Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[platform/kernel/linux-starfive.git] / drivers / crypto / ccp / ccp-ops.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Cryptographic Coprocessor (CCP) driver
4  *
5  * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  * Author: Gary R Hook <gary.hook@amd.com>
9  */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/pci.h>
14 #include <linux/interrupt.h>
15 #include <crypto/scatterwalk.h>
16 #include <crypto/des.h>
17 #include <linux/ccp.h>
18
19 #include "ccp-dev.h"
20
21 /* SHA initial context values */
22 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
23         cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
24         cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
25         cpu_to_be32(SHA1_H4),
26 };
27
28 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
29         cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
30         cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
31         cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
32         cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
33 };
34
35 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
36         cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
37         cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
38         cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
39         cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
40 };
41
42 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
43         cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
44         cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
45         cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
46         cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
47 };
48
49 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
50         cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
51         cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
52         cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
53         cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
54 };
55
56 #define CCP_NEW_JOBID(ccp)      ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
57                                         ccp_gen_jobid(ccp) : 0)
58
59 static u32 ccp_gen_jobid(struct ccp_device *ccp)
60 {
61         return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
62 }
63
64 static void ccp_sg_free(struct ccp_sg_workarea *wa)
65 {
66         if (wa->dma_count)
67                 dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
68
69         wa->dma_count = 0;
70 }
71
72 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
73                                 struct scatterlist *sg, u64 len,
74                                 enum dma_data_direction dma_dir)
75 {
76         memset(wa, 0, sizeof(*wa));
77
78         wa->sg = sg;
79         if (!sg)
80                 return 0;
81
82         wa->nents = sg_nents_for_len(sg, len);
83         if (wa->nents < 0)
84                 return wa->nents;
85
86         wa->bytes_left = len;
87         wa->sg_used = 0;
88
89         if (len == 0)
90                 return 0;
91
92         if (dma_dir == DMA_NONE)
93                 return 0;
94
95         wa->dma_sg = sg;
96         wa->dma_dev = dev;
97         wa->dma_dir = dma_dir;
98         wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
99         if (!wa->dma_count)
100                 return -ENOMEM;
101
102         return 0;
103 }
104
105 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
106 {
107         unsigned int nbytes = min_t(u64, len, wa->bytes_left);
108
109         if (!wa->sg)
110                 return;
111
112         wa->sg_used += nbytes;
113         wa->bytes_left -= nbytes;
114         if (wa->sg_used == wa->sg->length) {
115                 wa->sg = sg_next(wa->sg);
116                 wa->sg_used = 0;
117         }
118 }
119
120 static void ccp_dm_free(struct ccp_dm_workarea *wa)
121 {
122         if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
123                 if (wa->address)
124                         dma_pool_free(wa->dma_pool, wa->address,
125                                       wa->dma.address);
126         } else {
127                 if (wa->dma.address)
128                         dma_unmap_single(wa->dev, wa->dma.address, wa->length,
129                                          wa->dma.dir);
130                 kfree(wa->address);
131         }
132
133         wa->address = NULL;
134         wa->dma.address = 0;
135 }
136
137 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
138                                 struct ccp_cmd_queue *cmd_q,
139                                 unsigned int len,
140                                 enum dma_data_direction dir)
141 {
142         memset(wa, 0, sizeof(*wa));
143
144         if (!len)
145                 return 0;
146
147         wa->dev = cmd_q->ccp->dev;
148         wa->length = len;
149
150         if (len <= CCP_DMAPOOL_MAX_SIZE) {
151                 wa->dma_pool = cmd_q->dma_pool;
152
153                 wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
154                                              &wa->dma.address);
155                 if (!wa->address)
156                         return -ENOMEM;
157
158                 wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
159
160                 memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
161         } else {
162                 wa->address = kzalloc(len, GFP_KERNEL);
163                 if (!wa->address)
164                         return -ENOMEM;
165
166                 wa->dma.address = dma_map_single(wa->dev, wa->address, len,
167                                                  dir);
168                 if (dma_mapping_error(wa->dev, wa->dma.address))
169                         return -ENOMEM;
170
171                 wa->dma.length = len;
172         }
173         wa->dma.dir = dir;
174
175         return 0;
176 }
177
178 static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
179                            struct scatterlist *sg, unsigned int sg_offset,
180                            unsigned int len)
181 {
182         WARN_ON(!wa->address);
183
184         if (len > (wa->length - wa_offset))
185                 return -EINVAL;
186
187         scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
188                                  0);
189         return 0;
190 }
191
192 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
193                             struct scatterlist *sg, unsigned int sg_offset,
194                             unsigned int len)
195 {
196         WARN_ON(!wa->address);
197
198         scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
199                                  1);
200 }
201
202 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
203                                    unsigned int wa_offset,
204                                    struct scatterlist *sg,
205                                    unsigned int sg_offset,
206                                    unsigned int len)
207 {
208         u8 *p, *q;
209         int     rc;
210
211         rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
212         if (rc)
213                 return rc;
214
215         p = wa->address + wa_offset;
216         q = p + len - 1;
217         while (p < q) {
218                 *p = *p ^ *q;
219                 *q = *p ^ *q;
220                 *p = *p ^ *q;
221                 p++;
222                 q--;
223         }
224         return 0;
225 }
226
227 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
228                                     unsigned int wa_offset,
229                                     struct scatterlist *sg,
230                                     unsigned int sg_offset,
231                                     unsigned int len)
232 {
233         u8 *p, *q;
234
235         p = wa->address + wa_offset;
236         q = p + len - 1;
237         while (p < q) {
238                 *p = *p ^ *q;
239                 *q = *p ^ *q;
240                 *p = *p ^ *q;
241                 p++;
242                 q--;
243         }
244
245         ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
246 }
247
248 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
249 {
250         ccp_dm_free(&data->dm_wa);
251         ccp_sg_free(&data->sg_wa);
252 }
253
254 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
255                          struct scatterlist *sg, u64 sg_len,
256                          unsigned int dm_len,
257                          enum dma_data_direction dir)
258 {
259         int ret;
260
261         memset(data, 0, sizeof(*data));
262
263         ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
264                                    dir);
265         if (ret)
266                 goto e_err;
267
268         ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
269         if (ret)
270                 goto e_err;
271
272         return 0;
273
274 e_err:
275         ccp_free_data(data, cmd_q);
276
277         return ret;
278 }
279
280 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
281 {
282         struct ccp_sg_workarea *sg_wa = &data->sg_wa;
283         struct ccp_dm_workarea *dm_wa = &data->dm_wa;
284         unsigned int buf_count, nbytes;
285
286         /* Clear the buffer if setting it */
287         if (!from)
288                 memset(dm_wa->address, 0, dm_wa->length);
289
290         if (!sg_wa->sg)
291                 return 0;
292
293         /* Perform the copy operation
294          *   nbytes will always be <= UINT_MAX because dm_wa->length is
295          *   an unsigned int
296          */
297         nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
298         scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
299                                  nbytes, from);
300
301         /* Update the structures and generate the count */
302         buf_count = 0;
303         while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
304                 nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
305                              dm_wa->length - buf_count);
306                 nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
307
308                 buf_count += nbytes;
309                 ccp_update_sg_workarea(sg_wa, nbytes);
310         }
311
312         return buf_count;
313 }
314
315 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
316 {
317         return ccp_queue_buf(data, 0);
318 }
319
320 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
321 {
322         return ccp_queue_buf(data, 1);
323 }
324
325 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
326                              struct ccp_op *op, unsigned int block_size,
327                              bool blocksize_op)
328 {
329         unsigned int sg_src_len, sg_dst_len, op_len;
330
331         /* The CCP can only DMA from/to one address each per operation. This
332          * requires that we find the smallest DMA area between the source
333          * and destination. The resulting len values will always be <= UINT_MAX
334          * because the dma length is an unsigned int.
335          */
336         sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
337         sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
338
339         if (dst) {
340                 sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
341                 sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
342                 op_len = min(sg_src_len, sg_dst_len);
343         } else {
344                 op_len = sg_src_len;
345         }
346
347         /* The data operation length will be at least block_size in length
348          * or the smaller of available sg room remaining for the source or
349          * the destination
350          */
351         op_len = max(op_len, block_size);
352
353         /* Unless we have to buffer data, there's no reason to wait */
354         op->soc = 0;
355
356         if (sg_src_len < block_size) {
357                 /* Not enough data in the sg element, so it
358                  * needs to be buffered into a blocksize chunk
359                  */
360                 int cp_len = ccp_fill_queue_buf(src);
361
362                 op->soc = 1;
363                 op->src.u.dma.address = src->dm_wa.dma.address;
364                 op->src.u.dma.offset = 0;
365                 op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
366         } else {
367                 /* Enough data in the sg element, but we need to
368                  * adjust for any previously copied data
369                  */
370                 op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
371                 op->src.u.dma.offset = src->sg_wa.sg_used;
372                 op->src.u.dma.length = op_len & ~(block_size - 1);
373
374                 ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
375         }
376
377         if (dst) {
378                 if (sg_dst_len < block_size) {
379                         /* Not enough room in the sg element or we're on the
380                          * last piece of data (when using padding), so the
381                          * output needs to be buffered into a blocksize chunk
382                          */
383                         op->soc = 1;
384                         op->dst.u.dma.address = dst->dm_wa.dma.address;
385                         op->dst.u.dma.offset = 0;
386                         op->dst.u.dma.length = op->src.u.dma.length;
387                 } else {
388                         /* Enough room in the sg element, but we need to
389                          * adjust for any previously used area
390                          */
391                         op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
392                         op->dst.u.dma.offset = dst->sg_wa.sg_used;
393                         op->dst.u.dma.length = op->src.u.dma.length;
394                 }
395         }
396 }
397
398 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
399                              struct ccp_op *op)
400 {
401         op->init = 0;
402
403         if (dst) {
404                 if (op->dst.u.dma.address == dst->dm_wa.dma.address)
405                         ccp_empty_queue_buf(dst);
406                 else
407                         ccp_update_sg_workarea(&dst->sg_wa,
408                                                op->dst.u.dma.length);
409         }
410 }
411
412 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
413                                struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
414                                u32 byte_swap, bool from)
415 {
416         struct ccp_op op;
417
418         memset(&op, 0, sizeof(op));
419
420         op.cmd_q = cmd_q;
421         op.jobid = jobid;
422         op.eom = 1;
423
424         if (from) {
425                 op.soc = 1;
426                 op.src.type = CCP_MEMTYPE_SB;
427                 op.src.u.sb = sb;
428                 op.dst.type = CCP_MEMTYPE_SYSTEM;
429                 op.dst.u.dma.address = wa->dma.address;
430                 op.dst.u.dma.length = wa->length;
431         } else {
432                 op.src.type = CCP_MEMTYPE_SYSTEM;
433                 op.src.u.dma.address = wa->dma.address;
434                 op.src.u.dma.length = wa->length;
435                 op.dst.type = CCP_MEMTYPE_SB;
436                 op.dst.u.sb = sb;
437         }
438
439         op.u.passthru.byte_swap = byte_swap;
440
441         return cmd_q->ccp->vdata->perform->passthru(&op);
442 }
443
444 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
445                           struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
446                           u32 byte_swap)
447 {
448         return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
449 }
450
451 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
452                             struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
453                             u32 byte_swap)
454 {
455         return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
456 }
457
458 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
459                                 struct ccp_cmd *cmd)
460 {
461         struct ccp_aes_engine *aes = &cmd->u.aes;
462         struct ccp_dm_workarea key, ctx;
463         struct ccp_data src;
464         struct ccp_op op;
465         unsigned int dm_offset;
466         int ret;
467
468         if (!((aes->key_len == AES_KEYSIZE_128) ||
469               (aes->key_len == AES_KEYSIZE_192) ||
470               (aes->key_len == AES_KEYSIZE_256)))
471                 return -EINVAL;
472
473         if (aes->src_len & (AES_BLOCK_SIZE - 1))
474                 return -EINVAL;
475
476         if (aes->iv_len != AES_BLOCK_SIZE)
477                 return -EINVAL;
478
479         if (!aes->key || !aes->iv || !aes->src)
480                 return -EINVAL;
481
482         if (aes->cmac_final) {
483                 if (aes->cmac_key_len != AES_BLOCK_SIZE)
484                         return -EINVAL;
485
486                 if (!aes->cmac_key)
487                         return -EINVAL;
488         }
489
490         BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
491         BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
492
493         ret = -EIO;
494         memset(&op, 0, sizeof(op));
495         op.cmd_q = cmd_q;
496         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
497         op.sb_key = cmd_q->sb_key;
498         op.sb_ctx = cmd_q->sb_ctx;
499         op.init = 1;
500         op.u.aes.type = aes->type;
501         op.u.aes.mode = aes->mode;
502         op.u.aes.action = aes->action;
503
504         /* All supported key sizes fit in a single (32-byte) SB entry
505          * and must be in little endian format. Use the 256-bit byte
506          * swap passthru option to convert from big endian to little
507          * endian.
508          */
509         ret = ccp_init_dm_workarea(&key, cmd_q,
510                                    CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
511                                    DMA_TO_DEVICE);
512         if (ret)
513                 return ret;
514
515         dm_offset = CCP_SB_BYTES - aes->key_len;
516         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
517         if (ret)
518                 goto e_key;
519         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
520                              CCP_PASSTHRU_BYTESWAP_256BIT);
521         if (ret) {
522                 cmd->engine_error = cmd_q->cmd_error;
523                 goto e_key;
524         }
525
526         /* The AES context fits in a single (32-byte) SB entry and
527          * must be in little endian format. Use the 256-bit byte swap
528          * passthru option to convert from big endian to little endian.
529          */
530         ret = ccp_init_dm_workarea(&ctx, cmd_q,
531                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
532                                    DMA_BIDIRECTIONAL);
533         if (ret)
534                 goto e_key;
535
536         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
537         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
538         if (ret)
539                 goto e_ctx;
540         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
541                              CCP_PASSTHRU_BYTESWAP_256BIT);
542         if (ret) {
543                 cmd->engine_error = cmd_q->cmd_error;
544                 goto e_ctx;
545         }
546
547         /* Send data to the CCP AES engine */
548         ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
549                             AES_BLOCK_SIZE, DMA_TO_DEVICE);
550         if (ret)
551                 goto e_ctx;
552
553         while (src.sg_wa.bytes_left) {
554                 ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
555                 if (aes->cmac_final && !src.sg_wa.bytes_left) {
556                         op.eom = 1;
557
558                         /* Push the K1/K2 key to the CCP now */
559                         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
560                                                op.sb_ctx,
561                                                CCP_PASSTHRU_BYTESWAP_256BIT);
562                         if (ret) {
563                                 cmd->engine_error = cmd_q->cmd_error;
564                                 goto e_src;
565                         }
566
567                         ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
568                                               aes->cmac_key_len);
569                         if (ret)
570                                 goto e_src;
571                         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
572                                              CCP_PASSTHRU_BYTESWAP_256BIT);
573                         if (ret) {
574                                 cmd->engine_error = cmd_q->cmd_error;
575                                 goto e_src;
576                         }
577                 }
578
579                 ret = cmd_q->ccp->vdata->perform->aes(&op);
580                 if (ret) {
581                         cmd->engine_error = cmd_q->cmd_error;
582                         goto e_src;
583                 }
584
585                 ccp_process_data(&src, NULL, &op);
586         }
587
588         /* Retrieve the AES context - convert from LE to BE using
589          * 32-byte (256-bit) byteswapping
590          */
591         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
592                                CCP_PASSTHRU_BYTESWAP_256BIT);
593         if (ret) {
594                 cmd->engine_error = cmd_q->cmd_error;
595                 goto e_src;
596         }
597
598         /* ...but we only need AES_BLOCK_SIZE bytes */
599         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
600         ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
601
602 e_src:
603         ccp_free_data(&src, cmd_q);
604
605 e_ctx:
606         ccp_dm_free(&ctx);
607
608 e_key:
609         ccp_dm_free(&key);
610
611         return ret;
612 }
613
614 static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
615                                struct ccp_cmd *cmd)
616 {
617         struct ccp_aes_engine *aes = &cmd->u.aes;
618         struct ccp_dm_workarea key, ctx, final_wa, tag;
619         struct ccp_data src, dst;
620         struct ccp_data aad;
621         struct ccp_op op;
622
623         unsigned long long *final;
624         unsigned int dm_offset;
625         unsigned int ilen;
626         bool in_place = true; /* Default value */
627         int ret;
628
629         struct scatterlist *p_inp, sg_inp[2];
630         struct scatterlist *p_tag, sg_tag[2];
631         struct scatterlist *p_outp, sg_outp[2];
632         struct scatterlist *p_aad;
633
634         if (!aes->iv)
635                 return -EINVAL;
636
637         if (!((aes->key_len == AES_KEYSIZE_128) ||
638                 (aes->key_len == AES_KEYSIZE_192) ||
639                 (aes->key_len == AES_KEYSIZE_256)))
640                 return -EINVAL;
641
642         if (!aes->key) /* Gotta have a key SGL */
643                 return -EINVAL;
644
645         /* First, decompose the source buffer into AAD & PT,
646          * and the destination buffer into AAD, CT & tag, or
647          * the input into CT & tag.
648          * It is expected that the input and output SGs will
649          * be valid, even if the AAD and input lengths are 0.
650          */
651         p_aad = aes->src;
652         p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
653         p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
654         if (aes->action == CCP_AES_ACTION_ENCRYPT) {
655                 ilen = aes->src_len;
656                 p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
657         } else {
658                 /* Input length for decryption includes tag */
659                 ilen = aes->src_len - AES_BLOCK_SIZE;
660                 p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
661         }
662
663         memset(&op, 0, sizeof(op));
664         op.cmd_q = cmd_q;
665         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
666         op.sb_key = cmd_q->sb_key; /* Pre-allocated */
667         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
668         op.init = 1;
669         op.u.aes.type = aes->type;
670
671         /* Copy the key to the LSB */
672         ret = ccp_init_dm_workarea(&key, cmd_q,
673                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
674                                    DMA_TO_DEVICE);
675         if (ret)
676                 return ret;
677
678         dm_offset = CCP_SB_BYTES - aes->key_len;
679         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
680         if (ret)
681                 goto e_key;
682         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
683                              CCP_PASSTHRU_BYTESWAP_256BIT);
684         if (ret) {
685                 cmd->engine_error = cmd_q->cmd_error;
686                 goto e_key;
687         }
688
689         /* Copy the context (IV) to the LSB.
690          * There is an assumption here that the IV is 96 bits in length, plus
691          * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
692          */
693         ret = ccp_init_dm_workarea(&ctx, cmd_q,
694                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
695                                    DMA_BIDIRECTIONAL);
696         if (ret)
697                 goto e_key;
698
699         dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
700         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
701         if (ret)
702                 goto e_ctx;
703
704         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
705                              CCP_PASSTHRU_BYTESWAP_256BIT);
706         if (ret) {
707                 cmd->engine_error = cmd_q->cmd_error;
708                 goto e_ctx;
709         }
710
711         op.init = 1;
712         if (aes->aad_len > 0) {
713                 /* Step 1: Run a GHASH over the Additional Authenticated Data */
714                 ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
715                                     AES_BLOCK_SIZE,
716                                     DMA_TO_DEVICE);
717                 if (ret)
718                         goto e_ctx;
719
720                 op.u.aes.mode = CCP_AES_MODE_GHASH;
721                 op.u.aes.action = CCP_AES_GHASHAAD;
722
723                 while (aad.sg_wa.bytes_left) {
724                         ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
725
726                         ret = cmd_q->ccp->vdata->perform->aes(&op);
727                         if (ret) {
728                                 cmd->engine_error = cmd_q->cmd_error;
729                                 goto e_aad;
730                         }
731
732                         ccp_process_data(&aad, NULL, &op);
733                         op.init = 0;
734                 }
735         }
736
737         op.u.aes.mode = CCP_AES_MODE_GCTR;
738         op.u.aes.action = aes->action;
739
740         if (ilen > 0) {
741                 /* Step 2: Run a GCTR over the plaintext */
742                 in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
743
744                 ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
745                                     AES_BLOCK_SIZE,
746                                     in_place ? DMA_BIDIRECTIONAL
747                                              : DMA_TO_DEVICE);
748                 if (ret)
749                         goto e_ctx;
750
751                 if (in_place) {
752                         dst = src;
753                 } else {
754                         ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
755                                             AES_BLOCK_SIZE, DMA_FROM_DEVICE);
756                         if (ret)
757                                 goto e_src;
758                 }
759
760                 op.soc = 0;
761                 op.eom = 0;
762                 op.init = 1;
763                 while (src.sg_wa.bytes_left) {
764                         ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
765                         if (!src.sg_wa.bytes_left) {
766                                 unsigned int nbytes = aes->src_len
767                                                       % AES_BLOCK_SIZE;
768
769                                 if (nbytes) {
770                                         op.eom = 1;
771                                         op.u.aes.size = (nbytes * 8) - 1;
772                                 }
773                         }
774
775                         ret = cmd_q->ccp->vdata->perform->aes(&op);
776                         if (ret) {
777                                 cmd->engine_error = cmd_q->cmd_error;
778                                 goto e_dst;
779                         }
780
781                         ccp_process_data(&src, &dst, &op);
782                         op.init = 0;
783                 }
784         }
785
786         /* Step 3: Update the IV portion of the context with the original IV */
787         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
788                                CCP_PASSTHRU_BYTESWAP_256BIT);
789         if (ret) {
790                 cmd->engine_error = cmd_q->cmd_error;
791                 goto e_dst;
792         }
793
794         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
795         if (ret)
796                 goto e_dst;
797
798         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
799                              CCP_PASSTHRU_BYTESWAP_256BIT);
800         if (ret) {
801                 cmd->engine_error = cmd_q->cmd_error;
802                 goto e_dst;
803         }
804
805         /* Step 4: Concatenate the lengths of the AAD and source, and
806          * hash that 16 byte buffer.
807          */
808         ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
809                                    DMA_BIDIRECTIONAL);
810         if (ret)
811                 goto e_dst;
812         final = (unsigned long long *) final_wa.address;
813         final[0] = cpu_to_be64(aes->aad_len * 8);
814         final[1] = cpu_to_be64(ilen * 8);
815
816         op.u.aes.mode = CCP_AES_MODE_GHASH;
817         op.u.aes.action = CCP_AES_GHASHFINAL;
818         op.src.type = CCP_MEMTYPE_SYSTEM;
819         op.src.u.dma.address = final_wa.dma.address;
820         op.src.u.dma.length = AES_BLOCK_SIZE;
821         op.dst.type = CCP_MEMTYPE_SYSTEM;
822         op.dst.u.dma.address = final_wa.dma.address;
823         op.dst.u.dma.length = AES_BLOCK_SIZE;
824         op.eom = 1;
825         op.u.aes.size = 0;
826         ret = cmd_q->ccp->vdata->perform->aes(&op);
827         if (ret)
828                 goto e_dst;
829
830         if (aes->action == CCP_AES_ACTION_ENCRYPT) {
831                 /* Put the ciphered tag after the ciphertext. */
832                 ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
833         } else {
834                 /* Does this ciphered tag match the input? */
835                 ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
836                                            DMA_BIDIRECTIONAL);
837                 if (ret)
838                         goto e_tag;
839                 ret = ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
840                 if (ret)
841                         goto e_tag;
842
843                 ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
844                 ccp_dm_free(&tag);
845         }
846
847 e_tag:
848         ccp_dm_free(&final_wa);
849
850 e_dst:
851         if (aes->src_len && !in_place)
852                 ccp_free_data(&dst, cmd_q);
853
854 e_src:
855         if (aes->src_len)
856                 ccp_free_data(&src, cmd_q);
857
858 e_aad:
859         if (aes->aad_len)
860                 ccp_free_data(&aad, cmd_q);
861
862 e_ctx:
863         ccp_dm_free(&ctx);
864
865 e_key:
866         ccp_dm_free(&key);
867
868         return ret;
869 }
870
871 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
872 {
873         struct ccp_aes_engine *aes = &cmd->u.aes;
874         struct ccp_dm_workarea key, ctx;
875         struct ccp_data src, dst;
876         struct ccp_op op;
877         unsigned int dm_offset;
878         bool in_place = false;
879         int ret;
880
881         if (aes->mode == CCP_AES_MODE_CMAC)
882                 return ccp_run_aes_cmac_cmd(cmd_q, cmd);
883
884         if (aes->mode == CCP_AES_MODE_GCM)
885                 return ccp_run_aes_gcm_cmd(cmd_q, cmd);
886
887         if (!((aes->key_len == AES_KEYSIZE_128) ||
888               (aes->key_len == AES_KEYSIZE_192) ||
889               (aes->key_len == AES_KEYSIZE_256)))
890                 return -EINVAL;
891
892         if (((aes->mode == CCP_AES_MODE_ECB) ||
893              (aes->mode == CCP_AES_MODE_CBC)) &&
894             (aes->src_len & (AES_BLOCK_SIZE - 1)))
895                 return -EINVAL;
896
897         if (!aes->key || !aes->src || !aes->dst)
898                 return -EINVAL;
899
900         if (aes->mode != CCP_AES_MODE_ECB) {
901                 if (aes->iv_len != AES_BLOCK_SIZE)
902                         return -EINVAL;
903
904                 if (!aes->iv)
905                         return -EINVAL;
906         }
907
908         BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
909         BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
910
911         ret = -EIO;
912         memset(&op, 0, sizeof(op));
913         op.cmd_q = cmd_q;
914         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
915         op.sb_key = cmd_q->sb_key;
916         op.sb_ctx = cmd_q->sb_ctx;
917         op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
918         op.u.aes.type = aes->type;
919         op.u.aes.mode = aes->mode;
920         op.u.aes.action = aes->action;
921
922         /* All supported key sizes fit in a single (32-byte) SB entry
923          * and must be in little endian format. Use the 256-bit byte
924          * swap passthru option to convert from big endian to little
925          * endian.
926          */
927         ret = ccp_init_dm_workarea(&key, cmd_q,
928                                    CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
929                                    DMA_TO_DEVICE);
930         if (ret)
931                 return ret;
932
933         dm_offset = CCP_SB_BYTES - aes->key_len;
934         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
935         if (ret)
936                 goto e_key;
937         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
938                              CCP_PASSTHRU_BYTESWAP_256BIT);
939         if (ret) {
940                 cmd->engine_error = cmd_q->cmd_error;
941                 goto e_key;
942         }
943
944         /* The AES context fits in a single (32-byte) SB entry and
945          * must be in little endian format. Use the 256-bit byte swap
946          * passthru option to convert from big endian to little endian.
947          */
948         ret = ccp_init_dm_workarea(&ctx, cmd_q,
949                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
950                                    DMA_BIDIRECTIONAL);
951         if (ret)
952                 goto e_key;
953
954         if (aes->mode != CCP_AES_MODE_ECB) {
955                 /* Load the AES context - convert to LE */
956                 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
957                 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
958                 if (ret)
959                         goto e_ctx;
960                 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
961                                      CCP_PASSTHRU_BYTESWAP_256BIT);
962                 if (ret) {
963                         cmd->engine_error = cmd_q->cmd_error;
964                         goto e_ctx;
965                 }
966         }
967         switch (aes->mode) {
968         case CCP_AES_MODE_CFB: /* CFB128 only */
969         case CCP_AES_MODE_CTR:
970                 op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
971                 break;
972         default:
973                 op.u.aes.size = 0;
974         }
975
976         /* Prepare the input and output data workareas. For in-place
977          * operations we need to set the dma direction to BIDIRECTIONAL
978          * and copy the src workarea to the dst workarea.
979          */
980         if (sg_virt(aes->src) == sg_virt(aes->dst))
981                 in_place = true;
982
983         ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
984                             AES_BLOCK_SIZE,
985                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
986         if (ret)
987                 goto e_ctx;
988
989         if (in_place) {
990                 dst = src;
991         } else {
992                 ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
993                                     AES_BLOCK_SIZE, DMA_FROM_DEVICE);
994                 if (ret)
995                         goto e_src;
996         }
997
998         /* Send data to the CCP AES engine */
999         while (src.sg_wa.bytes_left) {
1000                 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1001                 if (!src.sg_wa.bytes_left) {
1002                         op.eom = 1;
1003
1004                         /* Since we don't retrieve the AES context in ECB
1005                          * mode we have to wait for the operation to complete
1006                          * on the last piece of data
1007                          */
1008                         if (aes->mode == CCP_AES_MODE_ECB)
1009                                 op.soc = 1;
1010                 }
1011
1012                 ret = cmd_q->ccp->vdata->perform->aes(&op);
1013                 if (ret) {
1014                         cmd->engine_error = cmd_q->cmd_error;
1015                         goto e_dst;
1016                 }
1017
1018                 ccp_process_data(&src, &dst, &op);
1019         }
1020
1021         if (aes->mode != CCP_AES_MODE_ECB) {
1022                 /* Retrieve the AES context - convert from LE to BE using
1023                  * 32-byte (256-bit) byteswapping
1024                  */
1025                 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1026                                        CCP_PASSTHRU_BYTESWAP_256BIT);
1027                 if (ret) {
1028                         cmd->engine_error = cmd_q->cmd_error;
1029                         goto e_dst;
1030                 }
1031
1032                 /* ...but we only need AES_BLOCK_SIZE bytes */
1033                 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1034                 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1035         }
1036
1037 e_dst:
1038         if (!in_place)
1039                 ccp_free_data(&dst, cmd_q);
1040
1041 e_src:
1042         ccp_free_data(&src, cmd_q);
1043
1044 e_ctx:
1045         ccp_dm_free(&ctx);
1046
1047 e_key:
1048         ccp_dm_free(&key);
1049
1050         return ret;
1051 }
1052
1053 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
1054                                struct ccp_cmd *cmd)
1055 {
1056         struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1057         struct ccp_dm_workarea key, ctx;
1058         struct ccp_data src, dst;
1059         struct ccp_op op;
1060         unsigned int unit_size, dm_offset;
1061         bool in_place = false;
1062         unsigned int sb_count;
1063         enum ccp_aes_type aestype;
1064         int ret;
1065
1066         switch (xts->unit_size) {
1067         case CCP_XTS_AES_UNIT_SIZE_16:
1068                 unit_size = 16;
1069                 break;
1070         case CCP_XTS_AES_UNIT_SIZE_512:
1071                 unit_size = 512;
1072                 break;
1073         case CCP_XTS_AES_UNIT_SIZE_1024:
1074                 unit_size = 1024;
1075                 break;
1076         case CCP_XTS_AES_UNIT_SIZE_2048:
1077                 unit_size = 2048;
1078                 break;
1079         case CCP_XTS_AES_UNIT_SIZE_4096:
1080                 unit_size = 4096;
1081                 break;
1082
1083         default:
1084                 return -EINVAL;
1085         }
1086
1087         if (xts->key_len == AES_KEYSIZE_128)
1088                 aestype = CCP_AES_TYPE_128;
1089         else if (xts->key_len == AES_KEYSIZE_256)
1090                 aestype = CCP_AES_TYPE_256;
1091         else
1092                 return -EINVAL;
1093
1094         if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1095                 return -EINVAL;
1096
1097         if (xts->iv_len != AES_BLOCK_SIZE)
1098                 return -EINVAL;
1099
1100         if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1101                 return -EINVAL;
1102
1103         BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1104         BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1105
1106         ret = -EIO;
1107         memset(&op, 0, sizeof(op));
1108         op.cmd_q = cmd_q;
1109         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1110         op.sb_key = cmd_q->sb_key;
1111         op.sb_ctx = cmd_q->sb_ctx;
1112         op.init = 1;
1113         op.u.xts.type = aestype;
1114         op.u.xts.action = xts->action;
1115         op.u.xts.unit_size = xts->unit_size;
1116
1117         /* A version 3 device only supports 128-bit keys, which fits into a
1118          * single SB entry. A version 5 device uses a 512-bit vector, so two
1119          * SB entries.
1120          */
1121         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1122                 sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1123         else
1124                 sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1125         ret = ccp_init_dm_workarea(&key, cmd_q,
1126                                    sb_count * CCP_SB_BYTES,
1127                                    DMA_TO_DEVICE);
1128         if (ret)
1129                 return ret;
1130
1131         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1132                 /* All supported key sizes must be in little endian format.
1133                  * Use the 256-bit byte swap passthru option to convert from
1134                  * big endian to little endian.
1135                  */
1136                 dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1137                 ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1138                 if (ret)
1139                         goto e_key;
1140                 ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1141                 if (ret)
1142                         goto e_key;
1143         } else {
1144                 /* Version 5 CCPs use a 512-bit space for the key: each portion
1145                  * occupies 256 bits, or one entire slot, and is zero-padded.
1146                  */
1147                 unsigned int pad;
1148
1149                 dm_offset = CCP_SB_BYTES;
1150                 pad = dm_offset - xts->key_len;
1151                 ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1152                 if (ret)
1153                         goto e_key;
1154                 ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1155                                       xts->key_len, xts->key_len);
1156                 if (ret)
1157                         goto e_key;
1158         }
1159         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1160                              CCP_PASSTHRU_BYTESWAP_256BIT);
1161         if (ret) {
1162                 cmd->engine_error = cmd_q->cmd_error;
1163                 goto e_key;
1164         }
1165
1166         /* The AES context fits in a single (32-byte) SB entry and
1167          * for XTS is already in little endian format so no byte swapping
1168          * is needed.
1169          */
1170         ret = ccp_init_dm_workarea(&ctx, cmd_q,
1171                                    CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1172                                    DMA_BIDIRECTIONAL);
1173         if (ret)
1174                 goto e_key;
1175
1176         ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1177         if (ret)
1178                 goto e_ctx;
1179         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1180                              CCP_PASSTHRU_BYTESWAP_NOOP);
1181         if (ret) {
1182                 cmd->engine_error = cmd_q->cmd_error;
1183                 goto e_ctx;
1184         }
1185
1186         /* Prepare the input and output data workareas. For in-place
1187          * operations we need to set the dma direction to BIDIRECTIONAL
1188          * and copy the src workarea to the dst workarea.
1189          */
1190         if (sg_virt(xts->src) == sg_virt(xts->dst))
1191                 in_place = true;
1192
1193         ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1194                             unit_size,
1195                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1196         if (ret)
1197                 goto e_ctx;
1198
1199         if (in_place) {
1200                 dst = src;
1201         } else {
1202                 ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1203                                     unit_size, DMA_FROM_DEVICE);
1204                 if (ret)
1205                         goto e_src;
1206         }
1207
1208         /* Send data to the CCP AES engine */
1209         while (src.sg_wa.bytes_left) {
1210                 ccp_prepare_data(&src, &dst, &op, unit_size, true);
1211                 if (!src.sg_wa.bytes_left)
1212                         op.eom = 1;
1213
1214                 ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1215                 if (ret) {
1216                         cmd->engine_error = cmd_q->cmd_error;
1217                         goto e_dst;
1218                 }
1219
1220                 ccp_process_data(&src, &dst, &op);
1221         }
1222
1223         /* Retrieve the AES context - convert from LE to BE using
1224          * 32-byte (256-bit) byteswapping
1225          */
1226         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1227                                CCP_PASSTHRU_BYTESWAP_256BIT);
1228         if (ret) {
1229                 cmd->engine_error = cmd_q->cmd_error;
1230                 goto e_dst;
1231         }
1232
1233         /* ...but we only need AES_BLOCK_SIZE bytes */
1234         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1235         ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1236
1237 e_dst:
1238         if (!in_place)
1239                 ccp_free_data(&dst, cmd_q);
1240
1241 e_src:
1242         ccp_free_data(&src, cmd_q);
1243
1244 e_ctx:
1245         ccp_dm_free(&ctx);
1246
1247 e_key:
1248         ccp_dm_free(&key);
1249
1250         return ret;
1251 }
1252
1253 static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1254 {
1255         struct ccp_des3_engine *des3 = &cmd->u.des3;
1256
1257         struct ccp_dm_workarea key, ctx;
1258         struct ccp_data src, dst;
1259         struct ccp_op op;
1260         unsigned int dm_offset;
1261         unsigned int len_singlekey;
1262         bool in_place = false;
1263         int ret;
1264
1265         /* Error checks */
1266         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1267                 return -EINVAL;
1268
1269         if (!cmd_q->ccp->vdata->perform->des3)
1270                 return -EINVAL;
1271
1272         if (des3->key_len != DES3_EDE_KEY_SIZE)
1273                 return -EINVAL;
1274
1275         if (((des3->mode == CCP_DES3_MODE_ECB) ||
1276                 (des3->mode == CCP_DES3_MODE_CBC)) &&
1277                 (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1278                 return -EINVAL;
1279
1280         if (!des3->key || !des3->src || !des3->dst)
1281                 return -EINVAL;
1282
1283         if (des3->mode != CCP_DES3_MODE_ECB) {
1284                 if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1285                         return -EINVAL;
1286
1287                 if (!des3->iv)
1288                         return -EINVAL;
1289         }
1290
1291         ret = -EIO;
1292         /* Zero out all the fields of the command desc */
1293         memset(&op, 0, sizeof(op));
1294
1295         /* Set up the Function field */
1296         op.cmd_q = cmd_q;
1297         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1298         op.sb_key = cmd_q->sb_key;
1299
1300         op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1301         op.u.des3.type = des3->type;
1302         op.u.des3.mode = des3->mode;
1303         op.u.des3.action = des3->action;
1304
1305         /*
1306          * All supported key sizes fit in a single (32-byte) KSB entry and
1307          * (like AES) must be in little endian format. Use the 256-bit byte
1308          * swap passthru option to convert from big endian to little endian.
1309          */
1310         ret = ccp_init_dm_workarea(&key, cmd_q,
1311                                    CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1312                                    DMA_TO_DEVICE);
1313         if (ret)
1314                 return ret;
1315
1316         /*
1317          * The contents of the key triplet are in the reverse order of what
1318          * is required by the engine. Copy the 3 pieces individually to put
1319          * them where they belong.
1320          */
1321         dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1322
1323         len_singlekey = des3->key_len / 3;
1324         ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1325                               des3->key, 0, len_singlekey);
1326         if (ret)
1327                 goto e_key;
1328         ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1329                               des3->key, len_singlekey, len_singlekey);
1330         if (ret)
1331                 goto e_key;
1332         ret = ccp_set_dm_area(&key, dm_offset,
1333                               des3->key, 2 * len_singlekey, len_singlekey);
1334         if (ret)
1335                 goto e_key;
1336
1337         /* Copy the key to the SB */
1338         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1339                              CCP_PASSTHRU_BYTESWAP_256BIT);
1340         if (ret) {
1341                 cmd->engine_error = cmd_q->cmd_error;
1342                 goto e_key;
1343         }
1344
1345         /*
1346          * The DES3 context fits in a single (32-byte) KSB entry and
1347          * must be in little endian format. Use the 256-bit byte swap
1348          * passthru option to convert from big endian to little endian.
1349          */
1350         if (des3->mode != CCP_DES3_MODE_ECB) {
1351                 op.sb_ctx = cmd_q->sb_ctx;
1352
1353                 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1354                                            CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1355                                            DMA_BIDIRECTIONAL);
1356                 if (ret)
1357                         goto e_key;
1358
1359                 /* Load the context into the LSB */
1360                 dm_offset = CCP_SB_BYTES - des3->iv_len;
1361                 ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1362                                       des3->iv_len);
1363                 if (ret)
1364                         goto e_ctx;
1365
1366                 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1367                                      CCP_PASSTHRU_BYTESWAP_256BIT);
1368                 if (ret) {
1369                         cmd->engine_error = cmd_q->cmd_error;
1370                         goto e_ctx;
1371                 }
1372         }
1373
1374         /*
1375          * Prepare the input and output data workareas. For in-place
1376          * operations we need to set the dma direction to BIDIRECTIONAL
1377          * and copy the src workarea to the dst workarea.
1378          */
1379         if (sg_virt(des3->src) == sg_virt(des3->dst))
1380                 in_place = true;
1381
1382         ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1383                         DES3_EDE_BLOCK_SIZE,
1384                         in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1385         if (ret)
1386                 goto e_ctx;
1387
1388         if (in_place)
1389                 dst = src;
1390         else {
1391                 ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1392                                 DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1393                 if (ret)
1394                         goto e_src;
1395         }
1396
1397         /* Send data to the CCP DES3 engine */
1398         while (src.sg_wa.bytes_left) {
1399                 ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1400                 if (!src.sg_wa.bytes_left) {
1401                         op.eom = 1;
1402
1403                         /* Since we don't retrieve the context in ECB mode
1404                          * we have to wait for the operation to complete
1405                          * on the last piece of data
1406                          */
1407                         op.soc = 0;
1408                 }
1409
1410                 ret = cmd_q->ccp->vdata->perform->des3(&op);
1411                 if (ret) {
1412                         cmd->engine_error = cmd_q->cmd_error;
1413                         goto e_dst;
1414                 }
1415
1416                 ccp_process_data(&src, &dst, &op);
1417         }
1418
1419         if (des3->mode != CCP_DES3_MODE_ECB) {
1420                 /* Retrieve the context and make BE */
1421                 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1422                                        CCP_PASSTHRU_BYTESWAP_256BIT);
1423                 if (ret) {
1424                         cmd->engine_error = cmd_q->cmd_error;
1425                         goto e_dst;
1426                 }
1427
1428                 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1429                 ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1430                                 DES3_EDE_BLOCK_SIZE);
1431         }
1432 e_dst:
1433         if (!in_place)
1434                 ccp_free_data(&dst, cmd_q);
1435
1436 e_src:
1437         ccp_free_data(&src, cmd_q);
1438
1439 e_ctx:
1440         if (des3->mode != CCP_DES3_MODE_ECB)
1441                 ccp_dm_free(&ctx);
1442
1443 e_key:
1444         ccp_dm_free(&key);
1445
1446         return ret;
1447 }
1448
1449 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1450 {
1451         struct ccp_sha_engine *sha = &cmd->u.sha;
1452         struct ccp_dm_workarea ctx;
1453         struct ccp_data src;
1454         struct ccp_op op;
1455         unsigned int ioffset, ooffset;
1456         unsigned int digest_size;
1457         int sb_count;
1458         const void *init;
1459         u64 block_size;
1460         int ctx_size;
1461         int ret;
1462
1463         switch (sha->type) {
1464         case CCP_SHA_TYPE_1:
1465                 if (sha->ctx_len < SHA1_DIGEST_SIZE)
1466                         return -EINVAL;
1467                 block_size = SHA1_BLOCK_SIZE;
1468                 break;
1469         case CCP_SHA_TYPE_224:
1470                 if (sha->ctx_len < SHA224_DIGEST_SIZE)
1471                         return -EINVAL;
1472                 block_size = SHA224_BLOCK_SIZE;
1473                 break;
1474         case CCP_SHA_TYPE_256:
1475                 if (sha->ctx_len < SHA256_DIGEST_SIZE)
1476                         return -EINVAL;
1477                 block_size = SHA256_BLOCK_SIZE;
1478                 break;
1479         case CCP_SHA_TYPE_384:
1480                 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1481                     || sha->ctx_len < SHA384_DIGEST_SIZE)
1482                         return -EINVAL;
1483                 block_size = SHA384_BLOCK_SIZE;
1484                 break;
1485         case CCP_SHA_TYPE_512:
1486                 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1487                     || sha->ctx_len < SHA512_DIGEST_SIZE)
1488                         return -EINVAL;
1489                 block_size = SHA512_BLOCK_SIZE;
1490                 break;
1491         default:
1492                 return -EINVAL;
1493         }
1494
1495         if (!sha->ctx)
1496                 return -EINVAL;
1497
1498         if (!sha->final && (sha->src_len & (block_size - 1)))
1499                 return -EINVAL;
1500
1501         /* The version 3 device can't handle zero-length input */
1502         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1503
1504                 if (!sha->src_len) {
1505                         unsigned int digest_len;
1506                         const u8 *sha_zero;
1507
1508                         /* Not final, just return */
1509                         if (!sha->final)
1510                                 return 0;
1511
1512                         /* CCP can't do a zero length sha operation so the
1513                          * caller must buffer the data.
1514                          */
1515                         if (sha->msg_bits)
1516                                 return -EINVAL;
1517
1518                         /* The CCP cannot perform zero-length sha operations
1519                          * so the caller is required to buffer data for the
1520                          * final operation. However, a sha operation for a
1521                          * message with a total length of zero is valid so
1522                          * known values are required to supply the result.
1523                          */
1524                         switch (sha->type) {
1525                         case CCP_SHA_TYPE_1:
1526                                 sha_zero = sha1_zero_message_hash;
1527                                 digest_len = SHA1_DIGEST_SIZE;
1528                                 break;
1529                         case CCP_SHA_TYPE_224:
1530                                 sha_zero = sha224_zero_message_hash;
1531                                 digest_len = SHA224_DIGEST_SIZE;
1532                                 break;
1533                         case CCP_SHA_TYPE_256:
1534                                 sha_zero = sha256_zero_message_hash;
1535                                 digest_len = SHA256_DIGEST_SIZE;
1536                                 break;
1537                         default:
1538                                 return -EINVAL;
1539                         }
1540
1541                         scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1542                                                  digest_len, 1);
1543
1544                         return 0;
1545                 }
1546         }
1547
1548         /* Set variables used throughout */
1549         switch (sha->type) {
1550         case CCP_SHA_TYPE_1:
1551                 digest_size = SHA1_DIGEST_SIZE;
1552                 init = (void *) ccp_sha1_init;
1553                 ctx_size = SHA1_DIGEST_SIZE;
1554                 sb_count = 1;
1555                 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1556                         ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1557                 else
1558                         ooffset = ioffset = 0;
1559                 break;
1560         case CCP_SHA_TYPE_224:
1561                 digest_size = SHA224_DIGEST_SIZE;
1562                 init = (void *) ccp_sha224_init;
1563                 ctx_size = SHA256_DIGEST_SIZE;
1564                 sb_count = 1;
1565                 ioffset = 0;
1566                 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1567                         ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1568                 else
1569                         ooffset = 0;
1570                 break;
1571         case CCP_SHA_TYPE_256:
1572                 digest_size = SHA256_DIGEST_SIZE;
1573                 init = (void *) ccp_sha256_init;
1574                 ctx_size = SHA256_DIGEST_SIZE;
1575                 sb_count = 1;
1576                 ooffset = ioffset = 0;
1577                 break;
1578         case CCP_SHA_TYPE_384:
1579                 digest_size = SHA384_DIGEST_SIZE;
1580                 init = (void *) ccp_sha384_init;
1581                 ctx_size = SHA512_DIGEST_SIZE;
1582                 sb_count = 2;
1583                 ioffset = 0;
1584                 ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1585                 break;
1586         case CCP_SHA_TYPE_512:
1587                 digest_size = SHA512_DIGEST_SIZE;
1588                 init = (void *) ccp_sha512_init;
1589                 ctx_size = SHA512_DIGEST_SIZE;
1590                 sb_count = 2;
1591                 ooffset = ioffset = 0;
1592                 break;
1593         default:
1594                 ret = -EINVAL;
1595                 goto e_data;
1596         }
1597
1598         /* For zero-length plaintext the src pointer is ignored;
1599          * otherwise both parts must be valid
1600          */
1601         if (sha->src_len && !sha->src)
1602                 return -EINVAL;
1603
1604         memset(&op, 0, sizeof(op));
1605         op.cmd_q = cmd_q;
1606         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1607         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1608         op.u.sha.type = sha->type;
1609         op.u.sha.msg_bits = sha->msg_bits;
1610
1611         /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1612          * SHA384/512 require 2 adjacent SB slots, with the right half in the
1613          * first slot, and the left half in the second. Each portion must then
1614          * be in little endian format: use the 256-bit byte swap option.
1615          */
1616         ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1617                                    DMA_BIDIRECTIONAL);
1618         if (ret)
1619                 return ret;
1620         if (sha->first) {
1621                 switch (sha->type) {
1622                 case CCP_SHA_TYPE_1:
1623                 case CCP_SHA_TYPE_224:
1624                 case CCP_SHA_TYPE_256:
1625                         memcpy(ctx.address + ioffset, init, ctx_size);
1626                         break;
1627                 case CCP_SHA_TYPE_384:
1628                 case CCP_SHA_TYPE_512:
1629                         memcpy(ctx.address + ctx_size / 2, init,
1630                                ctx_size / 2);
1631                         memcpy(ctx.address, init + ctx_size / 2,
1632                                ctx_size / 2);
1633                         break;
1634                 default:
1635                         ret = -EINVAL;
1636                         goto e_ctx;
1637                 }
1638         } else {
1639                 /* Restore the context */
1640                 ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1641                                       sb_count * CCP_SB_BYTES);
1642                 if (ret)
1643                         goto e_ctx;
1644         }
1645
1646         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1647                              CCP_PASSTHRU_BYTESWAP_256BIT);
1648         if (ret) {
1649                 cmd->engine_error = cmd_q->cmd_error;
1650                 goto e_ctx;
1651         }
1652
1653         if (sha->src) {
1654                 /* Send data to the CCP SHA engine; block_size is set above */
1655                 ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1656                                     block_size, DMA_TO_DEVICE);
1657                 if (ret)
1658                         goto e_ctx;
1659
1660                 while (src.sg_wa.bytes_left) {
1661                         ccp_prepare_data(&src, NULL, &op, block_size, false);
1662                         if (sha->final && !src.sg_wa.bytes_left)
1663                                 op.eom = 1;
1664
1665                         ret = cmd_q->ccp->vdata->perform->sha(&op);
1666                         if (ret) {
1667                                 cmd->engine_error = cmd_q->cmd_error;
1668                                 goto e_data;
1669                         }
1670
1671                         ccp_process_data(&src, NULL, &op);
1672                 }
1673         } else {
1674                 op.eom = 1;
1675                 ret = cmd_q->ccp->vdata->perform->sha(&op);
1676                 if (ret) {
1677                         cmd->engine_error = cmd_q->cmd_error;
1678                         goto e_data;
1679                 }
1680         }
1681
1682         /* Retrieve the SHA context - convert from LE to BE using
1683          * 32-byte (256-bit) byteswapping to BE
1684          */
1685         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1686                                CCP_PASSTHRU_BYTESWAP_256BIT);
1687         if (ret) {
1688                 cmd->engine_error = cmd_q->cmd_error;
1689                 goto e_data;
1690         }
1691
1692         if (sha->final) {
1693                 /* Finishing up, so get the digest */
1694                 switch (sha->type) {
1695                 case CCP_SHA_TYPE_1:
1696                 case CCP_SHA_TYPE_224:
1697                 case CCP_SHA_TYPE_256:
1698                         ccp_get_dm_area(&ctx, ooffset,
1699                                         sha->ctx, 0,
1700                                         digest_size);
1701                         break;
1702                 case CCP_SHA_TYPE_384:
1703                 case CCP_SHA_TYPE_512:
1704                         ccp_get_dm_area(&ctx, 0,
1705                                         sha->ctx, LSB_ITEM_SIZE - ooffset,
1706                                         LSB_ITEM_SIZE);
1707                         ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1708                                         sha->ctx, 0,
1709                                         LSB_ITEM_SIZE - ooffset);
1710                         break;
1711                 default:
1712                         ret = -EINVAL;
1713                         goto e_ctx;
1714                 }
1715         } else {
1716                 /* Stash the context */
1717                 ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1718                                 sb_count * CCP_SB_BYTES);
1719         }
1720
1721         if (sha->final && sha->opad) {
1722                 /* HMAC operation, recursively perform final SHA */
1723                 struct ccp_cmd hmac_cmd;
1724                 struct scatterlist sg;
1725                 u8 *hmac_buf;
1726
1727                 if (sha->opad_len != block_size) {
1728                         ret = -EINVAL;
1729                         goto e_data;
1730                 }
1731
1732                 hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1733                 if (!hmac_buf) {
1734                         ret = -ENOMEM;
1735                         goto e_data;
1736                 }
1737                 sg_init_one(&sg, hmac_buf, block_size + digest_size);
1738
1739                 scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1740                 switch (sha->type) {
1741                 case CCP_SHA_TYPE_1:
1742                 case CCP_SHA_TYPE_224:
1743                 case CCP_SHA_TYPE_256:
1744                         memcpy(hmac_buf + block_size,
1745                                ctx.address + ooffset,
1746                                digest_size);
1747                         break;
1748                 case CCP_SHA_TYPE_384:
1749                 case CCP_SHA_TYPE_512:
1750                         memcpy(hmac_buf + block_size,
1751                                ctx.address + LSB_ITEM_SIZE + ooffset,
1752                                LSB_ITEM_SIZE);
1753                         memcpy(hmac_buf + block_size +
1754                                (LSB_ITEM_SIZE - ooffset),
1755                                ctx.address,
1756                                LSB_ITEM_SIZE);
1757                         break;
1758                 default:
1759                         ret = -EINVAL;
1760                         goto e_ctx;
1761                 }
1762
1763                 memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1764                 hmac_cmd.engine = CCP_ENGINE_SHA;
1765                 hmac_cmd.u.sha.type = sha->type;
1766                 hmac_cmd.u.sha.ctx = sha->ctx;
1767                 hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1768                 hmac_cmd.u.sha.src = &sg;
1769                 hmac_cmd.u.sha.src_len = block_size + digest_size;
1770                 hmac_cmd.u.sha.opad = NULL;
1771                 hmac_cmd.u.sha.opad_len = 0;
1772                 hmac_cmd.u.sha.first = 1;
1773                 hmac_cmd.u.sha.final = 1;
1774                 hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1775
1776                 ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1777                 if (ret)
1778                         cmd->engine_error = hmac_cmd.engine_error;
1779
1780                 kfree(hmac_buf);
1781         }
1782
1783 e_data:
1784         if (sha->src)
1785                 ccp_free_data(&src, cmd_q);
1786
1787 e_ctx:
1788         ccp_dm_free(&ctx);
1789
1790         return ret;
1791 }
1792
1793 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1794 {
1795         struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1796         struct ccp_dm_workarea exp, src, dst;
1797         struct ccp_op op;
1798         unsigned int sb_count, i_len, o_len;
1799         int ret;
1800
1801         /* Check against the maximum allowable size, in bits */
1802         if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1803                 return -EINVAL;
1804
1805         if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1806                 return -EINVAL;
1807
1808         memset(&op, 0, sizeof(op));
1809         op.cmd_q = cmd_q;
1810         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1811
1812         /* The RSA modulus must precede the message being acted upon, so
1813          * it must be copied to a DMA area where the message and the
1814          * modulus can be concatenated.  Therefore the input buffer
1815          * length required is twice the output buffer length (which
1816          * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1817          * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1818          * required.
1819          */
1820         o_len = 32 * ((rsa->key_size + 255) / 256);
1821         i_len = o_len * 2;
1822
1823         sb_count = 0;
1824         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1825                 /* sb_count is the number of storage block slots required
1826                  * for the modulus.
1827                  */
1828                 sb_count = o_len / CCP_SB_BYTES;
1829                 op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1830                                                                 sb_count);
1831                 if (!op.sb_key)
1832                         return -EIO;
1833         } else {
1834                 /* A version 5 device allows a modulus size that will not fit
1835                  * in the LSB, so the command will transfer it from memory.
1836                  * Set the sb key to the default, even though it's not used.
1837                  */
1838                 op.sb_key = cmd_q->sb_key;
1839         }
1840
1841         /* The RSA exponent must be in little endian format. Reverse its
1842          * byte order.
1843          */
1844         ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1845         if (ret)
1846                 goto e_sb;
1847
1848         ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1849         if (ret)
1850                 goto e_exp;
1851
1852         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1853                 /* Copy the exponent to the local storage block, using
1854                  * as many 32-byte blocks as were allocated above. It's
1855                  * already little endian, so no further change is required.
1856                  */
1857                 ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1858                                      CCP_PASSTHRU_BYTESWAP_NOOP);
1859                 if (ret) {
1860                         cmd->engine_error = cmd_q->cmd_error;
1861                         goto e_exp;
1862                 }
1863         } else {
1864                 /* The exponent can be retrieved from memory via DMA. */
1865                 op.exp.u.dma.address = exp.dma.address;
1866                 op.exp.u.dma.offset = 0;
1867         }
1868
1869         /* Concatenate the modulus and the message. Both the modulus and
1870          * the operands must be in little endian format.  Since the input
1871          * is in big endian format it must be converted.
1872          */
1873         ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1874         if (ret)
1875                 goto e_exp;
1876
1877         ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1878         if (ret)
1879                 goto e_src;
1880         ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1881         if (ret)
1882                 goto e_src;
1883
1884         /* Prepare the output area for the operation */
1885         ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1886         if (ret)
1887                 goto e_src;
1888
1889         op.soc = 1;
1890         op.src.u.dma.address = src.dma.address;
1891         op.src.u.dma.offset = 0;
1892         op.src.u.dma.length = i_len;
1893         op.dst.u.dma.address = dst.dma.address;
1894         op.dst.u.dma.offset = 0;
1895         op.dst.u.dma.length = o_len;
1896
1897         op.u.rsa.mod_size = rsa->key_size;
1898         op.u.rsa.input_len = i_len;
1899
1900         ret = cmd_q->ccp->vdata->perform->rsa(&op);
1901         if (ret) {
1902                 cmd->engine_error = cmd_q->cmd_error;
1903                 goto e_dst;
1904         }
1905
1906         ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1907
1908 e_dst:
1909         ccp_dm_free(&dst);
1910
1911 e_src:
1912         ccp_dm_free(&src);
1913
1914 e_exp:
1915         ccp_dm_free(&exp);
1916
1917 e_sb:
1918         if (sb_count)
1919                 cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1920
1921         return ret;
1922 }
1923
1924 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1925                                 struct ccp_cmd *cmd)
1926 {
1927         struct ccp_passthru_engine *pt = &cmd->u.passthru;
1928         struct ccp_dm_workarea mask;
1929         struct ccp_data src, dst;
1930         struct ccp_op op;
1931         bool in_place = false;
1932         unsigned int i;
1933         int ret = 0;
1934
1935         if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1936                 return -EINVAL;
1937
1938         if (!pt->src || !pt->dst)
1939                 return -EINVAL;
1940
1941         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1942                 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1943                         return -EINVAL;
1944                 if (!pt->mask)
1945                         return -EINVAL;
1946         }
1947
1948         BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1949
1950         memset(&op, 0, sizeof(op));
1951         op.cmd_q = cmd_q;
1952         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1953
1954         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1955                 /* Load the mask */
1956                 op.sb_key = cmd_q->sb_key;
1957
1958                 ret = ccp_init_dm_workarea(&mask, cmd_q,
1959                                            CCP_PASSTHRU_SB_COUNT *
1960                                            CCP_SB_BYTES,
1961                                            DMA_TO_DEVICE);
1962                 if (ret)
1963                         return ret;
1964
1965                 ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1966                 if (ret)
1967                         goto e_mask;
1968                 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1969                                      CCP_PASSTHRU_BYTESWAP_NOOP);
1970                 if (ret) {
1971                         cmd->engine_error = cmd_q->cmd_error;
1972                         goto e_mask;
1973                 }
1974         }
1975
1976         /* Prepare the input and output data workareas. For in-place
1977          * operations we need to set the dma direction to BIDIRECTIONAL
1978          * and copy the src workarea to the dst workarea.
1979          */
1980         if (sg_virt(pt->src) == sg_virt(pt->dst))
1981                 in_place = true;
1982
1983         ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1984                             CCP_PASSTHRU_MASKSIZE,
1985                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1986         if (ret)
1987                 goto e_mask;
1988
1989         if (in_place) {
1990                 dst = src;
1991         } else {
1992                 ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
1993                                     CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
1994                 if (ret)
1995                         goto e_src;
1996         }
1997
1998         /* Send data to the CCP Passthru engine
1999          *   Because the CCP engine works on a single source and destination
2000          *   dma address at a time, each entry in the source scatterlist
2001          *   (after the dma_map_sg call) must be less than or equal to the
2002          *   (remaining) length in the destination scatterlist entry and the
2003          *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2004          */
2005         dst.sg_wa.sg_used = 0;
2006         for (i = 1; i <= src.sg_wa.dma_count; i++) {
2007                 if (!dst.sg_wa.sg ||
2008                     (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2009                         ret = -EINVAL;
2010                         goto e_dst;
2011                 }
2012
2013                 if (i == src.sg_wa.dma_count) {
2014                         op.eom = 1;
2015                         op.soc = 1;
2016                 }
2017
2018                 op.src.type = CCP_MEMTYPE_SYSTEM;
2019                 op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2020                 op.src.u.dma.offset = 0;
2021                 op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2022
2023                 op.dst.type = CCP_MEMTYPE_SYSTEM;
2024                 op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2025                 op.dst.u.dma.offset = dst.sg_wa.sg_used;
2026                 op.dst.u.dma.length = op.src.u.dma.length;
2027
2028                 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2029                 if (ret) {
2030                         cmd->engine_error = cmd_q->cmd_error;
2031                         goto e_dst;
2032                 }
2033
2034                 dst.sg_wa.sg_used += src.sg_wa.sg->length;
2035                 if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2036                         dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2037                         dst.sg_wa.sg_used = 0;
2038                 }
2039                 src.sg_wa.sg = sg_next(src.sg_wa.sg);
2040         }
2041
2042 e_dst:
2043         if (!in_place)
2044                 ccp_free_data(&dst, cmd_q);
2045
2046 e_src:
2047         ccp_free_data(&src, cmd_q);
2048
2049 e_mask:
2050         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2051                 ccp_dm_free(&mask);
2052
2053         return ret;
2054 }
2055
2056 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2057                                       struct ccp_cmd *cmd)
2058 {
2059         struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2060         struct ccp_dm_workarea mask;
2061         struct ccp_op op;
2062         int ret;
2063
2064         if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2065                 return -EINVAL;
2066
2067         if (!pt->src_dma || !pt->dst_dma)
2068                 return -EINVAL;
2069
2070         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2071                 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2072                         return -EINVAL;
2073                 if (!pt->mask)
2074                         return -EINVAL;
2075         }
2076
2077         BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2078
2079         memset(&op, 0, sizeof(op));
2080         op.cmd_q = cmd_q;
2081         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2082
2083         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2084                 /* Load the mask */
2085                 op.sb_key = cmd_q->sb_key;
2086
2087                 mask.length = pt->mask_len;
2088                 mask.dma.address = pt->mask;
2089                 mask.dma.length = pt->mask_len;
2090
2091                 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2092                                      CCP_PASSTHRU_BYTESWAP_NOOP);
2093                 if (ret) {
2094                         cmd->engine_error = cmd_q->cmd_error;
2095                         return ret;
2096                 }
2097         }
2098
2099         /* Send data to the CCP Passthru engine */
2100         op.eom = 1;
2101         op.soc = 1;
2102
2103         op.src.type = CCP_MEMTYPE_SYSTEM;
2104         op.src.u.dma.address = pt->src_dma;
2105         op.src.u.dma.offset = 0;
2106         op.src.u.dma.length = pt->src_len;
2107
2108         op.dst.type = CCP_MEMTYPE_SYSTEM;
2109         op.dst.u.dma.address = pt->dst_dma;
2110         op.dst.u.dma.offset = 0;
2111         op.dst.u.dma.length = pt->src_len;
2112
2113         ret = cmd_q->ccp->vdata->perform->passthru(&op);
2114         if (ret)
2115                 cmd->engine_error = cmd_q->cmd_error;
2116
2117         return ret;
2118 }
2119
2120 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2121 {
2122         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2123         struct ccp_dm_workarea src, dst;
2124         struct ccp_op op;
2125         int ret;
2126         u8 *save;
2127
2128         if (!ecc->u.mm.operand_1 ||
2129             (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2130                 return -EINVAL;
2131
2132         if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2133                 if (!ecc->u.mm.operand_2 ||
2134                     (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2135                         return -EINVAL;
2136
2137         if (!ecc->u.mm.result ||
2138             (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2139                 return -EINVAL;
2140
2141         memset(&op, 0, sizeof(op));
2142         op.cmd_q = cmd_q;
2143         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2144
2145         /* Concatenate the modulus and the operands. Both the modulus and
2146          * the operands must be in little endian format.  Since the input
2147          * is in big endian format it must be converted and placed in a
2148          * fixed length buffer.
2149          */
2150         ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2151                                    DMA_TO_DEVICE);
2152         if (ret)
2153                 return ret;
2154
2155         /* Save the workarea address since it is updated in order to perform
2156          * the concatenation
2157          */
2158         save = src.address;
2159
2160         /* Copy the ECC modulus */
2161         ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2162         if (ret)
2163                 goto e_src;
2164         src.address += CCP_ECC_OPERAND_SIZE;
2165
2166         /* Copy the first operand */
2167         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2168                                       ecc->u.mm.operand_1_len);
2169         if (ret)
2170                 goto e_src;
2171         src.address += CCP_ECC_OPERAND_SIZE;
2172
2173         if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2174                 /* Copy the second operand */
2175                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2176                                               ecc->u.mm.operand_2_len);
2177                 if (ret)
2178                         goto e_src;
2179                 src.address += CCP_ECC_OPERAND_SIZE;
2180         }
2181
2182         /* Restore the workarea address */
2183         src.address = save;
2184
2185         /* Prepare the output area for the operation */
2186         ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2187                                    DMA_FROM_DEVICE);
2188         if (ret)
2189                 goto e_src;
2190
2191         op.soc = 1;
2192         op.src.u.dma.address = src.dma.address;
2193         op.src.u.dma.offset = 0;
2194         op.src.u.dma.length = src.length;
2195         op.dst.u.dma.address = dst.dma.address;
2196         op.dst.u.dma.offset = 0;
2197         op.dst.u.dma.length = dst.length;
2198
2199         op.u.ecc.function = cmd->u.ecc.function;
2200
2201         ret = cmd_q->ccp->vdata->perform->ecc(&op);
2202         if (ret) {
2203                 cmd->engine_error = cmd_q->cmd_error;
2204                 goto e_dst;
2205         }
2206
2207         ecc->ecc_result = le16_to_cpup(
2208                 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2209         if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2210                 ret = -EIO;
2211                 goto e_dst;
2212         }
2213
2214         /* Save the ECC result */
2215         ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2216                                 CCP_ECC_MODULUS_BYTES);
2217
2218 e_dst:
2219         ccp_dm_free(&dst);
2220
2221 e_src:
2222         ccp_dm_free(&src);
2223
2224         return ret;
2225 }
2226
2227 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2228 {
2229         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2230         struct ccp_dm_workarea src, dst;
2231         struct ccp_op op;
2232         int ret;
2233         u8 *save;
2234
2235         if (!ecc->u.pm.point_1.x ||
2236             (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2237             !ecc->u.pm.point_1.y ||
2238             (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2239                 return -EINVAL;
2240
2241         if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2242                 if (!ecc->u.pm.point_2.x ||
2243                     (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2244                     !ecc->u.pm.point_2.y ||
2245                     (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2246                         return -EINVAL;
2247         } else {
2248                 if (!ecc->u.pm.domain_a ||
2249                     (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2250                         return -EINVAL;
2251
2252                 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2253                         if (!ecc->u.pm.scalar ||
2254                             (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2255                                 return -EINVAL;
2256         }
2257
2258         if (!ecc->u.pm.result.x ||
2259             (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2260             !ecc->u.pm.result.y ||
2261             (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2262                 return -EINVAL;
2263
2264         memset(&op, 0, sizeof(op));
2265         op.cmd_q = cmd_q;
2266         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2267
2268         /* Concatenate the modulus and the operands. Both the modulus and
2269          * the operands must be in little endian format.  Since the input
2270          * is in big endian format it must be converted and placed in a
2271          * fixed length buffer.
2272          */
2273         ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2274                                    DMA_TO_DEVICE);
2275         if (ret)
2276                 return ret;
2277
2278         /* Save the workarea address since it is updated in order to perform
2279          * the concatenation
2280          */
2281         save = src.address;
2282
2283         /* Copy the ECC modulus */
2284         ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2285         if (ret)
2286                 goto e_src;
2287         src.address += CCP_ECC_OPERAND_SIZE;
2288
2289         /* Copy the first point X and Y coordinate */
2290         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2291                                       ecc->u.pm.point_1.x_len);
2292         if (ret)
2293                 goto e_src;
2294         src.address += CCP_ECC_OPERAND_SIZE;
2295         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2296                                       ecc->u.pm.point_1.y_len);
2297         if (ret)
2298                 goto e_src;
2299         src.address += CCP_ECC_OPERAND_SIZE;
2300
2301         /* Set the first point Z coordinate to 1 */
2302         *src.address = 0x01;
2303         src.address += CCP_ECC_OPERAND_SIZE;
2304
2305         if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2306                 /* Copy the second point X and Y coordinate */
2307                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2308                                               ecc->u.pm.point_2.x_len);
2309                 if (ret)
2310                         goto e_src;
2311                 src.address += CCP_ECC_OPERAND_SIZE;
2312                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2313                                               ecc->u.pm.point_2.y_len);
2314                 if (ret)
2315                         goto e_src;
2316                 src.address += CCP_ECC_OPERAND_SIZE;
2317
2318                 /* Set the second point Z coordinate to 1 */
2319                 *src.address = 0x01;
2320                 src.address += CCP_ECC_OPERAND_SIZE;
2321         } else {
2322                 /* Copy the Domain "a" parameter */
2323                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2324                                               ecc->u.pm.domain_a_len);
2325                 if (ret)
2326                         goto e_src;
2327                 src.address += CCP_ECC_OPERAND_SIZE;
2328
2329                 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2330                         /* Copy the scalar value */
2331                         ret = ccp_reverse_set_dm_area(&src, 0,
2332                                                       ecc->u.pm.scalar, 0,
2333                                                       ecc->u.pm.scalar_len);
2334                         if (ret)
2335                                 goto e_src;
2336                         src.address += CCP_ECC_OPERAND_SIZE;
2337                 }
2338         }
2339
2340         /* Restore the workarea address */
2341         src.address = save;
2342
2343         /* Prepare the output area for the operation */
2344         ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2345                                    DMA_FROM_DEVICE);
2346         if (ret)
2347                 goto e_src;
2348
2349         op.soc = 1;
2350         op.src.u.dma.address = src.dma.address;
2351         op.src.u.dma.offset = 0;
2352         op.src.u.dma.length = src.length;
2353         op.dst.u.dma.address = dst.dma.address;
2354         op.dst.u.dma.offset = 0;
2355         op.dst.u.dma.length = dst.length;
2356
2357         op.u.ecc.function = cmd->u.ecc.function;
2358
2359         ret = cmd_q->ccp->vdata->perform->ecc(&op);
2360         if (ret) {
2361                 cmd->engine_error = cmd_q->cmd_error;
2362                 goto e_dst;
2363         }
2364
2365         ecc->ecc_result = le16_to_cpup(
2366                 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2367         if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2368                 ret = -EIO;
2369                 goto e_dst;
2370         }
2371
2372         /* Save the workarea address since it is updated as we walk through
2373          * to copy the point math result
2374          */
2375         save = dst.address;
2376
2377         /* Save the ECC result X and Y coordinates */
2378         ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2379                                 CCP_ECC_MODULUS_BYTES);
2380         dst.address += CCP_ECC_OUTPUT_SIZE;
2381         ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2382                                 CCP_ECC_MODULUS_BYTES);
2383         dst.address += CCP_ECC_OUTPUT_SIZE;
2384
2385         /* Restore the workarea address */
2386         dst.address = save;
2387
2388 e_dst:
2389         ccp_dm_free(&dst);
2390
2391 e_src:
2392         ccp_dm_free(&src);
2393
2394         return ret;
2395 }
2396
2397 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2398 {
2399         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2400
2401         ecc->ecc_result = 0;
2402
2403         if (!ecc->mod ||
2404             (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2405                 return -EINVAL;
2406
2407         switch (ecc->function) {
2408         case CCP_ECC_FUNCTION_MMUL_384BIT:
2409         case CCP_ECC_FUNCTION_MADD_384BIT:
2410         case CCP_ECC_FUNCTION_MINV_384BIT:
2411                 return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2412
2413         case CCP_ECC_FUNCTION_PADD_384BIT:
2414         case CCP_ECC_FUNCTION_PMUL_384BIT:
2415         case CCP_ECC_FUNCTION_PDBL_384BIT:
2416                 return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2417
2418         default:
2419                 return -EINVAL;
2420         }
2421 }
2422
2423 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2424 {
2425         int ret;
2426
2427         cmd->engine_error = 0;
2428         cmd_q->cmd_error = 0;
2429         cmd_q->int_rcvd = 0;
2430         cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2431
2432         switch (cmd->engine) {
2433         case CCP_ENGINE_AES:
2434                 ret = ccp_run_aes_cmd(cmd_q, cmd);
2435                 break;
2436         case CCP_ENGINE_XTS_AES_128:
2437                 ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2438                 break;
2439         case CCP_ENGINE_DES3:
2440                 ret = ccp_run_des3_cmd(cmd_q, cmd);
2441                 break;
2442         case CCP_ENGINE_SHA:
2443                 ret = ccp_run_sha_cmd(cmd_q, cmd);
2444                 break;
2445         case CCP_ENGINE_RSA:
2446                 ret = ccp_run_rsa_cmd(cmd_q, cmd);
2447                 break;
2448         case CCP_ENGINE_PASSTHRU:
2449                 if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2450                         ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2451                 else
2452                         ret = ccp_run_passthru_cmd(cmd_q, cmd);
2453                 break;
2454         case CCP_ENGINE_ECC:
2455                 ret = ccp_run_ecc_cmd(cmd_q, cmd);
2456                 break;
2457         default:
2458                 ret = -EINVAL;
2459         }
2460
2461         return ret;
2462 }