Merge tag 'pm-6.6-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[platform/kernel/linux-rpi.git] / drivers / crypto / atmel-sha.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL SHA1/SHA256 HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-sham.c drivers.
11  */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/sha1.h>
37 #include <crypto/sha2.h>
38 #include <crypto/hash.h>
39 #include <crypto/internal/hash.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
42
43 #define ATMEL_SHA_PRIORITY      300
44
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY                  BIT(0)
47 #define SHA_FLAGS_FINAL                 BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
50 #define SHA_FLAGS_INIT                  BIT(4)
51 #define SHA_FLAGS_CPU                   BIT(5)
52 #define SHA_FLAGS_DMA_READY             BIT(6)
53 #define SHA_FLAGS_DUMP_REG      BIT(7)
54
55 /* bits[11:8] are reserved. */
56
57 #define SHA_FLAGS_FINUP         BIT(16)
58 #define SHA_FLAGS_SG            BIT(17)
59 #define SHA_FLAGS_ERROR         BIT(23)
60 #define SHA_FLAGS_PAD           BIT(24)
61 #define SHA_FLAGS_RESTORE       BIT(25)
62 #define SHA_FLAGS_IDATAR0       BIT(26)
63 #define SHA_FLAGS_WAIT_DATARDY  BIT(27)
64
65 #define SHA_OP_INIT     0
66 #define SHA_OP_UPDATE   1
67 #define SHA_OP_FINAL    2
68 #define SHA_OP_DIGEST   3
69
70 #define SHA_BUFFER_LEN          (PAGE_SIZE / 16)
71
72 #define ATMEL_SHA_DMA_THRESHOLD         56
73
74 struct atmel_sha_caps {
75         bool    has_dma;
76         bool    has_dualbuff;
77         bool    has_sha224;
78         bool    has_sha_384_512;
79         bool    has_uihv;
80         bool    has_hmac;
81 };
82
83 struct atmel_sha_dev;
84
85 /*
86  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87  * tested by the ahash_prepare_alg() function.
88  */
89 struct atmel_sha_reqctx {
90         struct atmel_sha_dev    *dd;
91         unsigned long   flags;
92         unsigned long   op;
93
94         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
95         u64     digcnt[2];
96         size_t  bufcnt;
97         size_t  buflen;
98         dma_addr_t      dma_addr;
99
100         /* walk state */
101         struct scatterlist      *sg;
102         unsigned int    offset; /* offset in current sg */
103         unsigned int    total;  /* total request */
104
105         size_t block_size;
106         size_t hash_size;
107
108         u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
109 };
110
111 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
112
113 struct atmel_sha_ctx {
114         struct atmel_sha_dev    *dd;
115         atmel_sha_fn_t          start;
116
117         unsigned long           flags;
118 };
119
120 #define ATMEL_SHA_QUEUE_LENGTH  50
121
122 struct atmel_sha_dma {
123         struct dma_chan                 *chan;
124         struct dma_slave_config dma_conf;
125         struct scatterlist      *sg;
126         int                     nents;
127         unsigned int            last_sg_length;
128 };
129
130 struct atmel_sha_dev {
131         struct list_head        list;
132         unsigned long           phys_base;
133         struct device           *dev;
134         struct clk                      *iclk;
135         int                                     irq;
136         void __iomem            *io_base;
137
138         spinlock_t              lock;
139         struct tasklet_struct   done_task;
140         struct tasklet_struct   queue_task;
141
142         unsigned long           flags;
143         struct crypto_queue     queue;
144         struct ahash_request    *req;
145         bool                    is_async;
146         bool                    force_complete;
147         atmel_sha_fn_t          resume;
148         atmel_sha_fn_t          cpu_transfer_complete;
149
150         struct atmel_sha_dma    dma_lch_in;
151
152         struct atmel_sha_caps   caps;
153
154         struct scatterlist      tmp;
155
156         u32     hw_version;
157 };
158
159 struct atmel_sha_drv {
160         struct list_head        dev_list;
161         spinlock_t              lock;
162 };
163
164 static struct atmel_sha_drv atmel_sha = {
165         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
166         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
167 };
168
169 #ifdef VERBOSE_DEBUG
170 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
171 {
172         switch (offset) {
173         case SHA_CR:
174                 return "CR";
175
176         case SHA_MR:
177                 return "MR";
178
179         case SHA_IER:
180                 return "IER";
181
182         case SHA_IDR:
183                 return "IDR";
184
185         case SHA_IMR:
186                 return "IMR";
187
188         case SHA_ISR:
189                 return "ISR";
190
191         case SHA_MSR:
192                 return "MSR";
193
194         case SHA_BCR:
195                 return "BCR";
196
197         case SHA_REG_DIN(0):
198         case SHA_REG_DIN(1):
199         case SHA_REG_DIN(2):
200         case SHA_REG_DIN(3):
201         case SHA_REG_DIN(4):
202         case SHA_REG_DIN(5):
203         case SHA_REG_DIN(6):
204         case SHA_REG_DIN(7):
205         case SHA_REG_DIN(8):
206         case SHA_REG_DIN(9):
207         case SHA_REG_DIN(10):
208         case SHA_REG_DIN(11):
209         case SHA_REG_DIN(12):
210         case SHA_REG_DIN(13):
211         case SHA_REG_DIN(14):
212         case SHA_REG_DIN(15):
213                 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
214                 break;
215
216         case SHA_REG_DIGEST(0):
217         case SHA_REG_DIGEST(1):
218         case SHA_REG_DIGEST(2):
219         case SHA_REG_DIGEST(3):
220         case SHA_REG_DIGEST(4):
221         case SHA_REG_DIGEST(5):
222         case SHA_REG_DIGEST(6):
223         case SHA_REG_DIGEST(7):
224         case SHA_REG_DIGEST(8):
225         case SHA_REG_DIGEST(9):
226         case SHA_REG_DIGEST(10):
227         case SHA_REG_DIGEST(11):
228         case SHA_REG_DIGEST(12):
229         case SHA_REG_DIGEST(13):
230         case SHA_REG_DIGEST(14):
231         case SHA_REG_DIGEST(15):
232                 if (wr)
233                         snprintf(tmp, sz, "IDATAR[%u]",
234                                  16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
235                 else
236                         snprintf(tmp, sz, "ODATAR[%u]",
237                                  (offset - SHA_REG_DIGEST(0)) >> 2);
238                 break;
239
240         case SHA_HW_VERSION:
241                 return "HWVER";
242
243         default:
244                 snprintf(tmp, sz, "0x%02x", offset);
245                 break;
246         }
247
248         return tmp;
249 }
250
251 #endif /* VERBOSE_DEBUG */
252
253 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
254 {
255         u32 value = readl_relaxed(dd->io_base + offset);
256
257 #ifdef VERBOSE_DEBUG
258         if (dd->flags & SHA_FLAGS_DUMP_REG) {
259                 char tmp[16];
260
261                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
262                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
263         }
264 #endif /* VERBOSE_DEBUG */
265
266         return value;
267 }
268
269 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
270                                         u32 offset, u32 value)
271 {
272 #ifdef VERBOSE_DEBUG
273         if (dd->flags & SHA_FLAGS_DUMP_REG) {
274                 char tmp[16];
275
276                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
277                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
278         }
279 #endif /* VERBOSE_DEBUG */
280
281         writel_relaxed(value, dd->io_base + offset);
282 }
283
284 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
285 {
286         struct ahash_request *req = dd->req;
287
288         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
289                        SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
290                        SHA_FLAGS_DUMP_REG);
291
292         clk_disable(dd->iclk);
293
294         if ((dd->is_async || dd->force_complete) && req->base.complete)
295                 ahash_request_complete(req, err);
296
297         /* handle new request */
298         tasklet_schedule(&dd->queue_task);
299
300         return err;
301 }
302
303 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
304 {
305         size_t count;
306
307         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
308                 count = min(ctx->sg->length - ctx->offset, ctx->total);
309                 count = min(count, ctx->buflen - ctx->bufcnt);
310
311                 if (count <= 0) {
312                         /*
313                         * Check if count <= 0 because the buffer is full or
314                         * because the sg length is 0. In the latest case,
315                         * check if there is another sg in the list, a 0 length
316                         * sg doesn't necessarily mean the end of the sg list.
317                         */
318                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
319                                 ctx->sg = sg_next(ctx->sg);
320                                 continue;
321                         } else {
322                                 break;
323                         }
324                 }
325
326                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
327                         ctx->offset, count, 0);
328
329                 ctx->bufcnt += count;
330                 ctx->offset += count;
331                 ctx->total -= count;
332
333                 if (ctx->offset == ctx->sg->length) {
334                         ctx->sg = sg_next(ctx->sg);
335                         if (ctx->sg)
336                                 ctx->offset = 0;
337                         else
338                                 ctx->total = 0;
339                 }
340         }
341
342         return 0;
343 }
344
345 /*
346  * The purpose of this padding is to ensure that the padded message is a
347  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348  * The bit "1" is appended at the end of the message followed by
349  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350  * 128 bits block (SHA384/SHA512) equals to the message length in bits
351  * is appended.
352  *
353  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
354  *  - if message length < 56 bytes then padlen = 56 - message length
355  *  - else padlen = 64 + 56 - message length
356  *
357  * For SHA384/SHA512, padlen is calculated as followed:
358  *  - if message length < 112 bytes then padlen = 112 - message length
359  *  - else padlen = 128 + 112 - message length
360  */
361 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
362 {
363         unsigned int index, padlen;
364         __be64 bits[2];
365         u64 size[2];
366
367         size[0] = ctx->digcnt[0];
368         size[1] = ctx->digcnt[1];
369
370         size[0] += ctx->bufcnt;
371         if (size[0] < ctx->bufcnt)
372                 size[1]++;
373
374         size[0] += length;
375         if (size[0]  < length)
376                 size[1]++;
377
378         bits[1] = cpu_to_be64(size[0] << 3);
379         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
380
381         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
382         case SHA_FLAGS_SHA384:
383         case SHA_FLAGS_SHA512:
384                 index = ctx->bufcnt & 0x7f;
385                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
386                 *(ctx->buffer + ctx->bufcnt) = 0x80;
387                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
388                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
389                 ctx->bufcnt += padlen + 16;
390                 ctx->flags |= SHA_FLAGS_PAD;
391                 break;
392
393         default:
394                 index = ctx->bufcnt & 0x3f;
395                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
396                 *(ctx->buffer + ctx->bufcnt) = 0x80;
397                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
398                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
399                 ctx->bufcnt += padlen + 8;
400                 ctx->flags |= SHA_FLAGS_PAD;
401                 break;
402         }
403 }
404
405 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
406 {
407         struct atmel_sha_dev *dd = NULL;
408         struct atmel_sha_dev *tmp;
409
410         spin_lock_bh(&atmel_sha.lock);
411         if (!tctx->dd) {
412                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
413                         dd = tmp;
414                         break;
415                 }
416                 tctx->dd = dd;
417         } else {
418                 dd = tctx->dd;
419         }
420
421         spin_unlock_bh(&atmel_sha.lock);
422
423         return dd;
424 }
425
426 static int atmel_sha_init(struct ahash_request *req)
427 {
428         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
429         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
430         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
431         struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
432
433         ctx->dd = dd;
434
435         ctx->flags = 0;
436
437         dev_dbg(dd->dev, "init: digest size: %u\n",
438                 crypto_ahash_digestsize(tfm));
439
440         switch (crypto_ahash_digestsize(tfm)) {
441         case SHA1_DIGEST_SIZE:
442                 ctx->flags |= SHA_FLAGS_SHA1;
443                 ctx->block_size = SHA1_BLOCK_SIZE;
444                 break;
445         case SHA224_DIGEST_SIZE:
446                 ctx->flags |= SHA_FLAGS_SHA224;
447                 ctx->block_size = SHA224_BLOCK_SIZE;
448                 break;
449         case SHA256_DIGEST_SIZE:
450                 ctx->flags |= SHA_FLAGS_SHA256;
451                 ctx->block_size = SHA256_BLOCK_SIZE;
452                 break;
453         case SHA384_DIGEST_SIZE:
454                 ctx->flags |= SHA_FLAGS_SHA384;
455                 ctx->block_size = SHA384_BLOCK_SIZE;
456                 break;
457         case SHA512_DIGEST_SIZE:
458                 ctx->flags |= SHA_FLAGS_SHA512;
459                 ctx->block_size = SHA512_BLOCK_SIZE;
460                 break;
461         default:
462                 return -EINVAL;
463         }
464
465         ctx->bufcnt = 0;
466         ctx->digcnt[0] = 0;
467         ctx->digcnt[1] = 0;
468         ctx->buflen = SHA_BUFFER_LEN;
469
470         return 0;
471 }
472
473 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474 {
475         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476         u32 valmr = SHA_MR_MODE_AUTO;
477         unsigned int i, hashsize = 0;
478
479         if (likely(dma)) {
480                 if (!dd->caps.has_dma)
481                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482                 valmr = SHA_MR_MODE_PDC;
483                 if (dd->caps.has_dualbuff)
484                         valmr |= SHA_MR_DUALBUFF;
485         } else {
486                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487         }
488
489         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490         case SHA_FLAGS_SHA1:
491                 valmr |= SHA_MR_ALGO_SHA1;
492                 hashsize = SHA1_DIGEST_SIZE;
493                 break;
494
495         case SHA_FLAGS_SHA224:
496                 valmr |= SHA_MR_ALGO_SHA224;
497                 hashsize = SHA256_DIGEST_SIZE;
498                 break;
499
500         case SHA_FLAGS_SHA256:
501                 valmr |= SHA_MR_ALGO_SHA256;
502                 hashsize = SHA256_DIGEST_SIZE;
503                 break;
504
505         case SHA_FLAGS_SHA384:
506                 valmr |= SHA_MR_ALGO_SHA384;
507                 hashsize = SHA512_DIGEST_SIZE;
508                 break;
509
510         case SHA_FLAGS_SHA512:
511                 valmr |= SHA_MR_ALGO_SHA512;
512                 hashsize = SHA512_DIGEST_SIZE;
513                 break;
514
515         default:
516                 break;
517         }
518
519         /* Setting CR_FIRST only for the first iteration */
520         if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522         } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523                 const u32 *hash = (const u32 *)ctx->digest;
524
525                 /*
526                  * Restore the hardware context: update the User Initialize
527                  * Hash Value (UIHV) with the value saved when the latest
528                  * 'update' operation completed on this very same crypto
529                  * request.
530                  */
531                 ctx->flags &= ~SHA_FLAGS_RESTORE;
532                 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533                 for (i = 0; i < hashsize / sizeof(u32); ++i)
534                         atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536                 valmr |= SHA_MR_UIHV;
537         }
538         /*
539          * WARNING: If the UIHV feature is not available, the hardware CANNOT
540          * process concurrent requests: the internal registers used to store
541          * the hash/digest are still set to the partial digest output values
542          * computed during the latest round.
543          */
544
545         atmel_sha_write(dd, SHA_MR, valmr);
546 }
547
548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549                                                 atmel_sha_fn_t resume)
550 {
551         u32 isr = atmel_sha_read(dd, SHA_ISR);
552
553         if (unlikely(isr & SHA_INT_DATARDY))
554                 return resume(dd);
555
556         dd->resume = resume;
557         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558         return -EINPROGRESS;
559 }
560
561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562                               size_t length, int final)
563 {
564         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565         int count, len32;
566         const u32 *buffer = (const u32 *)buf;
567
568         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569                 ctx->digcnt[1], ctx->digcnt[0], length, final);
570
571         atmel_sha_write_ctrl(dd, 0);
572
573         /* should be non-zero before next lines to disable clocks later */
574         ctx->digcnt[0] += length;
575         if (ctx->digcnt[0] < length)
576                 ctx->digcnt[1]++;
577
578         if (final)
579                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580
581         len32 = DIV_ROUND_UP(length, sizeof(u32));
582
583         dd->flags |= SHA_FLAGS_CPU;
584
585         for (count = 0; count < len32; count++)
586                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587
588         return -EINPROGRESS;
589 }
590
591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593 {
594         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595         int len32;
596
597         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
599
600         len32 = DIV_ROUND_UP(length1, sizeof(u32));
601         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602         atmel_sha_write(dd, SHA_TPR, dma_addr1);
603         atmel_sha_write(dd, SHA_TCR, len32);
604
605         len32 = DIV_ROUND_UP(length2, sizeof(u32));
606         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607         atmel_sha_write(dd, SHA_TNCR, len32);
608
609         atmel_sha_write_ctrl(dd, 1);
610
611         /* should be non-zero before next lines to disable clocks later */
612         ctx->digcnt[0] += length1;
613         if (ctx->digcnt[0] < length1)
614                 ctx->digcnt[1]++;
615
616         if (final)
617                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618
619         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
620
621         /* Start DMA transfer */
622         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623
624         return -EINPROGRESS;
625 }
626
627 static void atmel_sha_dma_callback(void *data)
628 {
629         struct atmel_sha_dev *dd = data;
630
631         dd->is_async = true;
632
633         /* dma_lch_in - completed - wait DATRDY */
634         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635 }
636
637 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639 {
640         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641         struct dma_async_tx_descriptor  *in_desc;
642         struct scatterlist sg[2];
643
644         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
646
647         dd->dma_lch_in.dma_conf.src_maxburst = 16;
648         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649
650         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651
652         if (length2) {
653                 sg_init_table(sg, 2);
654                 sg_dma_address(&sg[0]) = dma_addr1;
655                 sg_dma_len(&sg[0]) = length1;
656                 sg_dma_address(&sg[1]) = dma_addr2;
657                 sg_dma_len(&sg[1]) = length2;
658                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660         } else {
661                 sg_init_table(sg, 1);
662                 sg_dma_address(&sg[0]) = dma_addr1;
663                 sg_dma_len(&sg[0]) = length1;
664                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666         }
667         if (!in_desc)
668                 return atmel_sha_complete(dd, -EINVAL);
669
670         in_desc->callback = atmel_sha_dma_callback;
671         in_desc->callback_param = dd;
672
673         atmel_sha_write_ctrl(dd, 1);
674
675         /* should be non-zero before next lines to disable clocks later */
676         ctx->digcnt[0] += length1;
677         if (ctx->digcnt[0] < length1)
678                 ctx->digcnt[1]++;
679
680         if (final)
681                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682
683         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
684
685         /* Start DMA transfer */
686         dmaengine_submit(in_desc);
687         dma_async_issue_pending(dd->dma_lch_in.chan);
688
689         return -EINPROGRESS;
690 }
691
692 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694 {
695         if (dd->caps.has_dma)
696                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697                                 dma_addr2, length2, final);
698         else
699                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700                                 dma_addr2, length2, final);
701 }
702
703 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704 {
705         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706         int bufcnt;
707
708         atmel_sha_append_sg(ctx);
709         atmel_sha_fill_padding(ctx, 0);
710         bufcnt = ctx->bufcnt;
711         ctx->bufcnt = 0;
712
713         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714 }
715
716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717                                         struct atmel_sha_reqctx *ctx,
718                                         size_t length, int final)
719 {
720         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723                 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724                                 ctx->block_size);
725                 return atmel_sha_complete(dd, -EINVAL);
726         }
727
728         ctx->flags &= ~SHA_FLAGS_SG;
729
730         /* next call does not fail... so no unmap in the case of error */
731         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732 }
733
734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735 {
736         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737         unsigned int final;
738         size_t count;
739
740         atmel_sha_append_sg(ctx);
741
742         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743
744         dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746
747         if (final)
748                 atmel_sha_fill_padding(ctx, 0);
749
750         if (final || (ctx->bufcnt == ctx->buflen)) {
751                 count = ctx->bufcnt;
752                 ctx->bufcnt = 0;
753                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754         }
755
756         return 0;
757 }
758
759 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760 {
761         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762         unsigned int length, final, tail;
763         struct scatterlist *sg;
764         unsigned int count;
765
766         if (!ctx->total)
767                 return 0;
768
769         if (ctx->bufcnt || ctx->offset)
770                 return atmel_sha_update_dma_slow(dd);
771
772         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774
775         sg = ctx->sg;
776
777         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778                 return atmel_sha_update_dma_slow(dd);
779
780         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781                 /* size is not ctx->block_size aligned */
782                 return atmel_sha_update_dma_slow(dd);
783
784         length = min(ctx->total, sg->length);
785
786         if (sg_is_last(sg)) {
787                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788                         /* not last sg must be ctx->block_size aligned */
789                         tail = length & (ctx->block_size - 1);
790                         length -= tail;
791                 }
792         }
793
794         ctx->total -= length;
795         ctx->offset = length; /* offset where to start slow */
796
797         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798
799         /* Add padding */
800         if (final) {
801                 tail = length & (ctx->block_size - 1);
802                 length -= tail;
803                 ctx->total += tail;
804                 ctx->offset = length; /* offset where to start slow */
805
806                 sg = ctx->sg;
807                 atmel_sha_append_sg(ctx);
808
809                 atmel_sha_fill_padding(ctx, length);
810
811                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814                         dev_err(dd->dev, "dma %zu bytes error\n",
815                                 ctx->buflen + ctx->block_size);
816                         return atmel_sha_complete(dd, -EINVAL);
817                 }
818
819                 if (length == 0) {
820                         ctx->flags &= ~SHA_FLAGS_SG;
821                         count = ctx->bufcnt;
822                         ctx->bufcnt = 0;
823                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824                                         0, final);
825                 } else {
826                         ctx->sg = sg;
827                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
828                                 DMA_TO_DEVICE)) {
829                                         dev_err(dd->dev, "dma_map_sg  error\n");
830                                         return atmel_sha_complete(dd, -EINVAL);
831                         }
832
833                         ctx->flags |= SHA_FLAGS_SG;
834
835                         count = ctx->bufcnt;
836                         ctx->bufcnt = 0;
837                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838                                         length, ctx->dma_addr, count, final);
839                 }
840         }
841
842         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843                 dev_err(dd->dev, "dma_map_sg  error\n");
844                 return atmel_sha_complete(dd, -EINVAL);
845         }
846
847         ctx->flags |= SHA_FLAGS_SG;
848
849         /* next call does not fail... so no unmap in the case of error */
850         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851                                                                 0, final);
852 }
853
854 static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855 {
856         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857
858         if (ctx->flags & SHA_FLAGS_SG) {
859                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860                 if (ctx->sg->length == ctx->offset) {
861                         ctx->sg = sg_next(ctx->sg);
862                         if (ctx->sg)
863                                 ctx->offset = 0;
864                 }
865                 if (ctx->flags & SHA_FLAGS_PAD) {
866                         dma_unmap_single(dd->dev, ctx->dma_addr,
867                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868                 }
869         } else {
870                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871                                                 ctx->block_size, DMA_TO_DEVICE);
872         }
873 }
874
875 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
876 {
877         struct ahash_request *req = dd->req;
878         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
879         int err;
880
881         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
882                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
883
884         if (ctx->flags & SHA_FLAGS_CPU)
885                 err = atmel_sha_update_cpu(dd);
886         else
887                 err = atmel_sha_update_dma_start(dd);
888
889         /* wait for dma completion before can take more data */
890         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
891                         err, ctx->digcnt[1], ctx->digcnt[0]);
892
893         return err;
894 }
895
896 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
897 {
898         struct ahash_request *req = dd->req;
899         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
900         int err = 0;
901         int count;
902
903         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
904                 atmel_sha_fill_padding(ctx, 0);
905                 count = ctx->bufcnt;
906                 ctx->bufcnt = 0;
907                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
908         }
909         /* faster to handle last block with cpu */
910         else {
911                 atmel_sha_fill_padding(ctx, 0);
912                 count = ctx->bufcnt;
913                 ctx->bufcnt = 0;
914                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
915         }
916
917         dev_dbg(dd->dev, "final_req: err: %d\n", err);
918
919         return err;
920 }
921
922 static void atmel_sha_copy_hash(struct ahash_request *req)
923 {
924         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
925         u32 *hash = (u32 *)ctx->digest;
926         unsigned int i, hashsize;
927
928         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
929         case SHA_FLAGS_SHA1:
930                 hashsize = SHA1_DIGEST_SIZE;
931                 break;
932
933         case SHA_FLAGS_SHA224:
934         case SHA_FLAGS_SHA256:
935                 hashsize = SHA256_DIGEST_SIZE;
936                 break;
937
938         case SHA_FLAGS_SHA384:
939         case SHA_FLAGS_SHA512:
940                 hashsize = SHA512_DIGEST_SIZE;
941                 break;
942
943         default:
944                 /* Should not happen... */
945                 return;
946         }
947
948         for (i = 0; i < hashsize / sizeof(u32); ++i)
949                 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
950         ctx->flags |= SHA_FLAGS_RESTORE;
951 }
952
953 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
954 {
955         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
956
957         if (!req->result)
958                 return;
959
960         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
961         default:
962         case SHA_FLAGS_SHA1:
963                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
964                 break;
965
966         case SHA_FLAGS_SHA224:
967                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
968                 break;
969
970         case SHA_FLAGS_SHA256:
971                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
972                 break;
973
974         case SHA_FLAGS_SHA384:
975                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
976                 break;
977
978         case SHA_FLAGS_SHA512:
979                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
980                 break;
981         }
982 }
983
984 static int atmel_sha_finish(struct ahash_request *req)
985 {
986         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
987         struct atmel_sha_dev *dd = ctx->dd;
988
989         if (ctx->digcnt[0] || ctx->digcnt[1])
990                 atmel_sha_copy_ready_hash(req);
991
992         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
993                 ctx->digcnt[0], ctx->bufcnt);
994
995         return 0;
996 }
997
998 static void atmel_sha_finish_req(struct ahash_request *req, int err)
999 {
1000         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001         struct atmel_sha_dev *dd = ctx->dd;
1002
1003         if (!err) {
1004                 atmel_sha_copy_hash(req);
1005                 if (SHA_FLAGS_FINAL & dd->flags)
1006                         err = atmel_sha_finish(req);
1007         } else {
1008                 ctx->flags |= SHA_FLAGS_ERROR;
1009         }
1010
1011         /* atomic operation is not needed here */
1012         (void)atmel_sha_complete(dd, err);
1013 }
1014
1015 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016 {
1017         int err;
1018
1019         err = clk_enable(dd->iclk);
1020         if (err)
1021                 return err;
1022
1023         if (!(SHA_FLAGS_INIT & dd->flags)) {
1024                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025                 dd->flags |= SHA_FLAGS_INIT;
1026         }
1027
1028         return 0;
1029 }
1030
1031 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032 {
1033         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034 }
1035
1036 static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037 {
1038         int err;
1039
1040         err = atmel_sha_hw_init(dd);
1041         if (err)
1042                 return err;
1043
1044         dd->hw_version = atmel_sha_get_version(dd);
1045
1046         dev_info(dd->dev,
1047                         "version: 0x%x\n", dd->hw_version);
1048
1049         clk_disable(dd->iclk);
1050
1051         return 0;
1052 }
1053
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055                                   struct ahash_request *req)
1056 {
1057         struct crypto_async_request *async_req, *backlog;
1058         struct atmel_sha_ctx *ctx;
1059         unsigned long flags;
1060         bool start_async;
1061         int err = 0, ret = 0;
1062
1063         spin_lock_irqsave(&dd->lock, flags);
1064         if (req)
1065                 ret = ahash_enqueue_request(&dd->queue, req);
1066
1067         if (SHA_FLAGS_BUSY & dd->flags) {
1068                 spin_unlock_irqrestore(&dd->lock, flags);
1069                 return ret;
1070         }
1071
1072         backlog = crypto_get_backlog(&dd->queue);
1073         async_req = crypto_dequeue_request(&dd->queue);
1074         if (async_req)
1075                 dd->flags |= SHA_FLAGS_BUSY;
1076
1077         spin_unlock_irqrestore(&dd->lock, flags);
1078
1079         if (!async_req)
1080                 return ret;
1081
1082         if (backlog)
1083                 crypto_request_complete(backlog, -EINPROGRESS);
1084
1085         ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087         dd->req = ahash_request_cast(async_req);
1088         start_async = (dd->req != req);
1089         dd->is_async = start_async;
1090         dd->force_complete = false;
1091
1092         /* WARNING: ctx->start() MAY change dd->is_async. */
1093         err = ctx->start(dd);
1094         return (start_async) ? ret : err;
1095 }
1096
1097 static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099 static int atmel_sha_start(struct atmel_sha_dev *dd)
1100 {
1101         struct ahash_request *req = dd->req;
1102         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103         int err;
1104
1105         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
1106                                                 ctx->op, req->nbytes);
1107
1108         err = atmel_sha_hw_init(dd);
1109         if (err)
1110                 return atmel_sha_complete(dd, err);
1111
1112         /*
1113          * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114          *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115          *                its job later in the done_task.
1116          *                This is the main path.
1117          *
1118          * 0: the SHA driver can continue its job then release the hardware
1119          *    later, if needed, with atmel_sha_finish_req().
1120          *    This is the alternate path.
1121          *
1122          * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123          *      been called, hence the hardware has been released.
1124          *      The SHA driver must stop its job without calling
1125          *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126          *      called a second time.
1127          *
1128          * Please note that currently, atmel_sha_final_req() never returns 0.
1129          */
1130
1131         dd->resume = atmel_sha_done;
1132         if (ctx->op == SHA_OP_UPDATE) {
1133                 err = atmel_sha_update_req(dd);
1134                 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135                         /* no final() after finup() */
1136                         err = atmel_sha_final_req(dd);
1137         } else if (ctx->op == SHA_OP_FINAL) {
1138                 err = atmel_sha_final_req(dd);
1139         }
1140
1141         if (!err)
1142                 /* done_task will not finish it, so do it here */
1143                 atmel_sha_finish_req(req, err);
1144
1145         dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147         return err;
1148 }
1149
1150 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151 {
1152         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154         struct atmel_sha_dev *dd = tctx->dd;
1155
1156         ctx->op = op;
1157
1158         return atmel_sha_handle_queue(dd, req);
1159 }
1160
1161 static int atmel_sha_update(struct ahash_request *req)
1162 {
1163         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165         if (!req->nbytes)
1166                 return 0;
1167
1168         ctx->total = req->nbytes;
1169         ctx->sg = req->src;
1170         ctx->offset = 0;
1171
1172         if (ctx->flags & SHA_FLAGS_FINUP) {
1173                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174                         /* faster to use CPU for short transfers */
1175                         ctx->flags |= SHA_FLAGS_CPU;
1176         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177                 atmel_sha_append_sg(ctx);
1178                 return 0;
1179         }
1180         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181 }
1182
1183 static int atmel_sha_final(struct ahash_request *req)
1184 {
1185         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187         ctx->flags |= SHA_FLAGS_FINUP;
1188
1189         if (ctx->flags & SHA_FLAGS_ERROR)
1190                 return 0; /* uncompleted hash is not needed */
1191
1192         if (ctx->flags & SHA_FLAGS_PAD)
1193                 /* copy ready hash (+ finalize hmac) */
1194                 return atmel_sha_finish(req);
1195
1196         return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197 }
1198
1199 static int atmel_sha_finup(struct ahash_request *req)
1200 {
1201         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202         int err1, err2;
1203
1204         ctx->flags |= SHA_FLAGS_FINUP;
1205
1206         err1 = atmel_sha_update(req);
1207         if (err1 == -EINPROGRESS ||
1208             (err1 == -EBUSY && (ahash_request_flags(req) &
1209                                 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210                 return err1;
1211
1212         /*
1213          * final() has to be always called to cleanup resources
1214          * even if udpate() failed, except EINPROGRESS
1215          */
1216         err2 = atmel_sha_final(req);
1217
1218         return err1 ?: err2;
1219 }
1220
1221 static int atmel_sha_digest(struct ahash_request *req)
1222 {
1223         return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224 }
1225
1226
1227 static int atmel_sha_export(struct ahash_request *req, void *out)
1228 {
1229         const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231         memcpy(out, ctx, sizeof(*ctx));
1232         return 0;
1233 }
1234
1235 static int atmel_sha_import(struct ahash_request *req, const void *in)
1236 {
1237         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239         memcpy(ctx, in, sizeof(*ctx));
1240         return 0;
1241 }
1242
1243 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244 {
1245         struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248                                  sizeof(struct atmel_sha_reqctx));
1249         ctx->start = atmel_sha_start;
1250
1251         return 0;
1252 }
1253
1254 static void atmel_sha_alg_init(struct ahash_alg *alg)
1255 {
1256         alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257         alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258         alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259         alg->halg.base.cra_module = THIS_MODULE;
1260         alg->halg.base.cra_init = atmel_sha_cra_init;
1261
1262         alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263
1264         alg->init = atmel_sha_init;
1265         alg->update = atmel_sha_update;
1266         alg->final = atmel_sha_final;
1267         alg->finup = atmel_sha_finup;
1268         alg->digest = atmel_sha_digest;
1269         alg->export = atmel_sha_export;
1270         alg->import = atmel_sha_import;
1271 }
1272
1273 static struct ahash_alg sha_1_256_algs[] = {
1274 {
1275         .halg.base.cra_name             = "sha1",
1276         .halg.base.cra_driver_name      = "atmel-sha1",
1277         .halg.base.cra_blocksize        = SHA1_BLOCK_SIZE,
1278
1279         .halg.digestsize = SHA1_DIGEST_SIZE,
1280 },
1281 {
1282         .halg.base.cra_name             = "sha256",
1283         .halg.base.cra_driver_name      = "atmel-sha256",
1284         .halg.base.cra_blocksize        = SHA256_BLOCK_SIZE,
1285
1286         .halg.digestsize = SHA256_DIGEST_SIZE,
1287 },
1288 };
1289
1290 static struct ahash_alg sha_224_alg = {
1291         .halg.base.cra_name             = "sha224",
1292         .halg.base.cra_driver_name      = "atmel-sha224",
1293         .halg.base.cra_blocksize        = SHA224_BLOCK_SIZE,
1294
1295         .halg.digestsize = SHA224_DIGEST_SIZE,
1296 };
1297
1298 static struct ahash_alg sha_384_512_algs[] = {
1299 {
1300         .halg.base.cra_name             = "sha384",
1301         .halg.base.cra_driver_name      = "atmel-sha384",
1302         .halg.base.cra_blocksize        = SHA384_BLOCK_SIZE,
1303         .halg.base.cra_alignmask        = 0x3,
1304
1305         .halg.digestsize = SHA384_DIGEST_SIZE,
1306 },
1307 {
1308         .halg.base.cra_name             = "sha512",
1309         .halg.base.cra_driver_name      = "atmel-sha512",
1310         .halg.base.cra_blocksize        = SHA512_BLOCK_SIZE,
1311         .halg.base.cra_alignmask        = 0x3,
1312
1313         .halg.digestsize = SHA512_DIGEST_SIZE,
1314 },
1315 };
1316
1317 static void atmel_sha_queue_task(unsigned long data)
1318 {
1319         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1320
1321         atmel_sha_handle_queue(dd, NULL);
1322 }
1323
1324 static int atmel_sha_done(struct atmel_sha_dev *dd)
1325 {
1326         int err = 0;
1327
1328         if (SHA_FLAGS_CPU & dd->flags) {
1329                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1330                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1331                         goto finish;
1332                 }
1333         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1334                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1335                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1336                         atmel_sha_update_dma_stop(dd);
1337                 }
1338                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1339                         /* hash or semi-hash ready */
1340                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1341                                                 SHA_FLAGS_OUTPUT_READY);
1342                         err = atmel_sha_update_dma_start(dd);
1343                         if (err != -EINPROGRESS)
1344                                 goto finish;
1345                 }
1346         }
1347         return err;
1348
1349 finish:
1350         /* finish curent request */
1351         atmel_sha_finish_req(dd->req, err);
1352
1353         return err;
1354 }
1355
1356 static void atmel_sha_done_task(unsigned long data)
1357 {
1358         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1359
1360         dd->is_async = true;
1361         (void)dd->resume(dd);
1362 }
1363
1364 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1365 {
1366         struct atmel_sha_dev *sha_dd = dev_id;
1367         u32 reg;
1368
1369         reg = atmel_sha_read(sha_dd, SHA_ISR);
1370         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1371                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1372                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1373                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1374                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1375                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1376                         tasklet_schedule(&sha_dd->done_task);
1377                 } else {
1378                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1379                 }
1380                 return IRQ_HANDLED;
1381         }
1382
1383         return IRQ_NONE;
1384 }
1385
1386
1387 /* DMA transfer functions */
1388
1389 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1390                                         struct scatterlist *sg,
1391                                         size_t len)
1392 {
1393         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1394         struct ahash_request *req = dd->req;
1395         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1396         size_t bs = ctx->block_size;
1397         int nents;
1398
1399         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1400                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1401                         return false;
1402
1403                 /*
1404                  * This is the last sg, the only one that is allowed to
1405                  * have an unaligned length.
1406                  */
1407                 if (len <= sg->length) {
1408                         dma->nents = nents + 1;
1409                         dma->last_sg_length = sg->length;
1410                         sg->length = ALIGN(len, sizeof(u32));
1411                         return true;
1412                 }
1413
1414                 /* All other sg lengths MUST be aligned to the block size. */
1415                 if (!IS_ALIGNED(sg->length, bs))
1416                         return false;
1417
1418                 len -= sg->length;
1419         }
1420
1421         return false;
1422 }
1423
1424 static void atmel_sha_dma_callback2(void *data)
1425 {
1426         struct atmel_sha_dev *dd = data;
1427         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1428         struct scatterlist *sg;
1429         int nents;
1430
1431         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1432
1433         sg = dma->sg;
1434         for (nents = 0; nents < dma->nents - 1; ++nents)
1435                 sg = sg_next(sg);
1436         sg->length = dma->last_sg_length;
1437
1438         dd->is_async = true;
1439         (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1440 }
1441
1442 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1443                                struct scatterlist *src,
1444                                size_t len,
1445                                atmel_sha_fn_t resume)
1446 {
1447         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1448         struct dma_slave_config *config = &dma->dma_conf;
1449         struct dma_chan *chan = dma->chan;
1450         struct dma_async_tx_descriptor *desc;
1451         dma_cookie_t cookie;
1452         unsigned int sg_len;
1453         int err;
1454
1455         dd->resume = resume;
1456
1457         /*
1458          * dma->nents has already been initialized by
1459          * atmel_sha_dma_check_aligned().
1460          */
1461         dma->sg = src;
1462         sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1463         if (!sg_len) {
1464                 err = -ENOMEM;
1465                 goto exit;
1466         }
1467
1468         config->src_maxburst = 16;
1469         config->dst_maxburst = 16;
1470         err = dmaengine_slave_config(chan, config);
1471         if (err)
1472                 goto unmap_sg;
1473
1474         desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1475                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1476         if (!desc) {
1477                 err = -ENOMEM;
1478                 goto unmap_sg;
1479         }
1480
1481         desc->callback = atmel_sha_dma_callback2;
1482         desc->callback_param = dd;
1483         cookie = dmaengine_submit(desc);
1484         err = dma_submit_error(cookie);
1485         if (err)
1486                 goto unmap_sg;
1487
1488         dma_async_issue_pending(chan);
1489
1490         return -EINPROGRESS;
1491
1492 unmap_sg:
1493         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1494 exit:
1495         return atmel_sha_complete(dd, err);
1496 }
1497
1498
1499 /* CPU transfer functions */
1500
1501 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1502 {
1503         struct ahash_request *req = dd->req;
1504         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1505         const u32 *words = (const u32 *)ctx->buffer;
1506         size_t i, num_words;
1507         u32 isr, din, din_inc;
1508
1509         din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1510         for (;;) {
1511                 /* Write data into the Input Data Registers. */
1512                 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1513                 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1514                         atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1515
1516                 ctx->offset += ctx->bufcnt;
1517                 ctx->total -= ctx->bufcnt;
1518
1519                 if (!ctx->total)
1520                         break;
1521
1522                 /*
1523                  * Prepare next block:
1524                  * Fill ctx->buffer now with the next data to be written into
1525                  * IDATARx: it gives time for the SHA hardware to process
1526                  * the current data so the SHA_INT_DATARDY flag might be set
1527                  * in SHA_ISR when polling this register at the beginning of
1528                  * the next loop.
1529                  */
1530                 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1531                 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1532                                          ctx->offset, ctx->bufcnt, 0);
1533
1534                 /* Wait for hardware to be ready again. */
1535                 isr = atmel_sha_read(dd, SHA_ISR);
1536                 if (!(isr & SHA_INT_DATARDY)) {
1537                         /* Not ready yet. */
1538                         dd->resume = atmel_sha_cpu_transfer;
1539                         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1540                         return -EINPROGRESS;
1541                 }
1542         }
1543
1544         if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1545                 return dd->cpu_transfer_complete(dd);
1546
1547         return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1548 }
1549
1550 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1551                                struct scatterlist *sg,
1552                                unsigned int len,
1553                                bool idatar0_only,
1554                                bool wait_data_ready,
1555                                atmel_sha_fn_t resume)
1556 {
1557         struct ahash_request *req = dd->req;
1558         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1559
1560         if (!len)
1561                 return resume(dd);
1562
1563         ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1564
1565         if (idatar0_only)
1566                 ctx->flags |= SHA_FLAGS_IDATAR0;
1567
1568         if (wait_data_ready)
1569                 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1570
1571         ctx->sg = sg;
1572         ctx->total = len;
1573         ctx->offset = 0;
1574
1575         /* Prepare the first block to be written. */
1576         ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1577         scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1578                                  ctx->offset, ctx->bufcnt, 0);
1579
1580         dd->cpu_transfer_complete = resume;
1581         return atmel_sha_cpu_transfer(dd);
1582 }
1583
1584 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1585                               const void *data, unsigned int datalen,
1586                               bool auto_padding,
1587                               atmel_sha_fn_t resume)
1588 {
1589         struct ahash_request *req = dd->req;
1590         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1591         u32 msglen = (auto_padding) ? datalen : 0;
1592         u32 mr = SHA_MR_MODE_AUTO;
1593
1594         if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1595                 return atmel_sha_complete(dd, -EINVAL);
1596
1597         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1598         atmel_sha_write(dd, SHA_MR, mr);
1599         atmel_sha_write(dd, SHA_MSR, msglen);
1600         atmel_sha_write(dd, SHA_BCR, msglen);
1601         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1602
1603         sg_init_one(&dd->tmp, data, datalen);
1604         return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1605 }
1606
1607
1608 /* hmac functions */
1609
1610 struct atmel_sha_hmac_key {
1611         bool                    valid;
1612         unsigned int            keylen;
1613         u8                      buffer[SHA512_BLOCK_SIZE];
1614         u8                      *keydup;
1615 };
1616
1617 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1618 {
1619         memset(hkey, 0, sizeof(*hkey));
1620 }
1621
1622 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1623 {
1624         kfree(hkey->keydup);
1625         memset(hkey, 0, sizeof(*hkey));
1626 }
1627
1628 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1629                                          const u8 *key,
1630                                          unsigned int keylen)
1631 {
1632         atmel_sha_hmac_key_release(hkey);
1633
1634         if (keylen > sizeof(hkey->buffer)) {
1635                 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1636                 if (!hkey->keydup)
1637                         return -ENOMEM;
1638
1639         } else {
1640                 memcpy(hkey->buffer, key, keylen);
1641         }
1642
1643         hkey->valid = true;
1644         hkey->keylen = keylen;
1645         return 0;
1646 }
1647
1648 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1649                                           const u8 **key,
1650                                           unsigned int *keylen)
1651 {
1652         if (!hkey->valid)
1653                 return false;
1654
1655         *keylen = hkey->keylen;
1656         *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1657         return true;
1658 }
1659
1660
1661 struct atmel_sha_hmac_ctx {
1662         struct atmel_sha_ctx    base;
1663
1664         struct atmel_sha_hmac_key       hkey;
1665         u32                     ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1666         u32                     opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667         atmel_sha_fn_t          resume;
1668 };
1669
1670 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1671                                 atmel_sha_fn_t resume);
1672 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1673                                       const u8 *key, unsigned int keylen);
1674 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1675 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1676 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1677 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1678
1679 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1680 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1681 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1682 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1683
1684 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1685                                 atmel_sha_fn_t resume)
1686 {
1687         struct ahash_request *req = dd->req;
1688         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1689         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1690         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1691         unsigned int keylen;
1692         const u8 *key;
1693         size_t bs;
1694
1695         hmac->resume = resume;
1696         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1697         case SHA_FLAGS_SHA1:
1698                 ctx->block_size = SHA1_BLOCK_SIZE;
1699                 ctx->hash_size = SHA1_DIGEST_SIZE;
1700                 break;
1701
1702         case SHA_FLAGS_SHA224:
1703                 ctx->block_size = SHA224_BLOCK_SIZE;
1704                 ctx->hash_size = SHA256_DIGEST_SIZE;
1705                 break;
1706
1707         case SHA_FLAGS_SHA256:
1708                 ctx->block_size = SHA256_BLOCK_SIZE;
1709                 ctx->hash_size = SHA256_DIGEST_SIZE;
1710                 break;
1711
1712         case SHA_FLAGS_SHA384:
1713                 ctx->block_size = SHA384_BLOCK_SIZE;
1714                 ctx->hash_size = SHA512_DIGEST_SIZE;
1715                 break;
1716
1717         case SHA_FLAGS_SHA512:
1718                 ctx->block_size = SHA512_BLOCK_SIZE;
1719                 ctx->hash_size = SHA512_DIGEST_SIZE;
1720                 break;
1721
1722         default:
1723                 return atmel_sha_complete(dd, -EINVAL);
1724         }
1725         bs = ctx->block_size;
1726
1727         if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1728                 return resume(dd);
1729
1730         /* Compute K' from K. */
1731         if (unlikely(keylen > bs))
1732                 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1733
1734         /* Prepare ipad. */
1735         memcpy((u8 *)hmac->ipad, key, keylen);
1736         memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1737         return atmel_sha_hmac_compute_ipad_hash(dd);
1738 }
1739
1740 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1741                                       const u8 *key, unsigned int keylen)
1742 {
1743         return atmel_sha_cpu_hash(dd, key, keylen, true,
1744                                   atmel_sha_hmac_prehash_key_done);
1745 }
1746
1747 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1748 {
1749         struct ahash_request *req = dd->req;
1750         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1751         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1752         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1753         size_t ds = crypto_ahash_digestsize(tfm);
1754         size_t bs = ctx->block_size;
1755         size_t i, num_words = ds / sizeof(u32);
1756
1757         /* Prepare ipad. */
1758         for (i = 0; i < num_words; ++i)
1759                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1760         memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1761         return atmel_sha_hmac_compute_ipad_hash(dd);
1762 }
1763
1764 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1765 {
1766         struct ahash_request *req = dd->req;
1767         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1768         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1769         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1770         size_t bs = ctx->block_size;
1771         size_t i, num_words = bs / sizeof(u32);
1772
1773         unsafe_memcpy(hmac->opad, hmac->ipad, bs,
1774                       "fortified memcpy causes -Wrestrict warning");
1775         for (i = 0; i < num_words; ++i) {
1776                 hmac->ipad[i] ^= 0x36363636;
1777                 hmac->opad[i] ^= 0x5c5c5c5c;
1778         }
1779
1780         return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1781                                   atmel_sha_hmac_compute_opad_hash);
1782 }
1783
1784 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1785 {
1786         struct ahash_request *req = dd->req;
1787         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1788         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1789         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1790         size_t bs = ctx->block_size;
1791         size_t hs = ctx->hash_size;
1792         size_t i, num_words = hs / sizeof(u32);
1793
1794         for (i = 0; i < num_words; ++i)
1795                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1796         return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1797                                   atmel_sha_hmac_setup_done);
1798 }
1799
1800 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1801 {
1802         struct ahash_request *req = dd->req;
1803         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1804         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1805         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1806         size_t hs = ctx->hash_size;
1807         size_t i, num_words = hs / sizeof(u32);
1808
1809         for (i = 0; i < num_words; ++i)
1810                 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1811         atmel_sha_hmac_key_release(&hmac->hkey);
1812         return hmac->resume(dd);
1813 }
1814
1815 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1816 {
1817         struct ahash_request *req = dd->req;
1818         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1819         int err;
1820
1821         err = atmel_sha_hw_init(dd);
1822         if (err)
1823                 return atmel_sha_complete(dd, err);
1824
1825         switch (ctx->op) {
1826         case SHA_OP_INIT:
1827                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1828                 break;
1829
1830         case SHA_OP_UPDATE:
1831                 dd->resume = atmel_sha_done;
1832                 err = atmel_sha_update_req(dd);
1833                 break;
1834
1835         case SHA_OP_FINAL:
1836                 dd->resume = atmel_sha_hmac_final;
1837                 err = atmel_sha_final_req(dd);
1838                 break;
1839
1840         case SHA_OP_DIGEST:
1841                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1842                 break;
1843
1844         default:
1845                 return atmel_sha_complete(dd, -EINVAL);
1846         }
1847
1848         return err;
1849 }
1850
1851 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1852                                  unsigned int keylen)
1853 {
1854         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1855
1856         return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1857 }
1858
1859 static int atmel_sha_hmac_init(struct ahash_request *req)
1860 {
1861         int err;
1862
1863         err = atmel_sha_init(req);
1864         if (err)
1865                 return err;
1866
1867         return atmel_sha_enqueue(req, SHA_OP_INIT);
1868 }
1869
1870 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1871 {
1872         struct ahash_request *req = dd->req;
1873         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1875         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1876         size_t bs = ctx->block_size;
1877         size_t hs = ctx->hash_size;
1878
1879         ctx->bufcnt = 0;
1880         ctx->digcnt[0] = bs;
1881         ctx->digcnt[1] = 0;
1882         ctx->flags |= SHA_FLAGS_RESTORE;
1883         memcpy(ctx->digest, hmac->ipad, hs);
1884         return atmel_sha_complete(dd, 0);
1885 }
1886
1887 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1888 {
1889         struct ahash_request *req = dd->req;
1890         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1891         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1892         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1893         u32 *digest = (u32 *)ctx->digest;
1894         size_t ds = crypto_ahash_digestsize(tfm);
1895         size_t bs = ctx->block_size;
1896         size_t hs = ctx->hash_size;
1897         size_t i, num_words;
1898         u32 mr;
1899
1900         /* Save d = SHA((K' + ipad) | msg). */
1901         num_words = ds / sizeof(u32);
1902         for (i = 0; i < num_words; ++i)
1903                 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1904
1905         /* Restore context to finish computing SHA((K' + opad) | d). */
1906         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1907         num_words = hs / sizeof(u32);
1908         for (i = 0; i < num_words; ++i)
1909                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1910
1911         mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1912         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1913         atmel_sha_write(dd, SHA_MR, mr);
1914         atmel_sha_write(dd, SHA_MSR, bs + ds);
1915         atmel_sha_write(dd, SHA_BCR, ds);
1916         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1917
1918         sg_init_one(&dd->tmp, digest, ds);
1919         return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1920                                    atmel_sha_hmac_final_done);
1921 }
1922
1923 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1924 {
1925         /*
1926          * req->result might not be sizeof(u32) aligned, so copy the
1927          * digest into ctx->digest[] before memcpy() the data into
1928          * req->result.
1929          */
1930         atmel_sha_copy_hash(dd->req);
1931         atmel_sha_copy_ready_hash(dd->req);
1932         return atmel_sha_complete(dd, 0);
1933 }
1934
1935 static int atmel_sha_hmac_digest(struct ahash_request *req)
1936 {
1937         int err;
1938
1939         err = atmel_sha_init(req);
1940         if (err)
1941                 return err;
1942
1943         return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1944 }
1945
1946 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1947 {
1948         struct ahash_request *req = dd->req;
1949         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1950         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1951         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1952         struct scatterlist *sgbuf;
1953         size_t hs = ctx->hash_size;
1954         size_t i, num_words = hs / sizeof(u32);
1955         bool use_dma = false;
1956         u32 mr;
1957
1958         /* Special case for empty message. */
1959         if (!req->nbytes) {
1960                 req->nbytes = 0;
1961                 ctx->bufcnt = 0;
1962                 ctx->digcnt[0] = 0;
1963                 ctx->digcnt[1] = 0;
1964                 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1965                 case SHA_FLAGS_SHA1:
1966                 case SHA_FLAGS_SHA224:
1967                 case SHA_FLAGS_SHA256:
1968                         atmel_sha_fill_padding(ctx, 64);
1969                         break;
1970
1971                 case SHA_FLAGS_SHA384:
1972                 case SHA_FLAGS_SHA512:
1973                         atmel_sha_fill_padding(ctx, 128);
1974                         break;
1975                 }
1976                 sg_init_one(&dd->tmp, ctx->buffer, ctx->bufcnt);
1977         }
1978
1979         /* Check DMA threshold and alignment. */
1980         if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1981             atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1982                 use_dma = true;
1983
1984         /* Write both initial hash values to compute a HMAC. */
1985         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1986         for (i = 0; i < num_words; ++i)
1987                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1988
1989         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1990         for (i = 0; i < num_words; ++i)
1991                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1992
1993         /* Write the Mode, Message Size, Bytes Count then Control Registers. */
1994         mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1995         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1996         if (use_dma)
1997                 mr |= SHA_MR_MODE_IDATAR0;
1998         else
1999                 mr |= SHA_MR_MODE_AUTO;
2000         atmel_sha_write(dd, SHA_MR, mr);
2001
2002         atmel_sha_write(dd, SHA_MSR, req->nbytes);
2003         atmel_sha_write(dd, SHA_BCR, req->nbytes);
2004
2005         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2006
2007         /* Special case for empty message. */
2008         if (!req->nbytes) {
2009                 sgbuf = &dd->tmp;
2010                 req->nbytes = ctx->bufcnt;
2011         } else {
2012                 sgbuf = req->src;
2013         }
2014
2015         /* Process data. */
2016         if (use_dma)
2017                 return atmel_sha_dma_start(dd, sgbuf, req->nbytes,
2018                                            atmel_sha_hmac_final_done);
2019
2020         return atmel_sha_cpu_start(dd, sgbuf, req->nbytes, false, true,
2021                                    atmel_sha_hmac_final_done);
2022 }
2023
2024 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2025 {
2026         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2027
2028         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2029                                  sizeof(struct atmel_sha_reqctx));
2030         hmac->base.start = atmel_sha_hmac_start;
2031         atmel_sha_hmac_key_init(&hmac->hkey);
2032
2033         return 0;
2034 }
2035
2036 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2037 {
2038         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2039
2040         atmel_sha_hmac_key_release(&hmac->hkey);
2041 }
2042
2043 static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2044 {
2045         alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2046         alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2047         alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2048         alg->halg.base.cra_module = THIS_MODULE;
2049         alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
2050         alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
2051
2052         alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2053
2054         alg->init = atmel_sha_hmac_init;
2055         alg->update = atmel_sha_update;
2056         alg->final = atmel_sha_final;
2057         alg->digest = atmel_sha_hmac_digest;
2058         alg->setkey = atmel_sha_hmac_setkey;
2059         alg->export = atmel_sha_export;
2060         alg->import = atmel_sha_import;
2061 }
2062
2063 static struct ahash_alg sha_hmac_algs[] = {
2064 {
2065         .halg.base.cra_name             = "hmac(sha1)",
2066         .halg.base.cra_driver_name      = "atmel-hmac-sha1",
2067         .halg.base.cra_blocksize        = SHA1_BLOCK_SIZE,
2068
2069         .halg.digestsize = SHA1_DIGEST_SIZE,
2070 },
2071 {
2072         .halg.base.cra_name             = "hmac(sha224)",
2073         .halg.base.cra_driver_name      = "atmel-hmac-sha224",
2074         .halg.base.cra_blocksize        = SHA224_BLOCK_SIZE,
2075
2076         .halg.digestsize = SHA224_DIGEST_SIZE,
2077 },
2078 {
2079         .halg.base.cra_name             = "hmac(sha256)",
2080         .halg.base.cra_driver_name      = "atmel-hmac-sha256",
2081         .halg.base.cra_blocksize        = SHA256_BLOCK_SIZE,
2082
2083         .halg.digestsize = SHA256_DIGEST_SIZE,
2084 },
2085 {
2086         .halg.base.cra_name             = "hmac(sha384)",
2087         .halg.base.cra_driver_name      = "atmel-hmac-sha384",
2088         .halg.base.cra_blocksize        = SHA384_BLOCK_SIZE,
2089
2090         .halg.digestsize = SHA384_DIGEST_SIZE,
2091 },
2092 {
2093         .halg.base.cra_name             = "hmac(sha512)",
2094         .halg.base.cra_driver_name      = "atmel-hmac-sha512",
2095         .halg.base.cra_blocksize        = SHA512_BLOCK_SIZE,
2096
2097         .halg.digestsize = SHA512_DIGEST_SIZE,
2098 },
2099 };
2100
2101 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2102 /* authenc functions */
2103
2104 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2105 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2106 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2107
2108
2109 struct atmel_sha_authenc_ctx {
2110         struct crypto_ahash     *tfm;
2111 };
2112
2113 struct atmel_sha_authenc_reqctx {
2114         struct atmel_sha_reqctx base;
2115
2116         atmel_aes_authenc_fn_t  cb;
2117         struct atmel_aes_dev    *aes_dev;
2118
2119         /* _init() parameters. */
2120         struct scatterlist      *assoc;
2121         u32                     assoclen;
2122         u32                     textlen;
2123
2124         /* _final() parameters. */
2125         u32                     *digest;
2126         unsigned int            digestlen;
2127 };
2128
2129 static void atmel_sha_authenc_complete(void *data, int err)
2130 {
2131         struct ahash_request *req = data;
2132         struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2133
2134         authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2135 }
2136
2137 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2138 {
2139         struct ahash_request *req = dd->req;
2140         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2141         int err;
2142
2143         /*
2144          * Force atmel_sha_complete() to call req->base.complete(), ie
2145          * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2146          */
2147         dd->force_complete = true;
2148
2149         err = atmel_sha_hw_init(dd);
2150         return authctx->cb(authctx->aes_dev, err, dd->is_async);
2151 }
2152
2153 bool atmel_sha_authenc_is_ready(void)
2154 {
2155         struct atmel_sha_ctx dummy;
2156
2157         dummy.dd = NULL;
2158         return (atmel_sha_find_dev(&dummy) != NULL);
2159 }
2160 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2161
2162 unsigned int atmel_sha_authenc_get_reqsize(void)
2163 {
2164         return sizeof(struct atmel_sha_authenc_reqctx);
2165 }
2166 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2167
2168 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2169 {
2170         struct atmel_sha_authenc_ctx *auth;
2171         struct crypto_ahash *tfm;
2172         struct atmel_sha_ctx *tctx;
2173         const char *name;
2174         int err = -EINVAL;
2175
2176         switch (mode & SHA_FLAGS_MODE_MASK) {
2177         case SHA_FLAGS_HMAC_SHA1:
2178                 name = "atmel-hmac-sha1";
2179                 break;
2180
2181         case SHA_FLAGS_HMAC_SHA224:
2182                 name = "atmel-hmac-sha224";
2183                 break;
2184
2185         case SHA_FLAGS_HMAC_SHA256:
2186                 name = "atmel-hmac-sha256";
2187                 break;
2188
2189         case SHA_FLAGS_HMAC_SHA384:
2190                 name = "atmel-hmac-sha384";
2191                 break;
2192
2193         case SHA_FLAGS_HMAC_SHA512:
2194                 name = "atmel-hmac-sha512";
2195                 break;
2196
2197         default:
2198                 goto error;
2199         }
2200
2201         tfm = crypto_alloc_ahash(name, 0, 0);
2202         if (IS_ERR(tfm)) {
2203                 err = PTR_ERR(tfm);
2204                 goto error;
2205         }
2206         tctx = crypto_ahash_ctx(tfm);
2207         tctx->start = atmel_sha_authenc_start;
2208         tctx->flags = mode;
2209
2210         auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2211         if (!auth) {
2212                 err = -ENOMEM;
2213                 goto err_free_ahash;
2214         }
2215         auth->tfm = tfm;
2216
2217         return auth;
2218
2219 err_free_ahash:
2220         crypto_free_ahash(tfm);
2221 error:
2222         return ERR_PTR(err);
2223 }
2224 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2225
2226 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2227 {
2228         if (auth)
2229                 crypto_free_ahash(auth->tfm);
2230         kfree(auth);
2231 }
2232 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2233
2234 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2235                              const u8 *key, unsigned int keylen, u32 flags)
2236 {
2237         struct crypto_ahash *tfm = auth->tfm;
2238
2239         crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2240         crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2241         return crypto_ahash_setkey(tfm, key, keylen);
2242 }
2243 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2244
2245 int atmel_sha_authenc_schedule(struct ahash_request *req,
2246                                struct atmel_sha_authenc_ctx *auth,
2247                                atmel_aes_authenc_fn_t cb,
2248                                struct atmel_aes_dev *aes_dev)
2249 {
2250         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2251         struct atmel_sha_reqctx *ctx = &authctx->base;
2252         struct crypto_ahash *tfm = auth->tfm;
2253         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2254         struct atmel_sha_dev *dd;
2255
2256         /* Reset request context (MUST be done first). */
2257         memset(authctx, 0, sizeof(*authctx));
2258
2259         /* Get SHA device. */
2260         dd = atmel_sha_find_dev(tctx);
2261         if (!dd)
2262                 return cb(aes_dev, -ENODEV, false);
2263
2264         /* Init request context. */
2265         ctx->dd = dd;
2266         ctx->buflen = SHA_BUFFER_LEN;
2267         authctx->cb = cb;
2268         authctx->aes_dev = aes_dev;
2269         ahash_request_set_tfm(req, tfm);
2270         ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2271
2272         return atmel_sha_handle_queue(dd, req);
2273 }
2274 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2275
2276 int atmel_sha_authenc_init(struct ahash_request *req,
2277                            struct scatterlist *assoc, unsigned int assoclen,
2278                            unsigned int textlen,
2279                            atmel_aes_authenc_fn_t cb,
2280                            struct atmel_aes_dev *aes_dev)
2281 {
2282         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2283         struct atmel_sha_reqctx *ctx = &authctx->base;
2284         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2285         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2286         struct atmel_sha_dev *dd = ctx->dd;
2287
2288         if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2289                 return atmel_sha_complete(dd, -EINVAL);
2290
2291         authctx->cb = cb;
2292         authctx->aes_dev = aes_dev;
2293         authctx->assoc = assoc;
2294         authctx->assoclen = assoclen;
2295         authctx->textlen = textlen;
2296
2297         ctx->flags = hmac->base.flags;
2298         return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2299 }
2300 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2301
2302 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2303 {
2304         struct ahash_request *req = dd->req;
2305         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2306         struct atmel_sha_reqctx *ctx = &authctx->base;
2307         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2308         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2309         size_t hs = ctx->hash_size;
2310         size_t i, num_words = hs / sizeof(u32);
2311         u32 mr, msg_size;
2312
2313         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2314         for (i = 0; i < num_words; ++i)
2315                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2316
2317         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2318         for (i = 0; i < num_words; ++i)
2319                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2320
2321         mr = (SHA_MR_MODE_IDATAR0 |
2322               SHA_MR_HMAC |
2323               SHA_MR_DUALBUFF);
2324         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2325         atmel_sha_write(dd, SHA_MR, mr);
2326
2327         msg_size = authctx->assoclen + authctx->textlen;
2328         atmel_sha_write(dd, SHA_MSR, msg_size);
2329         atmel_sha_write(dd, SHA_BCR, msg_size);
2330
2331         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2332
2333         /* Process assoc data. */
2334         return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2335                                    true, false,
2336                                    atmel_sha_authenc_init_done);
2337 }
2338
2339 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2340 {
2341         struct ahash_request *req = dd->req;
2342         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2343
2344         return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2345 }
2346
2347 int atmel_sha_authenc_final(struct ahash_request *req,
2348                             u32 *digest, unsigned int digestlen,
2349                             atmel_aes_authenc_fn_t cb,
2350                             struct atmel_aes_dev *aes_dev)
2351 {
2352         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2353         struct atmel_sha_reqctx *ctx = &authctx->base;
2354         struct atmel_sha_dev *dd = ctx->dd;
2355
2356         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2357         case SHA_FLAGS_SHA1:
2358                 authctx->digestlen = SHA1_DIGEST_SIZE;
2359                 break;
2360
2361         case SHA_FLAGS_SHA224:
2362                 authctx->digestlen = SHA224_DIGEST_SIZE;
2363                 break;
2364
2365         case SHA_FLAGS_SHA256:
2366                 authctx->digestlen = SHA256_DIGEST_SIZE;
2367                 break;
2368
2369         case SHA_FLAGS_SHA384:
2370                 authctx->digestlen = SHA384_DIGEST_SIZE;
2371                 break;
2372
2373         case SHA_FLAGS_SHA512:
2374                 authctx->digestlen = SHA512_DIGEST_SIZE;
2375                 break;
2376
2377         default:
2378                 return atmel_sha_complete(dd, -EINVAL);
2379         }
2380         if (authctx->digestlen > digestlen)
2381                 authctx->digestlen = digestlen;
2382
2383         authctx->cb = cb;
2384         authctx->aes_dev = aes_dev;
2385         authctx->digest = digest;
2386         return atmel_sha_wait_for_data_ready(dd,
2387                                              atmel_sha_authenc_final_done);
2388 }
2389 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2390
2391 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2392 {
2393         struct ahash_request *req = dd->req;
2394         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2395         size_t i, num_words = authctx->digestlen / sizeof(u32);
2396
2397         for (i = 0; i < num_words; ++i)
2398                 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2399
2400         return atmel_sha_complete(dd, 0);
2401 }
2402
2403 void atmel_sha_authenc_abort(struct ahash_request *req)
2404 {
2405         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2406         struct atmel_sha_reqctx *ctx = &authctx->base;
2407         struct atmel_sha_dev *dd = ctx->dd;
2408
2409         /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2410         dd->is_async = false;
2411         dd->force_complete = false;
2412         (void)atmel_sha_complete(dd, 0);
2413 }
2414 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2415
2416 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2417
2418
2419 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2420 {
2421         int i;
2422
2423         if (dd->caps.has_hmac)
2424                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2425                         crypto_unregister_ahash(&sha_hmac_algs[i]);
2426
2427         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2428                 crypto_unregister_ahash(&sha_1_256_algs[i]);
2429
2430         if (dd->caps.has_sha224)
2431                 crypto_unregister_ahash(&sha_224_alg);
2432
2433         if (dd->caps.has_sha_384_512) {
2434                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2435                         crypto_unregister_ahash(&sha_384_512_algs[i]);
2436         }
2437 }
2438
2439 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2440 {
2441         int err, i, j;
2442
2443         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2444                 atmel_sha_alg_init(&sha_1_256_algs[i]);
2445
2446                 err = crypto_register_ahash(&sha_1_256_algs[i]);
2447                 if (err)
2448                         goto err_sha_1_256_algs;
2449         }
2450
2451         if (dd->caps.has_sha224) {
2452                 atmel_sha_alg_init(&sha_224_alg);
2453
2454                 err = crypto_register_ahash(&sha_224_alg);
2455                 if (err)
2456                         goto err_sha_224_algs;
2457         }
2458
2459         if (dd->caps.has_sha_384_512) {
2460                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2461                         atmel_sha_alg_init(&sha_384_512_algs[i]);
2462
2463                         err = crypto_register_ahash(&sha_384_512_algs[i]);
2464                         if (err)
2465                                 goto err_sha_384_512_algs;
2466                 }
2467         }
2468
2469         if (dd->caps.has_hmac) {
2470                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2471                         atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2472
2473                         err = crypto_register_ahash(&sha_hmac_algs[i]);
2474                         if (err)
2475                                 goto err_sha_hmac_algs;
2476                 }
2477         }
2478
2479         return 0;
2480
2481         /*i = ARRAY_SIZE(sha_hmac_algs);*/
2482 err_sha_hmac_algs:
2483         for (j = 0; j < i; j++)
2484                 crypto_unregister_ahash(&sha_hmac_algs[j]);
2485         i = ARRAY_SIZE(sha_384_512_algs);
2486 err_sha_384_512_algs:
2487         for (j = 0; j < i; j++)
2488                 crypto_unregister_ahash(&sha_384_512_algs[j]);
2489         crypto_unregister_ahash(&sha_224_alg);
2490 err_sha_224_algs:
2491         i = ARRAY_SIZE(sha_1_256_algs);
2492 err_sha_1_256_algs:
2493         for (j = 0; j < i; j++)
2494                 crypto_unregister_ahash(&sha_1_256_algs[j]);
2495
2496         return err;
2497 }
2498
2499 static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2500 {
2501         dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2502         if (IS_ERR(dd->dma_lch_in.chan)) {
2503                 return dev_err_probe(dd->dev, PTR_ERR(dd->dma_lch_in.chan),
2504                         "DMA channel is not available\n");
2505         }
2506
2507         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2508                 SHA_REG_DIN(0);
2509         dd->dma_lch_in.dma_conf.src_maxburst = 1;
2510         dd->dma_lch_in.dma_conf.src_addr_width =
2511                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2512         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2513         dd->dma_lch_in.dma_conf.dst_addr_width =
2514                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2515         dd->dma_lch_in.dma_conf.device_fc = false;
2516
2517         return 0;
2518 }
2519
2520 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2521 {
2522         dma_release_channel(dd->dma_lch_in.chan);
2523 }
2524
2525 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2526 {
2527
2528         dd->caps.has_dma = 0;
2529         dd->caps.has_dualbuff = 0;
2530         dd->caps.has_sha224 = 0;
2531         dd->caps.has_sha_384_512 = 0;
2532         dd->caps.has_uihv = 0;
2533         dd->caps.has_hmac = 0;
2534
2535         /* keep only major version number */
2536         switch (dd->hw_version & 0xff0) {
2537         case 0x700:
2538         case 0x600:
2539         case 0x510:
2540                 dd->caps.has_dma = 1;
2541                 dd->caps.has_dualbuff = 1;
2542                 dd->caps.has_sha224 = 1;
2543                 dd->caps.has_sha_384_512 = 1;
2544                 dd->caps.has_uihv = 1;
2545                 dd->caps.has_hmac = 1;
2546                 break;
2547         case 0x420:
2548                 dd->caps.has_dma = 1;
2549                 dd->caps.has_dualbuff = 1;
2550                 dd->caps.has_sha224 = 1;
2551                 dd->caps.has_sha_384_512 = 1;
2552                 dd->caps.has_uihv = 1;
2553                 break;
2554         case 0x410:
2555                 dd->caps.has_dma = 1;
2556                 dd->caps.has_dualbuff = 1;
2557                 dd->caps.has_sha224 = 1;
2558                 dd->caps.has_sha_384_512 = 1;
2559                 break;
2560         case 0x400:
2561                 dd->caps.has_dma = 1;
2562                 dd->caps.has_dualbuff = 1;
2563                 dd->caps.has_sha224 = 1;
2564                 break;
2565         case 0x320:
2566                 break;
2567         default:
2568                 dev_warn(dd->dev,
2569                                 "Unmanaged sha version, set minimum capabilities\n");
2570                 break;
2571         }
2572 }
2573
2574 static const struct of_device_id atmel_sha_dt_ids[] = {
2575         { .compatible = "atmel,at91sam9g46-sha" },
2576         { /* sentinel */ }
2577 };
2578
2579 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2580
2581 static int atmel_sha_probe(struct platform_device *pdev)
2582 {
2583         struct atmel_sha_dev *sha_dd;
2584         struct device *dev = &pdev->dev;
2585         struct resource *sha_res;
2586         int err;
2587
2588         sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2589         if (!sha_dd)
2590                 return -ENOMEM;
2591
2592         sha_dd->dev = dev;
2593
2594         platform_set_drvdata(pdev, sha_dd);
2595
2596         INIT_LIST_HEAD(&sha_dd->list);
2597         spin_lock_init(&sha_dd->lock);
2598
2599         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2600                                         (unsigned long)sha_dd);
2601         tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2602                                         (unsigned long)sha_dd);
2603
2604         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2605
2606         sha_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &sha_res);
2607         if (IS_ERR(sha_dd->io_base)) {
2608                 err = PTR_ERR(sha_dd->io_base);
2609                 goto err_tasklet_kill;
2610         }
2611         sha_dd->phys_base = sha_res->start;
2612
2613         /* Get the IRQ */
2614         sha_dd->irq = platform_get_irq(pdev,  0);
2615         if (sha_dd->irq < 0) {
2616                 err = sha_dd->irq;
2617                 goto err_tasklet_kill;
2618         }
2619
2620         err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2621                                IRQF_SHARED, "atmel-sha", sha_dd);
2622         if (err) {
2623                 dev_err(dev, "unable to request sha irq.\n");
2624                 goto err_tasklet_kill;
2625         }
2626
2627         /* Initializing the clock */
2628         sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2629         if (IS_ERR(sha_dd->iclk)) {
2630                 dev_err(dev, "clock initialization failed.\n");
2631                 err = PTR_ERR(sha_dd->iclk);
2632                 goto err_tasklet_kill;
2633         }
2634
2635         err = clk_prepare(sha_dd->iclk);
2636         if (err)
2637                 goto err_tasklet_kill;
2638
2639         err = atmel_sha_hw_version_init(sha_dd);
2640         if (err)
2641                 goto err_iclk_unprepare;
2642
2643         atmel_sha_get_cap(sha_dd);
2644
2645         if (sha_dd->caps.has_dma) {
2646                 err = atmel_sha_dma_init(sha_dd);
2647                 if (err)
2648                         goto err_iclk_unprepare;
2649
2650                 dev_info(dev, "using %s for DMA transfers\n",
2651                                 dma_chan_name(sha_dd->dma_lch_in.chan));
2652         }
2653
2654         spin_lock(&atmel_sha.lock);
2655         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2656         spin_unlock(&atmel_sha.lock);
2657
2658         err = atmel_sha_register_algs(sha_dd);
2659         if (err)
2660                 goto err_algs;
2661
2662         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2663                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
2664                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2665
2666         return 0;
2667
2668 err_algs:
2669         spin_lock(&atmel_sha.lock);
2670         list_del(&sha_dd->list);
2671         spin_unlock(&atmel_sha.lock);
2672         if (sha_dd->caps.has_dma)
2673                 atmel_sha_dma_cleanup(sha_dd);
2674 err_iclk_unprepare:
2675         clk_unprepare(sha_dd->iclk);
2676 err_tasklet_kill:
2677         tasklet_kill(&sha_dd->queue_task);
2678         tasklet_kill(&sha_dd->done_task);
2679
2680         return err;
2681 }
2682
2683 static int atmel_sha_remove(struct platform_device *pdev)
2684 {
2685         struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
2686
2687         spin_lock(&atmel_sha.lock);
2688         list_del(&sha_dd->list);
2689         spin_unlock(&atmel_sha.lock);
2690
2691         atmel_sha_unregister_algs(sha_dd);
2692
2693         tasklet_kill(&sha_dd->queue_task);
2694         tasklet_kill(&sha_dd->done_task);
2695
2696         if (sha_dd->caps.has_dma)
2697                 atmel_sha_dma_cleanup(sha_dd);
2698
2699         clk_unprepare(sha_dd->iclk);
2700
2701         return 0;
2702 }
2703
2704 static struct platform_driver atmel_sha_driver = {
2705         .probe          = atmel_sha_probe,
2706         .remove         = atmel_sha_remove,
2707         .driver         = {
2708                 .name   = "atmel_sha",
2709                 .of_match_table = atmel_sha_dt_ids,
2710         },
2711 };
2712
2713 module_platform_driver(atmel_sha_driver);
2714
2715 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2716 MODULE_LICENSE("GPL v2");
2717 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");