
934                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
935         else {
936                 freq = 66;
937                 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
938                          freq, hifn_pll_ref);
939         }
940
941         m = HIFN_PLL_FCK_MAX / freq;
942
943         pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
944         if (m <= 8)
945                 pllcfg |= HIFN_PLL_IS_1_8;
946         else
947                 pllcfg |= HIFN_PLL_IS_9_12;
948
949         /* Select clock source and enable clock bypass */
950         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
951                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
952
953         /* Let the chip lock to the input clock */
954         mdelay(10);
955
956         /* Disable clock bypass */
957         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
958                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
959
960         /* Switch the engines to the PLL */
961         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
962                      HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
963
964         /*
965          * The Fpk_clk runs at half the total speed. Its frequency is needed to
966          * calculate the minimum time between two reads of the rng. Since 33MHz
967          * is actually 33.333... we overestimate the frequency here, resulting
968          * in slightly larger intervals.
969          */
970         dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
971 }
972
973 static void hifn_init_registers(struct hifn_device *dev)
974 {
975         u32 dptr = dev->desc_dma;
976
977         /* Initialization magic... */
978         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
979         hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
980         hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
981
982         /* write all 4 ring address registers */
983         hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
984                                 offsetof(struct hifn_dma, cmdr[0]));
985         hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
986                                 offsetof(struct hifn_dma, srcr[0]));
987         hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
988                                 offsetof(struct hifn_dma, dstr[0]));
989         hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
990                                 offsetof(struct hifn_dma, resr[0]));
991
992         mdelay(2);
993 #if 0
994         hifn_write_1(dev, HIFN_1_DMA_CSR,
995             HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
996             HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
997             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
998             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
999             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002             HIFN_DMACSR_S_WAIT |
1003             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004             HIFN_DMACSR_C_WAIT |
1005             HIFN_DMACSR_ENGINE |
1006             HIFN_DMACSR_PUBDONE);
1007 #else
1008         hifn_write_1(dev, HIFN_1_DMA_CSR,
1009             HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010             HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016             HIFN_DMACSR_S_WAIT |
1017             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018             HIFN_DMACSR_C_WAIT |
1019             HIFN_DMACSR_ENGINE |
1020             HIFN_DMACSR_PUBDONE);
1021 #endif
1022         hifn_read_1(dev, HIFN_1_DMA_CSR);
1023
1024         dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025             HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026             HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1027             HIFN_DMAIER_ENGINE;
1028         dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1029
1030         hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031         hifn_read_1(dev, HIFN_1_DMA_IER);
1032 #if 0
1033         hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034                     HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035                     HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1036                     HIFN_PUCNFG_DRAM);
1037 #else
1038         hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1039 #endif
1040         hifn_init_pll(dev);
1041
1042         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044             HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045             ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046             ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1047 }
1048
1049 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050                 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1051 {
1052         struct hifn_base_command *base_cmd;
1053         u8 *buf_pos = buf;
1054
1055         base_cmd = (struct hifn_base_command *)buf_pos;
1056         base_cmd->masks = __cpu_to_le16(mask);
1057         base_cmd->total_source_count =
1058                 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059         base_cmd->total_dest_count =
1060                 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1061
1062         dlen >>= 16;
1063         slen >>= 16;
1064         base_cmd->session_num = __cpu_to_le16(snum |
1065             ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066             ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1067
1068         return sizeof(struct hifn_base_command);
1069 }
1070
1071 static int hifn_setup_crypto_command(struct hifn_device *dev,
1072                 u8 *buf, unsigned dlen, unsigned slen,
1073                 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1074 {
1075         struct hifn_dma *dma = dev->desc_virt;
1076         struct hifn_crypt_command *cry_cmd;
1077         u8 *buf_pos = buf;
1078         u16 cmd_len;
1079
1080         cry_cmd = (struct hifn_crypt_command *)buf_pos;
1081
1082         cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1083         dlen >>= 16;
1084         cry_cmd->masks = __cpu_to_le16(mode |
1085                         ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086                          HIFN_CRYPT_CMD_SRCLEN_M));
1087         cry_cmd->header_skip = 0;
1088         cry_cmd->reserved = 0;
1089
1090         buf_pos += sizeof(struct hifn_crypt_command);
1091
1092         dma->cmdu++;
1093         if (dma->cmdu > 1) {
1094                 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1096         }
1097
1098         if (keylen) {
1099                 memcpy(buf_pos, key, keylen);
1100                 buf_pos += keylen;
1101         }
1102         if (ivsize) {
1103                 memcpy(buf_pos, iv, ivsize);
1104                 buf_pos += ivsize;
1105         }
1106
1107         cmd_len = buf_pos - buf;
1108
1109         return cmd_len;
1110 }
1111
1112 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1114                 void *priv, unsigned int nbytes)
1115 {
1116         struct hifn_dma *dma = dev->desc_virt;
1117         int cmd_len, sa_idx;
1118         u8 *buf, *buf_pos;
1119         u16 mask;
1120
1121         sa_idx = dma->cmdi;
1122         buf_pos = buf = dma->command_bufs[dma->cmdi];
1123
1124         mask = 0;
1125         switch (rctx->op) {
1126         case ACRYPTO_OP_DECRYPT:
1127                 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1128                 break;
1129         case ACRYPTO_OP_ENCRYPT:
1130                 mask = HIFN_BASE_CMD_CRYPT;
1131                 break;
1132         case ACRYPTO_OP_HMAC:
1133                 mask = HIFN_BASE_CMD_MAC;
1134                 break;
1135         default:
1136                 goto err_out;
1137         }
1138
1139         buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140                         nbytes, mask, dev->snum);
1141
1142         if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1143                 u16 md = 0;
1144
1145                 if (ctx->keysize)
1146                         md |= HIFN_CRYPT_CMD_NEW_KEY;
1147                 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148                         md |= HIFN_CRYPT_CMD_NEW_IV;
1149
1150                 switch (rctx->mode) {
1151                 case ACRYPTO_MODE_ECB:
1152                         md |= HIFN_CRYPT_CMD_MODE_ECB;
1153                         break;
1154                 case ACRYPTO_MODE_CBC:
1155                         md |= HIFN_CRYPT_CMD_MODE_CBC;
1156                         break;
1157                 case ACRYPTO_MODE_CFB:
1158                         md |= HIFN_CRYPT_CMD_MODE_CFB;
1159                         break;
1160                 case ACRYPTO_MODE_OFB:
1161                         md |= HIFN_CRYPT_CMD_MODE_OFB;
1162                         break;
1163                 default:
1164                         goto err_out;
1165                 }
1166
1167                 switch (rctx->type) {
1168                 case ACRYPTO_TYPE_AES_128:
1169                         if (ctx->keysize != 16)
1170                                 goto err_out;
1171                         md |= HIFN_CRYPT_CMD_KSZ_128 |
1172                                 HIFN_CRYPT_CMD_ALG_AES;
1173                         break;
1174                 case ACRYPTO_TYPE_AES_192:
1175                         if (ctx->keysize != 24)
1176                                 goto err_out;
1177                         md |= HIFN_CRYPT_CMD_KSZ_192 |
1178                                 HIFN_CRYPT_CMD_ALG_AES;
1179                         break;
1180                 case ACRYPTO_TYPE_AES_256:
1181                         if (ctx->keysize != 32)
1182                                 goto err_out;
1183                         md |= HIFN_CRYPT_CMD_KSZ_256 |
1184                                 HIFN_CRYPT_CMD_ALG_AES;
1185                         break;
1186                 case ACRYPTO_TYPE_3DES:
1187                         if (ctx->keysize != 24)
1188                                 goto err_out;
1189                         md |= HIFN_CRYPT_CMD_ALG_3DES;
1190                         break;
1191                 case ACRYPTO_TYPE_DES:
1192                         if (ctx->keysize != 8)
1193                                 goto err_out;
1194                         md |= HIFN_CRYPT_CMD_ALG_DES;
1195                         break;
1196                 default:
1197                         goto err_out;
1198                 }
1199
1200                 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201                                 nbytes, nbytes, ctx->key, ctx->keysize,
1202                                 rctx->iv, rctx->ivsize, md);
1203         }
1204
1205         dev->sa[sa_idx] = priv;
1206         dev->started++;
1207
1208         cmd_len = buf_pos - buf;
1209         dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210                         HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1211
1212         if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213                 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214                         HIFN_D_VALID | HIFN_D_LAST |
1215                         HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1216                 dma->cmdi = 0;
1217         } else {
1218                 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1219         }
1220
1221         if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223                 dev->flags |= HIFN_FLAG_CMD_BUSY;
1224         }
1225         return 0;
1226
1227 err_out:
1228         return -EINVAL;
1229 }
1230
1231 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232                 unsigned int offset, unsigned int size, int last)
1233 {
1234         struct hifn_dma *dma = dev->desc_virt;
1235         int idx;
1236         dma_addr_t addr;
1237
1238         addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1239                             DMA_TO_DEVICE);
1240
1241         idx = dma->srci;
1242
1243         dma->srcr[idx].p = __cpu_to_le32(addr);
1244         dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1245                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1246
1247         if (++idx == HIFN_D_SRC_RSIZE) {
1248                 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1249                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1250                                 (last ? HIFN_D_LAST : 0));
1251                 idx = 0;
1252         }
1253
1254         dma->srci = idx;
1255         dma->srcu++;
1256
1257         if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1258                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1259                 dev->flags |= HIFN_FLAG_SRC_BUSY;
1260         }
1261
1262         return size;
1263 }
1264
1265 static void hifn_setup_res_desc(struct hifn_device *dev)
1266 {
1267         struct hifn_dma *dma = dev->desc_virt;
1268
1269         dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1270                         HIFN_D_VALID | HIFN_D_LAST);
1271         /*
1272          * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1273          *                                      HIFN_D_LAST);
1274          */
1275
1276         if (++dma->resi == HIFN_D_RES_RSIZE) {
1277                 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1278                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1279                 dma->resi = 0;
1280         }
1281
1282         dma->resu++;
1283
1284         if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1285                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1286                 dev->flags |= HIFN_FLAG_RES_BUSY;
1287         }
1288 }
1289
1290 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1291                 unsigned offset, unsigned size, int last)
1292 {
1293         struct hifn_dma *dma = dev->desc_virt;
1294         int idx;
1295         dma_addr_t addr;
1296
1297         addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1298                             DMA_FROM_DEVICE);
1299
1300         idx = dma->dsti;
1301         dma->dstr[idx].p = __cpu_to_le32(addr);
1302         dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1303                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1304
1305         if (++idx == HIFN_D_DST_RSIZE) {
1306                 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1307                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1308                                 (last ? HIFN_D_LAST : 0));
1309                 idx = 0;
1310         }
1311         dma->dsti = idx;
1312         dma->dstu++;
1313
1314         if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1315                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1316                 dev->flags |= HIFN_FLAG_DST_BUSY;
1317         }
1318 }
1319
1320 static int hifn_setup_dma(struct hifn_device *dev,
1321                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1322                 struct scatterlist *src, struct scatterlist *dst,
1323                 unsigned int nbytes, void *priv)
1324 {
1325         struct scatterlist *t;
1326         struct page *spage, *dpage;
1327         unsigned int soff, doff;
1328         unsigned int n, len;
1329
1330         n = nbytes;
1331         while (n) {
1332                 spage = sg_page(src);
1333                 soff = src->offset;
1334                 len = min(src->length, n);
1335
1336                 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1337
1338                 src++;
1339                 n -= len;
1340         }
1341
1342         t = &rctx->walk.cache[0];
1343         n = nbytes;
1344         while (n) {
1345                 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1346                         BUG_ON(!sg_page(t));
1347                         dpage = sg_page(t);
1348                         doff = 0;
1349                         len = t->length;
1350                 } else {
1351                         BUG_ON(!sg_page(dst));
1352                         dpage = sg_page(dst);
1353                         doff = dst->offset;
1354                         len = dst->length;
1355                 }
1356                 len = min(len, n);
1357
1358                 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1359
1360                 dst++;
1361                 t++;
1362                 n -= len;
1363         }
1364
1365         hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1366         hifn_setup_res_desc(dev);
1367         return 0;
1368 }
1369
1370 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1371                 int num, gfp_t gfp_flags)
1372 {
1373         int i;
1374
1375         num = min(ASYNC_SCATTERLIST_CACHE, num);
1376         sg_init_table(w->cache, num);
1377
1378         w->num = 0;
1379         for (i = 0; i < num; ++i) {
1380                 struct page *page = alloc_page(gfp_flags);
1381                 struct scatterlist *s;
1382
1383                 if (!page)
1384                         break;
1385
1386                 s = &w->cache[i];
1387
1388                 sg_set_page(s, page, PAGE_SIZE, 0);
1389                 w->num++;
1390         }
1391
1392         return i;
1393 }
1394
1395 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1396 {
1397         int i;
1398
1399         for (i = 0; i < w->num; ++i) {
1400                 struct scatterlist *s = &w->cache[i];
1401
1402                 __free_page(sg_page(s));
1403
1404                 s->length = 0;
1405         }
1406
1407         w->num = 0;
1408 }
1409
1410 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1411                 unsigned int size, unsigned int *nbytesp)
1412 {
1413         unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1414         int idx = 0;
1415
1416         if (drest < size || size > nbytes)
1417                 return -EINVAL;
1418
1419         while (size) {
1420                 copy = min3(drest, size, dst->length);
1421
1422                 size -= copy;
1423                 drest -= copy;
1424                 nbytes -= copy;
1425
1426                 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1427                          __func__, copy, size, drest, nbytes);
1428
1429                 dst++;
1430                 idx++;
1431         }
1432
1433         *nbytesp = nbytes;
1434         *drestp = drest;
1435
1436         return idx;
1437 }
1438
1439 static int hifn_cipher_walk(struct skcipher_request *req,
1440                 struct hifn_cipher_walk *w)
1441 {
1442         struct scatterlist *dst, *t;
1443         unsigned int nbytes = req->cryptlen, offset, copy, diff;
1444         int idx, tidx, err;
1445
1446         tidx = idx = 0;
1447         offset = 0;
1448         while (nbytes) {
1449                 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1450                         return -EINVAL;
1451
1452                 dst = &req->dst[idx];
1453
1454                 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1455                          __func__, dst->length, dst->offset, offset, nbytes);
1456
1457                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1458                     !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1459                     offset) {
1460                         unsigned slen = min(dst->length - offset, nbytes);
1461                         unsigned dlen = PAGE_SIZE;
1462
1463                         t = &w->cache[idx];
1464
1465                         err = skcipher_add(&dlen, dst, slen, &nbytes);
1466                         if (err < 0)
1467                                 return err;
1468
1469                         idx += err;
1470
1471                         copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1472                         diff = slen & (HIFN_D_DST_DALIGN - 1);
1473
1474                         if (dlen < nbytes) {
1475                                 /*
1476                                  * Destination page does not have enough space
1477                                  * to put there additional blocksized chunk,
1478                                  * so we mark that page as containing only
1479                                  * blocksize aligned chunks:
1480                                  *      t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1481                                  * and increase number of bytes to be processed
1482                                  * in next chunk:
1483                                  *      nbytes += diff;
1484                                  */
1485                                 nbytes += diff;
1486
1487                                 /*
1488                                  * Temporary of course...
1489                                  * Kick author if you will catch this one.
1490                                  */
1491                                 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1492                                        __func__, dlen, nbytes, slen, offset);
1493                                 pr_err("%s: please contact author to fix this "
1494                                        "issue, generally you should not catch "
1495                                        "this path under any condition but who "
1496                                        "knows how did you use crypto code.\n"
1497                                        "Thank you.\n",  __func__);
1498                                 BUG();
1499                         } else {
1500                                 copy += diff + nbytes;
1501
1502                                 dst = &req->dst[idx];
1503
1504                                 err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1505                                 if (err < 0)
1506                                         return err;
1507
1508                                 idx += err;
1509                         }
1510
1511                         t->length = copy;
1512                         t->offset = offset;
1513                 } else {
1514                         nbytes -= min(dst->length, nbytes);
1515                         idx++;
1516                 }
1517
1518                 tidx++;
1519         }
1520
1521         return tidx;
1522 }
1523
1524 static int hifn_setup_session(struct skcipher_request *req)
1525 {
1526         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1527         struct hifn_request_context *rctx = skcipher_request_ctx(req);
1528         struct hifn_device *dev = ctx->dev;
1529         unsigned long dlen, flags;
1530         unsigned int nbytes = req->cryptlen, idx = 0;
1531         int err = -EINVAL, sg_num;
1532         struct scatterlist *dst;
1533
1534         if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1535                 goto err_out_exit;
1536
1537         rctx->walk.flags = 0;
1538
1539         while (nbytes) {
1540                 dst = &req->dst[idx];
1541                 dlen = min(dst->length, nbytes);
1542
1543                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1544                     !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1545                         rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1546
1547                 nbytes -= dlen;
1548                 idx++;
1549         }
1550
1551         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1552                 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1553                 if (err < 0)
1554                         return err;
1555         }
1556
1557         sg_num = hifn_cipher_walk(req, &rctx->walk);
1558         if (sg_num < 0) {
1559                 err = sg_num;
1560                 goto err_out_exit;
1561         }
1562
1563         spin_lock_irqsave(&dev->lock, flags);
1564         if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1565                 err = -EAGAIN;
1566                 goto err_out;
1567         }
1568
1569         err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1570         if (err)
1571                 goto err_out;
1572
1573         dev->snum++;
1574
1575         dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1576         spin_unlock_irqrestore(&dev->lock, flags);
1577
1578         return 0;
1579
1580 err_out:
1581         spin_unlock_irqrestore(&dev->lock, flags);
1582 err_out_exit:
1583         if (err) {
1584                 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1585                          "type: %u, err: %d.\n",
1586                          rctx->iv, rctx->ivsize,
1587                          ctx->key, ctx->keysize,
1588                          rctx->mode, rctx->op, rctx->type, err);
1589         }
1590
1591         return err;
1592 }
1593
1594 static int hifn_start_device(struct hifn_device *dev)
1595 {
1596         int err;
1597
1598         dev->started = dev->active = 0;
1599         hifn_reset_dma(dev, 1);
1600
1601         err = hifn_enable_crypto(dev);
1602         if (err)
1603                 return err;
1604
1605         hifn_reset_puc(dev);
1606
1607         hifn_init_dma(dev);
1608
1609         hifn_init_registers(dev);
1610
1611         hifn_init_pubrng(dev);
1612
1613         return 0;
1614 }
1615
1616 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1617                 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1618 {
1619         unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1620         void *daddr;
1621         int idx = 0;
1622
1623         if (srest < size || size > nbytes)
1624                 return -EINVAL;
1625
1626         while (size) {
1627                 copy = min3(srest, dst->length, size);
1628
1629                 daddr = kmap_atomic(sg_page(dst));
1630                 memcpy(daddr + dst->offset + offset, saddr, copy);
1631                 kunmap_atomic(daddr);
1632
1633                 nbytes -= copy;
1634                 size -= copy;
1635                 srest -= copy;
1636                 saddr += copy;
1637                 offset = 0;
1638
1639                 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1640                          __func__, copy, size, srest, nbytes);
1641
1642                 dst++;
1643                 idx++;
1644         }
1645
1646         *nbytesp = nbytes;
1647         *srestp = srest;
1648
1649         return idx;
1650 }
1651
1652 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1653 {
1654         unsigned long flags;
1655
1656         spin_lock_irqsave(&dev->lock, flags);
1657         dev->sa[i] = NULL;
1658         dev->started--;
1659         if (dev->started < 0)
1660                 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1661                          dev->started);
1662         spin_unlock_irqrestore(&dev->lock, flags);
1663         BUG_ON(dev->started < 0);
1664 }
1665
1666 static void hifn_process_ready(struct skcipher_request *req, int error)
1667 {
1668         struct hifn_request_context *rctx = skcipher_request_ctx(req);
1669
1670         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1671                 unsigned int nbytes = req->cryptlen;
1672                 int idx = 0, err;
1673                 struct scatterlist *dst, *t;
1674                 void *saddr;
1675
1676                 while (nbytes) {
1677                         t = &rctx->walk.cache[idx];
1678                         dst = &req->dst[idx];
1679
1680                         pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1681                                 "sg_page(dst): %p, dst->length: %u, "
1682                                 "nbytes: %u.\n",
1683                                 __func__, sg_page(t), t->length,
1684                                 sg_page(dst), dst->length, nbytes);
1685
1686                         if (!t->length) {
1687                                 nbytes -= min(dst->length, nbytes);
1688                                 idx++;
1689                                 continue;
1690                         }
1691
1692                         saddr = kmap_atomic(sg_page(t));
1693
1694                         err = skcipher_get(saddr, &t->length, t->offset,
1695                                         dst, nbytes, &nbytes);
1696                         if (err < 0) {
1697                                 kunmap_atomic(saddr);
1698                                 break;
1699                         }
1700
1701                         idx += err;
1702                         kunmap_atomic(saddr);
1703                 }
1704
1705                 hifn_cipher_walk_exit(&rctx->walk);
1706         }
1707
1708         skcipher_request_complete(req, error);
1709 }
1710
1711 static void hifn_clear_rings(struct hifn_device *dev, int error)
1712 {
1713         struct hifn_dma *dma = dev->desc_virt;
1714         int i, u;
1715
1716         dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1717                         "k: %d.%d.%d.%d.\n",
1718                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1719                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1720                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1721
1722         i = dma->resk; u = dma->resu;
1723         while (u != 0) {
1724                 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1725                         break;
1726
1727                 if (dev->sa[i]) {
1728                         dev->success++;
1729                         dev->reset = 0;
1730                         hifn_process_ready(dev->sa[i], error);
1731                         hifn_complete_sa(dev, i);
1732                 }
1733
1734                 if (++i == HIFN_D_RES_RSIZE)
1735                         i = 0;
1736                 u--;
1737         }
1738         dma->resk = i; dma->resu = u;
1739
1740         i = dma->srck; u = dma->srcu;
1741         while (u != 0) {
1742                 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1743                         break;
1744                 if (++i == HIFN_D_SRC_RSIZE)
1745                         i = 0;
1746                 u--;
1747         }
1748         dma->srck = i; dma->srcu = u;
1749
1750         i = dma->cmdk; u = dma->cmdu;
1751         while (u != 0) {
1752                 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1753                         break;
1754                 if (++i == HIFN_D_CMD_RSIZE)
1755                         i = 0;
1756                 u--;
1757         }
1758         dma->cmdk = i; dma->cmdu = u;
1759
1760         i = dma->dstk; u = dma->dstu;
1761         while (u != 0) {
1762                 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1763                         break;
1764                 if (++i == HIFN_D_DST_RSIZE)
1765                         i = 0;
1766                 u--;
1767         }
1768         dma->dstk = i; dma->dstu = u;
1769
1770         dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1771                         "k: %d.%d.%d.%d.\n",
1772                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1773                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1774                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1775 }
1776
1777 static void hifn_work(struct work_struct *work)
1778 {
1779         struct delayed_work *dw = to_delayed_work(work);
1780         struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1781         unsigned long flags;
1782         int reset = 0;
1783         u32 r = 0;
1784
1785         spin_lock_irqsave(&dev->lock, flags);
1786         if (dev->active == 0) {
1787                 struct hifn_dma *dma = dev->desc_virt;
1788
1789                 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1790                         dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1791                         r |= HIFN_DMACSR_C_CTRL_DIS;
1792                 }
1793                 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1794                         dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1795                         r |= HIFN_DMACSR_S_CTRL_DIS;
1796                 }
1797                 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1798                         dev->flags &= ~HIFN_FLAG_DST_BUSY;
1799                         r |= HIFN_DMACSR_D_CTRL_DIS;
1800                 }
1801                 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1802                         dev->flags &= ~HIFN_FLAG_RES_BUSY;
1803                         r |= HIFN_DMACSR_R_CTRL_DIS;
1804                 }
1805                 if (r)
1806                         hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1807         } else
1808                 dev->active--;
1809
1810         if ((dev->prev_success == dev->success) && dev->started)
1811                 reset = 1;
1812         dev->prev_success = dev->success;
1813         spin_unlock_irqrestore(&dev->lock, flags);
1814
1815         if (reset) {
1816                 if (++dev->reset >= 5) {
1817                         int i;
1818                         struct hifn_dma *dma = dev->desc_virt;
1819
1820                         dev_info(&dev->pdev->dev,
1821                                  "r: %08x, active: %d, started: %d, "
1822                                  "success: %lu: qlen: %u/%u, reset: %d.\n",
1823                                  r, dev->active, dev->started,
1824                                  dev->success, dev->queue.qlen, dev->queue.max_qlen,
1825                                  reset);
1826
1827                         dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1828                         for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1829                                 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1830                                 if (dev->sa[i]) {
1831                                         hifn_process_ready(dev->sa[i], -ENODEV);
1832                                         hifn_complete_sa(dev, i);
1833                                 }
1834                         }
1835                         pr_info("\n");
1836
1837                         hifn_reset_dma(dev, 1);
1838                         hifn_stop_device(dev);
1839                         hifn_start_device(dev);
1840                         dev->reset = 0;
1841                 }
1842
1843                 tasklet_schedule(&dev->tasklet);
1844         }
1845
1846         schedule_delayed_work(&dev->work, HZ);
1847 }
1848
1849 static irqreturn_t hifn_interrupt(int irq, void *data)
1850 {
1851         struct hifn_device *dev = data;
1852         struct hifn_dma *dma = dev->desc_virt;
1853         u32 dmacsr, restart;
1854
1855         dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1856
1857         dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1858                         "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1859                 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1860                 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1861                 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1862
1863         if ((dmacsr & dev->dmareg) == 0)
1864                 return IRQ_NONE;
1865
1866         hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1867
1868         if (dmacsr & HIFN_DMACSR_ENGINE)
1869                 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1870         if (dmacsr & HIFN_DMACSR_PUBDONE)
1871                 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1872                         hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1873
1874         restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1875         if (restart) {
1876                 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1877
1878                 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1879                          !!(dmacsr & HIFN_DMACSR_R_OVER),
1880                          !!(dmacsr & HIFN_DMACSR_D_OVER),
1881                         puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1882                 if (!!(puisr & HIFN_PUISR_DSTOVER))
1883                         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1884                 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1885                                         HIFN_DMACSR_D_OVER));
1886         }
1887
1888         restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1889                         HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1890         if (restart) {
1891                 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1892                          !!(dmacsr & HIFN_DMACSR_C_ABORT),
1893                          !!(dmacsr & HIFN_DMACSR_S_ABORT),
1894                          !!(dmacsr & HIFN_DMACSR_D_ABORT),
1895                          !!(dmacsr & HIFN_DMACSR_R_ABORT));
1896                 hifn_reset_dma(dev, 1);
1897                 hifn_init_dma(dev);
1898                 hifn_init_registers(dev);
1899         }
1900
1901         if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1902                 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1903                 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1904                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1905         }
1906
1907         tasklet_schedule(&dev->tasklet);
1908
1909         return IRQ_HANDLED;
1910 }
1911
1912 static void hifn_flush(struct hifn_device *dev)
1913 {
1914         unsigned long flags;
1915         struct crypto_async_request *async_req;
1916         struct skcipher_request *req;
1917         struct hifn_dma *dma = dev->desc_virt;
1918         int i;
1919
1920         for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1921                 struct hifn_desc *d = &dma->resr[i];
1922
1923                 if (dev->sa[i]) {
1924                         hifn_process_ready(dev->sa[i],
1925                                 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1926                         hifn_complete_sa(dev, i);
1927                 }
1928         }
1929
1930         spin_lock_irqsave(&dev->lock, flags);
1931         while ((async_req = crypto_dequeue_request(&dev->queue))) {
1932                 req = skcipher_request_cast(async_req);
1933                 spin_unlock_irqrestore(&dev->lock, flags);
1934
1935                 hifn_process_ready(req, -ENODEV);
1936
1937                 spin_lock_irqsave(&dev->lock, flags);
1938         }
1939         spin_unlock_irqrestore(&dev->lock, flags);
1940 }
1941
1942 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1943                 unsigned int len)
1944 {
1945         struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1946         struct hifn_device *dev = ctx->dev;
1947         int err;
1948
1949         err = verify_skcipher_des_key(cipher, key);
1950         if (err)
1951                 return err;
1952
1953         dev->flags &= ~HIFN_FLAG_OLD_KEY;
1954
1955         memcpy(ctx->key, key, len);
1956         ctx->keysize = len;
1957
1958         return 0;
1959 }
1960
1961 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1962                             unsigned int len)
1963 {
1964         struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1965         struct hifn_device *dev = ctx->dev;
1966         int err;
1967
1968         err = verify_skcipher_des3_key(cipher, key);
1969         if (err)
1970                 return err;
1971
1972         dev->flags &= ~HIFN_FLAG_OLD_KEY;
1973
1974         memcpy(ctx->key, key, len);
1975         ctx->keysize = len;
1976
1977         return 0;
1978 }
1979
1980 static int hifn_handle_req(struct skcipher_request *req)
1981 {
1982         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1983         struct hifn_device *dev = ctx->dev;
1984         int err = -EAGAIN;
1985
1986         if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1987                 err = hifn_setup_session(req);
1988
1989         if (err == -EAGAIN) {
1990                 unsigned long flags;
1991
1992                 spin_lock_irqsave(&dev->lock, flags);
1993                 err = crypto_enqueue_request(&dev->queue, &req->base);
1994                 spin_unlock_irqrestore(&dev->lock, flags);
1995         }
1996
1997         return err;
1998 }
1999
2000 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
2001                 u8 type, u8 mode)
2002 {
2003         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2004         struct hifn_request_context *rctx = skcipher_request_ctx(req);
2005         unsigned ivsize;
2006
2007         ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2008
2009         if (req->iv && mode != ACRYPTO_MODE_ECB) {
2010                 if (type == ACRYPTO_TYPE_AES_128)
2011                         ivsize = HIFN_AES_IV_LENGTH;
2012                 else if (type == ACRYPTO_TYPE_DES)
2013                         ivsize = HIFN_DES_KEY_LENGTH;
2014                 else if (type == ACRYPTO_TYPE_3DES)
2015                         ivsize = HIFN_3DES_KEY_LENGTH;
2016         }
2017
2018         if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2019                 if (ctx->keysize == 24)
2020                         type = ACRYPTO_TYPE_AES_192;
2021                 else if (ctx->keysize == 32)
2022                         type = ACRYPTO_TYPE_AES_256;
2023         }
2024
2025         rctx->op = op;
2026         rctx->mode = mode;
2027         rctx->type = type;
2028         rctx->iv = req->iv;
2029         rctx->ivsize = ivsize;
2030
2031         /*
2032          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2034          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2035          */
2036
2037         return hifn_handle_req(req);
2038 }
2039
2040 static int hifn_process_queue(struct hifn_device *dev)
2041 {
2042         struct crypto_async_request *async_req, *backlog;
2043         struct skcipher_request *req;
2044         unsigned long flags;
2045         int err = 0;
2046
2047         while (dev->started < HIFN_QUEUE_LENGTH) {
2048                 spin_lock_irqsave(&dev->lock, flags);
2049                 backlog = crypto_get_backlog(&dev->queue);
2050                 async_req = crypto_dequeue_request(&dev->queue);
2051                 spin_unlock_irqrestore(&dev->lock, flags);
2052
2053                 if (!async_req)
2054                         break;
2055
2056                 if (backlog)
2057                         crypto_request_complete(backlog, -EINPROGRESS);
2058
2059                 req = skcipher_request_cast(async_req);
2060
2061                 err = hifn_handle_req(req);
2062                 if (err)
2063                         break;
2064         }
2065
2066         return err;
2067 }
2068
2069 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2070                 u8 type, u8 mode)
2071 {
2072         int err;
2073         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2074         struct hifn_device *dev = ctx->dev;
2075
2076         err = hifn_setup_crypto_req(req, op, type, mode);
2077         if (err)
2078                 return err;
2079
2080         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2081                 hifn_process_queue(dev);
2082
2083         return -EINPROGRESS;
2084 }
2085
2086 /*
2087  * AES ecryption functions.
2088  */
2089 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2090 {
2091         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2092                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2093 }
2094 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2095 {
2096         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2097                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2098 }
2099 static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
2100 {
2101         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2102                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2103 }
2104 static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
2105 {
2106         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2107                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2108 }
2109
2110 /*
2111  * AES decryption functions.
2112  */
2113 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2114 {
2115         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2116                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2117 }
2118 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2119 {
2120         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2121                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2122 }
2123 static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
2124 {
2125         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2126                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2127 }
2128 static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
2129 {
2130         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2131                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2132 }
2133
2134 /*
2135  * DES ecryption functions.
2136  */
2137 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2138 {
2139         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2140                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2141 }
2142 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2143 {
2144         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2145                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2146 }
2147 static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
2148 {
2149         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2150                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2151 }
2152 static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
2153 {
2154         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2155                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2156 }
2157
2158 /*
2159  * DES decryption functions.
2160  */
2161 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2162 {
2163         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2164                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2165 }
2166 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2167 {
2168         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2169                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2170 }
2171 static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
2172 {
2173         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2174                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2175 }
2176 static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
2177 {
2178         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2179                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2180 }
2181
2182 /*
2183  * 3DES ecryption functions.
2184  */
2185 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2186 {
2187         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2188                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2189 }
2190 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2191 {
2192         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2193                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2194 }
2195 static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
2196 {
2197         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2198                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2199 }
2200 static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
2201 {
2202         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2203                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2204 }
2205
2206 /* 3DES decryption functions. */
2207 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2208 {
2209         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2210                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2211 }
2212 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2213 {
2214         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2215                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2216 }
2217 static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
2218 {
2219         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2220                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2221 }
2222 static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
2223 {
2224         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2225                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2226 }
2227
2228 struct hifn_alg_template {
2229         char name[CRYPTO_MAX_ALG_NAME];
2230         char drv_name[CRYPTO_MAX_ALG_NAME];
2231         unsigned int bsize;
2232         struct skcipher_alg skcipher;
2233 };
2234
2235 static const struct hifn_alg_template hifn_alg_templates[] = {
2236         /*
2237          * 3DES ECB, CBC, CFB and OFB modes.
2238          */
2239         {
2240                 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2241                 .skcipher = {
2242                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2243                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2244                         .setkey         =       hifn_des3_setkey,
2245                         .encrypt        =       hifn_encrypt_3des_cfb,
2246                         .decrypt        =       hifn_decrypt_3des_cfb,
2247                 },
2248         },
2249         {
2250                 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2251                 .skcipher = {
2252                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2253                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2254                         .setkey         =       hifn_des3_setkey,
2255                         .encrypt        =       hifn_encrypt_3des_ofb,
2256                         .decrypt        =       hifn_decrypt_3des_ofb,
2257                 },
2258         },
2259         {
2260                 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2261                 .skcipher = {
2262                         .ivsize         =       HIFN_IV_LENGTH,
2263                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2264                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2265                         .setkey         =       hifn_des3_setkey,
2266                         .encrypt        =       hifn_encrypt_3des_cbc,
2267                         .decrypt        =       hifn_decrypt_3des_cbc,
2268                 },
2269         },
2270         {
2271                 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2272                 .skcipher = {
2273                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2274                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2275                         .setkey         =       hifn_des3_setkey,
2276                         .encrypt        =       hifn_encrypt_3des_ecb,
2277                         .decrypt        =       hifn_decrypt_3des_ecb,
2278                 },
2279         },
2280
2281         /*
2282          * DES ECB, CBC, CFB and OFB modes.
2283          */
2284         {
2285                 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2286                 .skcipher = {
2287                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2288                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2289                         .setkey         =       hifn_setkey,
2290                         .encrypt        =       hifn_encrypt_des_cfb,
2291                         .decrypt        =       hifn_decrypt_des_cfb,
2292                 },
2293         },
2294         {
2295                 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2296                 .skcipher = {
2297                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2298                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2299                         .setkey         =       hifn_setkey,
2300                         .encrypt        =       hifn_encrypt_des_ofb,
2301                         .decrypt        =       hifn_decrypt_des_ofb,
2302                 },
2303         },
2304         {
2305                 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2306                 .skcipher = {
2307                         .ivsize         =       HIFN_IV_LENGTH,
2308                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2309                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2310                         .setkey         =       hifn_setkey,
2311                         .encrypt        =       hifn_encrypt_des_cbc,
2312                         .decrypt        =       hifn_decrypt_des_cbc,
2313                 },
2314         },
2315         {
2316                 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2317                 .skcipher = {
2318                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2319                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2320                         .setkey         =       hifn_setkey,
2321                         .encrypt        =       hifn_encrypt_des_ecb,
2322                         .decrypt        =       hifn_decrypt_des_ecb,
2323                 },
2324         },
2325
2326         /*
2327          * AES ECB, CBC, CFB and OFB modes.
2328          */
2329         {
2330                 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2331                 .skcipher = {
2332                         .min_keysize    =       AES_MIN_KEY_SIZE,
2333                         .max_keysize    =       AES_MAX_KEY_SIZE,
2334                         .setkey         =       hifn_setkey,
2335                         .encrypt        =       hifn_encrypt_aes_ecb,
2336                         .decrypt        =       hifn_decrypt_aes_ecb,
2337                 },
2338         },
2339         {
2340                 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2341                 .skcipher = {
2342                         .ivsize         =       HIFN_AES_IV_LENGTH,
2343                         .min_keysize    =       AES_MIN_KEY_SIZE,
2344                         .max_keysize    =       AES_MAX_KEY_SIZE,
2345                         .setkey         =       hifn_setkey,
2346                         .encrypt        =       hifn_encrypt_aes_cbc,
2347                         .decrypt        =       hifn_decrypt_aes_cbc,
2348                 },
2349         },
2350         {
2351                 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2352                 .skcipher = {
2353                         .min_keysize    =       AES_MIN_KEY_SIZE,
2354                         .max_keysize    =       AES_MAX_KEY_SIZE,
2355                         .setkey         =       hifn_setkey,
2356                         .encrypt        =       hifn_encrypt_aes_cfb,
2357                         .decrypt        =       hifn_decrypt_aes_cfb,
2358                 },
2359         },
2360         {
2361                 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2362                 .skcipher = {
2363                         .min_keysize    =       AES_MIN_KEY_SIZE,
2364                         .max_keysize    =       AES_MAX_KEY_SIZE,
2365                         .setkey         =       hifn_setkey,
2366                         .encrypt        =       hifn_encrypt_aes_ofb,
2367                         .decrypt        =       hifn_decrypt_aes_ofb,
2368                 },
2369         },
2370 };
2371
2372 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2373 {
2374         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2375         struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2376         struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2377
2378         ctx->dev = ha->dev;
2379         crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2380
2381         return 0;
2382 }
2383
2384 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2385 {
2386         struct hifn_crypto_alg *alg;
2387         int err;
2388
2389         alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2390         if (!alg)
2391                 return -ENOMEM;
2392
2393         alg->alg = t->skcipher;
2394         alg->alg.init = hifn_init_tfm;
2395
2396         snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2397         snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2398                  t->drv_name, dev->name);
2399
2400         alg->alg.base.cra_priority = 300;
2401         alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2402         alg->alg.base.cra_blocksize = t->bsize;
2403         alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2404         alg->alg.base.cra_alignmask = 0;
2405         alg->alg.base.cra_module = THIS_MODULE;
2406
2407         alg->dev = dev;
2408
2409         list_add_tail(&alg->entry, &dev->alg_list);
2410
2411         err = crypto_register_skcipher(&alg->alg);
2412         if (err) {
2413                 list_del(&alg->entry);
2414                 kfree(alg);
2415         }
2416
2417         return err;
2418 }
2419
2420 static void hifn_unregister_alg(struct hifn_device *dev)
2421 {
2422         struct hifn_crypto_alg *a, *n;
2423
2424         list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2425                 list_del(&a->entry);
2426                 crypto_unregister_skcipher(&a->alg);
2427                 kfree(a);
2428         }
2429 }
2430
2431 static int hifn_register_alg(struct hifn_device *dev)
2432 {
2433         int i, err;
2434
2435         for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2436                 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2437                 if (err)
2438                         goto err_out_exit;
2439         }
2440
2441         return 0;
2442
2443 err_out_exit:
2444         hifn_unregister_alg(dev);
2445         return err;
2446 }
2447
2448 static void hifn_tasklet_callback(unsigned long data)
2449 {
2450         struct hifn_device *dev = (struct hifn_device *)data;
2451
2452         /*
2453          * This is ok to call this without lock being held,
2454          * althogh it modifies some parameters used in parallel,
2455          * (like dev->success), but they are used in process
2456          * context or update is atomic (like setting dev->sa[i] to NULL).
2457          */
2458         hifn_clear_rings(dev, 0);
2459
2460         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2461                 hifn_process_queue(dev);
2462 }
2463
2464 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2465 {
2466         int err, i;
2467         struct hifn_device *dev;
2468         char name[8];
2469
2470         err = pci_enable_device(pdev);
2471         if (err)
2472                 return err;
2473         pci_set_master(pdev);
2474
2475         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2476         if (err)
2477                 goto err_out_disable_pci_device;
2478
2479         snprintf(name, sizeof(name), "hifn%d",
2480                         atomic_inc_return(&hifn_dev_number) - 1);
2481
2482         err = pci_request_regions(pdev, name);
2483         if (err)
2484                 goto err_out_disable_pci_device;
2485
2486         if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2487             pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2488             pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2489                 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2490                 err = -ENODEV;
2491                 goto err_out_free_regions;
2492         }
2493
2494         dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2495                         GFP_KERNEL);
2496         if (!dev) {
2497                 err = -ENOMEM;
2498                 goto err_out_free_regions;
2499         }
2500
2501         INIT_LIST_HEAD(&dev->alg_list);
2502
2503         snprintf(dev->name, sizeof(dev->name), "%s", name);
2504         spin_lock_init(&dev->lock);
2505
2506         for (i = 0; i < 3; ++i) {
2507                 unsigned long addr, size;
2508
2509                 addr = pci_resource_start(pdev, i);
2510                 size = pci_resource_len(pdev, i);
2511
2512                 dev->bar[i] = ioremap(addr, size);
2513                 if (!dev->bar[i]) {
2514                         err = -ENOMEM;
2515                         goto err_out_unmap_bars;
2516                 }
2517         }
2518
2519         dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2520                                             sizeof(struct hifn_dma),
2521                                             &dev->desc_dma, GFP_KERNEL);
2522         if (!dev->desc_virt) {
2523                 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2524                 err = -ENOMEM;
2525                 goto err_out_unmap_bars;
2526         }
2527
2528         dev->pdev = pdev;
2529         dev->irq = pdev->irq;
2530
2531         for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2532                 dev->sa[i] = NULL;
2533
2534         pci_set_drvdata(pdev, dev);
2535
2536         tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2537
2538         crypto_init_queue(&dev->queue, 1);
2539
2540         err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2541         if (err) {
2542                 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2543                         dev->irq, err);
2544                 dev->irq = 0;
2545                 goto err_out_free_desc;
2546         }
2547
2548         err = hifn_start_device(dev);
2549         if (err)
2550                 goto err_out_free_irq;
2551
2552         err = hifn_register_rng(dev);
2553         if (err)
2554                 goto err_out_stop_device;
2555
2556         err = hifn_register_alg(dev);
2557         if (err)
2558                 goto err_out_unregister_rng;
2559
2560         INIT_DELAYED_WORK(&dev->work, hifn_work);
2561         schedule_delayed_work(&dev->work, HZ);
2562
2563         dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2564                 "successfully registered as %s.\n",
2565                 pci_name(pdev), dev->name);
2566
2567         return 0;
2568
2569 err_out_unregister_rng:
2570         hifn_unregister_rng(dev);
2571 err_out_stop_device:
2572         hifn_reset_dma(dev, 1);
2573         hifn_stop_device(dev);
2574 err_out_free_irq:
2575         free_irq(dev->irq, dev);
2576         tasklet_kill(&dev->tasklet);
2577 err_out_free_desc:
2578         dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2579                           dev->desc_dma);
2580
2581 err_out_unmap_bars:
2582         for (i = 0; i < 3; ++i)
2583                 if (dev->bar[i])
2584                         iounmap(dev->bar[i]);
2585         kfree(dev);
2586
2587 err_out_free_regions:
2588         pci_release_regions(pdev);
2589
2590 err_out_disable_pci_device:
2591         pci_disable_device(pdev);
2592
2593         return err;
2594 }
2595
2596 static void hifn_remove(struct pci_dev *pdev)
2597 {
2598         int i;
2599         struct hifn_device *dev;
2600
2601         dev = pci_get_drvdata(pdev);
2602
2603         if (dev) {
2604                 cancel_delayed_work_sync(&dev->work);
2605
2606                 hifn_unregister_rng(dev);
2607                 hifn_unregister_alg(dev);
2608                 hifn_reset_dma(dev, 1);
2609                 hifn_stop_device(dev);
2610
2611                 free_irq(dev->irq, dev);
2612                 tasklet_kill(&dev->tasklet);
2613
2614                 hifn_flush(dev);
2615
2616                 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2617                                   dev->desc_virt, dev->desc_dma);
2618                 for (i = 0; i < 3; ++i)
2619                         if (dev->bar[i])
2620                                 iounmap(dev->bar[i]);
2621
2622                 kfree(dev);
2623         }
2624
2625         pci_release_regions(pdev);
2626         pci_disable_device(pdev);
2627 }
2628
2629 static struct pci_device_id hifn_pci_tbl[] = {
2630         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2631         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2632         { 0 }
2633 };
2634 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2635
2636 static struct pci_driver hifn_pci_driver = {
2637         .name     = "hifn795x",
2638         .id_table = hifn_pci_tbl,
2639         .probe    = hifn_probe,
2640         .remove   = hifn_remove,
2641 };
2642
2643 static int __init hifn_init(void)
2644 {
2645         unsigned int freq;
2646         int err;
2647
2648         if (strncmp(hifn_pll_ref, "ext", 3) &&
2649             strncmp(hifn_pll_ref, "pci", 3)) {
2650                 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2651                 return -EINVAL;
2652         }
2653
2654         /*
2655          * For the 7955/7956 the reference clock frequency must be in the
2656          * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2657          * but this chip is currently not supported.
2658          */
2659         if (hifn_pll_ref[3] != '\0') {
2660                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2661                 if (freq < 20 || freq > 100) {
2662                         pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2663                                "be in the range of 20-100");
2664                         return -EINVAL;
2665                 }
2666         }
2667
2668         err = pci_register_driver(&hifn_pci_driver);
2669         if (err < 0) {
2670                 pr_err("Failed to register PCI driver for %s device.\n",
2671                        hifn_pci_driver.name);
2672                 return -ENODEV;
2673         }
2674
2675         pr_info("Driver for HIFN 795x crypto accelerator chip "
2676                 "has been successfully registered.\n");
2677
2678         return 0;
2679 }
2680
2681 static void __exit hifn_fini(void)
2682 {
2683         pci_unregister_driver(&hifn_pci_driver);
2684
2685         pr_info("Driver for HIFN 795x crypto accelerator chip "
2686                 "has been successfully unregistered.\n");
2687 }
2688
2689 module_init(hifn_init);
2690 module_exit(hifn_fini);
2691
2692 MODULE_LICENSE("GPL");
2693 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2694 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");