crypto: hisilicon/qm - fix PF queue parameter issue
[platform/kernel/linux-starfive.git] / drivers / crypto / atmel-aes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43
44 #define ATMEL_AES_PRIORITY      300
45
46 #define ATMEL_AES_BUFFER_ORDER  2
47 #define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define CFB8_BLOCK_SIZE         1
50 #define CFB16_BLOCK_SIZE        2
51 #define CFB32_BLOCK_SIZE        4
52 #define CFB64_BLOCK_SIZE        8
53
54 #define SIZE_IN_WORDS(x)        ((x) >> 2)
55
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS           AES_MR_OPMOD_XTS
72
73 #define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
74                                  AES_FLAGS_ENCRYPT |            \
75                                  AES_FLAGS_GTAGEN)
76
77 #define AES_FLAGS_BUSY          BIT(3)
78 #define AES_FLAGS_DUMP_REG      BIT(4)
79 #define AES_FLAGS_OWN_SHA       BIT(5)
80
81 #define AES_FLAGS_PERSISTENT    AES_FLAGS_BUSY
82
83 #define ATMEL_AES_QUEUE_LENGTH  50
84
85 #define ATMEL_AES_DMA_THRESHOLD         256
86
87
88 struct atmel_aes_caps {
89         bool                    has_dualbuff;
90         bool                    has_cfb64;
91         bool                    has_gcm;
92         bool                    has_xts;
93         bool                    has_authenc;
94         u32                     max_burst_size;
95 };
96
97 struct atmel_aes_dev;
98
99
100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101
102
103 struct atmel_aes_base_ctx {
104         struct atmel_aes_dev    *dd;
105         atmel_aes_fn_t          start;
106         int                     keylen;
107         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
108         u16                     block_size;
109         bool                    is_aead;
110 };
111
112 struct atmel_aes_ctx {
113         struct atmel_aes_base_ctx       base;
114 };
115
116 struct atmel_aes_ctr_ctx {
117         struct atmel_aes_base_ctx       base;
118
119         __be32                  iv[AES_BLOCK_SIZE / sizeof(u32)];
120         size_t                  offset;
121         struct scatterlist      src[2];
122         struct scatterlist      dst[2];
123         u32                     blocks;
124 };
125
126 struct atmel_aes_gcm_ctx {
127         struct atmel_aes_base_ctx       base;
128
129         struct scatterlist      src[2];
130         struct scatterlist      dst[2];
131
132         __be32                  j0[AES_BLOCK_SIZE / sizeof(u32)];
133         u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
134         __be32                  ghash[AES_BLOCK_SIZE / sizeof(u32)];
135         size_t                  textlen;
136
137         const __be32            *ghash_in;
138         __be32                  *ghash_out;
139         atmel_aes_fn_t          ghash_resume;
140 };
141
142 struct atmel_aes_xts_ctx {
143         struct atmel_aes_base_ctx       base;
144
145         u32                     key2[AES_KEYSIZE_256 / sizeof(u32)];
146         struct crypto_skcipher *fallback_tfm;
147 };
148
149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150 struct atmel_aes_authenc_ctx {
151         struct atmel_aes_base_ctx       base;
152         struct atmel_sha_authenc_ctx    *auth;
153 };
154 #endif
155
156 struct atmel_aes_reqctx {
157         unsigned long           mode;
158         u8                      lastc[AES_BLOCK_SIZE];
159         struct skcipher_request fallback_req;
160 };
161
162 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163 struct atmel_aes_authenc_reqctx {
164         struct atmel_aes_reqctx base;
165
166         struct scatterlist      src[2];
167         struct scatterlist      dst[2];
168         size_t                  textlen;
169         u32                     digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170
171         /* auth_req MUST be place last. */
172         struct ahash_request    auth_req;
173 };
174 #endif
175
176 struct atmel_aes_dma {
177         struct dma_chan         *chan;
178         struct scatterlist      *sg;
179         int                     nents;
180         unsigned int            remainder;
181         unsigned int            sg_len;
182 };
183
184 struct atmel_aes_dev {
185         struct list_head        list;
186         unsigned long           phys_base;
187         void __iomem            *io_base;
188
189         struct crypto_async_request     *areq;
190         struct atmel_aes_base_ctx       *ctx;
191
192         bool                    is_async;
193         atmel_aes_fn_t          resume;
194         atmel_aes_fn_t          cpu_transfer_complete;
195
196         struct device           *dev;
197         struct clk              *iclk;
198         int                     irq;
199
200         unsigned long           flags;
201
202         spinlock_t              lock;
203         struct crypto_queue     queue;
204
205         struct tasklet_struct   done_task;
206         struct tasklet_struct   queue_task;
207
208         size_t                  total;
209         size_t                  datalen;
210         u32                     *data;
211
212         struct atmel_aes_dma    src;
213         struct atmel_aes_dma    dst;
214
215         size_t                  buflen;
216         void                    *buf;
217         struct scatterlist      aligned_sg;
218         struct scatterlist      *real_dst;
219
220         struct atmel_aes_caps   caps;
221
222         u32                     hw_version;
223 };
224
225 struct atmel_aes_drv {
226         struct list_head        dev_list;
227         spinlock_t              lock;
228 };
229
230 static struct atmel_aes_drv atmel_aes = {
231         .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232         .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233 };
234
235 #ifdef VERBOSE_DEBUG
236 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237 {
238         switch (offset) {
239         case AES_CR:
240                 return "CR";
241
242         case AES_MR:
243                 return "MR";
244
245         case AES_ISR:
246                 return "ISR";
247
248         case AES_IMR:
249                 return "IMR";
250
251         case AES_IER:
252                 return "IER";
253
254         case AES_IDR:
255                 return "IDR";
256
257         case AES_KEYWR(0):
258         case AES_KEYWR(1):
259         case AES_KEYWR(2):
260         case AES_KEYWR(3):
261         case AES_KEYWR(4):
262         case AES_KEYWR(5):
263         case AES_KEYWR(6):
264         case AES_KEYWR(7):
265                 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
266                 break;
267
268         case AES_IDATAR(0):
269         case AES_IDATAR(1):
270         case AES_IDATAR(2):
271         case AES_IDATAR(3):
272                 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
273                 break;
274
275         case AES_ODATAR(0):
276         case AES_ODATAR(1):
277         case AES_ODATAR(2):
278         case AES_ODATAR(3):
279                 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
280                 break;
281
282         case AES_IVR(0):
283         case AES_IVR(1):
284         case AES_IVR(2):
285         case AES_IVR(3):
286                 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
287                 break;
288
289         case AES_AADLENR:
290                 return "AADLENR";
291
292         case AES_CLENR:
293                 return "CLENR";
294
295         case AES_GHASHR(0):
296         case AES_GHASHR(1):
297         case AES_GHASHR(2):
298         case AES_GHASHR(3):
299                 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
300                 break;
301
302         case AES_TAGR(0):
303         case AES_TAGR(1):
304         case AES_TAGR(2):
305         case AES_TAGR(3):
306                 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
307                 break;
308
309         case AES_CTRR:
310                 return "CTRR";
311
312         case AES_GCMHR(0):
313         case AES_GCMHR(1):
314         case AES_GCMHR(2):
315         case AES_GCMHR(3):
316                 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
317                 break;
318
319         case AES_EMR:
320                 return "EMR";
321
322         case AES_TWR(0):
323         case AES_TWR(1):
324         case AES_TWR(2):
325         case AES_TWR(3):
326                 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
327                 break;
328
329         case AES_ALPHAR(0):
330         case AES_ALPHAR(1):
331         case AES_ALPHAR(2):
332         case AES_ALPHAR(3):
333                 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
334                 break;
335
336         default:
337                 snprintf(tmp, sz, "0x%02x", offset);
338                 break;
339         }
340
341         return tmp;
342 }
343 #endif /* VERBOSE_DEBUG */
344
345 /* Shared functions */
346
347 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348 {
349         u32 value = readl_relaxed(dd->io_base + offset);
350
351 #ifdef VERBOSE_DEBUG
352         if (dd->flags & AES_FLAGS_DUMP_REG) {
353                 char tmp[16];
354
355                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357         }
358 #endif /* VERBOSE_DEBUG */
359
360         return value;
361 }
362
363 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364                                         u32 offset, u32 value)
365 {
366 #ifdef VERBOSE_DEBUG
367         if (dd->flags & AES_FLAGS_DUMP_REG) {
368                 char tmp[16];
369
370                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372         }
373 #endif /* VERBOSE_DEBUG */
374
375         writel_relaxed(value, dd->io_base + offset);
376 }
377
378 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379                                         u32 *value, int count)
380 {
381         for (; count--; value++, offset += 4)
382                 *value = atmel_aes_read(dd, offset);
383 }
384
385 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386                               const u32 *value, int count)
387 {
388         for (; count--; value++, offset += 4)
389                 atmel_aes_write(dd, offset, *value);
390 }
391
392 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
393                                         void *value)
394 {
395         atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396 }
397
398 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
399                                          const void *value)
400 {
401         atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402 }
403
404 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405                                                 atmel_aes_fn_t resume)
406 {
407         u32 isr = atmel_aes_read(dd, AES_ISR);
408
409         if (unlikely(isr & AES_INT_DATARDY))
410                 return resume(dd);
411
412         dd->resume = resume;
413         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
414         return -EINPROGRESS;
415 }
416
417 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418 {
419         len &= block_size - 1;
420         return len ? block_size - len : 0;
421 }
422
423 static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
424 {
425         struct atmel_aes_dev *aes_dd;
426
427         spin_lock_bh(&atmel_aes.lock);
428         /* One AES IP per SoC. */
429         aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
430                                           struct atmel_aes_dev, list);
431         spin_unlock_bh(&atmel_aes.lock);
432         return aes_dd;
433 }
434
435 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
436 {
437         int err;
438
439         err = clk_enable(dd->iclk);
440         if (err)
441                 return err;
442
443         atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
444         atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
445
446         return 0;
447 }
448
449 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
450 {
451         return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
452 }
453
454 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
455 {
456         int err;
457
458         err = atmel_aes_hw_init(dd);
459         if (err)
460                 return err;
461
462         dd->hw_version = atmel_aes_get_version(dd);
463
464         dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
465
466         clk_disable(dd->iclk);
467         return 0;
468 }
469
470 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
471                                       const struct atmel_aes_reqctx *rctx)
472 {
473         /* Clear all but persistent flags and set request flags. */
474         dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
475 }
476
477 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
478 {
479         return (dd->flags & AES_FLAGS_ENCRYPT);
480 }
481
482 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
483 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
484 #endif
485
486 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
487 {
488         struct skcipher_request *req = skcipher_request_cast(dd->areq);
489         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
490         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
491         unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
492
493         if (req->cryptlen < ivsize)
494                 return;
495
496         if (rctx->mode & AES_FLAGS_ENCRYPT)
497                 scatterwalk_map_and_copy(req->iv, req->dst,
498                                          req->cryptlen - ivsize, ivsize, 0);
499         else
500                 memcpy(req->iv, rctx->lastc, ivsize);
501 }
502
503 static inline struct atmel_aes_ctr_ctx *
504 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
505 {
506         return container_of(ctx, struct atmel_aes_ctr_ctx, base);
507 }
508
509 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
510 {
511         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
512         struct skcipher_request *req = skcipher_request_cast(dd->areq);
513         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
514         unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
515         int i;
516
517         /*
518          * The CTR transfer works in fragments of data of maximum 1 MByte
519          * because of the 16 bit CTR counter embedded in the IP. When reaching
520          * here, ctx->blocks contains the number of blocks of the last fragment
521          * processed, there is no need to explicit cast it to u16.
522          */
523         for (i = 0; i < ctx->blocks; i++)
524                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
525
526         memcpy(req->iv, ctx->iv, ivsize);
527 }
528
529 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
530 {
531         struct skcipher_request *req = skcipher_request_cast(dd->areq);
532         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
533
534 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
535         if (dd->ctx->is_aead)
536                 atmel_aes_authenc_complete(dd, err);
537 #endif
538
539         clk_disable(dd->iclk);
540         dd->flags &= ~AES_FLAGS_BUSY;
541
542         if (!err && !dd->ctx->is_aead &&
543             (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
544                 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
545                         atmel_aes_set_iv_as_last_ciphertext_block(dd);
546                 else
547                         atmel_aes_ctr_update_req_iv(dd);
548         }
549
550         if (dd->is_async)
551                 crypto_request_complete(dd->areq, err);
552
553         tasklet_schedule(&dd->queue_task);
554
555         return err;
556 }
557
558 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
559                                      const __be32 *iv, const u32 *key, int keylen)
560 {
561         u32 valmr = 0;
562
563         /* MR register must be set before IV registers */
564         if (keylen == AES_KEYSIZE_128)
565                 valmr |= AES_MR_KEYSIZE_128;
566         else if (keylen == AES_KEYSIZE_192)
567                 valmr |= AES_MR_KEYSIZE_192;
568         else
569                 valmr |= AES_MR_KEYSIZE_256;
570
571         valmr |= dd->flags & AES_FLAGS_MODE_MASK;
572
573         if (use_dma) {
574                 valmr |= AES_MR_SMOD_IDATAR0;
575                 if (dd->caps.has_dualbuff)
576                         valmr |= AES_MR_DUALBUFF;
577         } else {
578                 valmr |= AES_MR_SMOD_AUTO;
579         }
580
581         atmel_aes_write(dd, AES_MR, valmr);
582
583         atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
584
585         if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
586                 atmel_aes_write_block(dd, AES_IVR(0), iv);
587 }
588
589 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
590                                         const __be32 *iv)
591
592 {
593         atmel_aes_write_ctrl_key(dd, use_dma, iv,
594                                  dd->ctx->key, dd->ctx->keylen);
595 }
596
597 /* CPU transfer */
598
599 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
600 {
601         int err = 0;
602         u32 isr;
603
604         for (;;) {
605                 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
606                 dd->data += 4;
607                 dd->datalen -= AES_BLOCK_SIZE;
608
609                 if (dd->datalen < AES_BLOCK_SIZE)
610                         break;
611
612                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
613
614                 isr = atmel_aes_read(dd, AES_ISR);
615                 if (!(isr & AES_INT_DATARDY)) {
616                         dd->resume = atmel_aes_cpu_transfer;
617                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
618                         return -EINPROGRESS;
619                 }
620         }
621
622         if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
623                                  dd->buf, dd->total))
624                 err = -EINVAL;
625
626         if (err)
627                 return atmel_aes_complete(dd, err);
628
629         return dd->cpu_transfer_complete(dd);
630 }
631
632 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
633                                struct scatterlist *src,
634                                struct scatterlist *dst,
635                                size_t len,
636                                atmel_aes_fn_t resume)
637 {
638         size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
639
640         if (unlikely(len == 0))
641                 return -EINVAL;
642
643         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
644
645         dd->total = len;
646         dd->real_dst = dst;
647         dd->cpu_transfer_complete = resume;
648         dd->datalen = len + padlen;
649         dd->data = (u32 *)dd->buf;
650         atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
651         return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
652 }
653
654
655 /* DMA transfer */
656
657 static void atmel_aes_dma_callback(void *data);
658
659 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
660                                     struct scatterlist *sg,
661                                     size_t len,
662                                     struct atmel_aes_dma *dma)
663 {
664         int nents;
665
666         if (!IS_ALIGNED(len, dd->ctx->block_size))
667                 return false;
668
669         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
670                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
671                         return false;
672
673                 if (len <= sg->length) {
674                         if (!IS_ALIGNED(len, dd->ctx->block_size))
675                                 return false;
676
677                         dma->nents = nents+1;
678                         dma->remainder = sg->length - len;
679                         sg->length = len;
680                         return true;
681                 }
682
683                 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
684                         return false;
685
686                 len -= sg->length;
687         }
688
689         return false;
690 }
691
692 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
693 {
694         struct scatterlist *sg = dma->sg;
695         int nents = dma->nents;
696
697         if (!dma->remainder)
698                 return;
699
700         while (--nents > 0 && sg)
701                 sg = sg_next(sg);
702
703         if (!sg)
704                 return;
705
706         sg->length += dma->remainder;
707 }
708
709 static int atmel_aes_map(struct atmel_aes_dev *dd,
710                          struct scatterlist *src,
711                          struct scatterlist *dst,
712                          size_t len)
713 {
714         bool src_aligned, dst_aligned;
715         size_t padlen;
716
717         dd->total = len;
718         dd->src.sg = src;
719         dd->dst.sg = dst;
720         dd->real_dst = dst;
721
722         src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
723         if (src == dst)
724                 dst_aligned = src_aligned;
725         else
726                 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
727         if (!src_aligned || !dst_aligned) {
728                 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
729
730                 if (dd->buflen < len + padlen)
731                         return -ENOMEM;
732
733                 if (!src_aligned) {
734                         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
735                         dd->src.sg = &dd->aligned_sg;
736                         dd->src.nents = 1;
737                         dd->src.remainder = 0;
738                 }
739
740                 if (!dst_aligned) {
741                         dd->dst.sg = &dd->aligned_sg;
742                         dd->dst.nents = 1;
743                         dd->dst.remainder = 0;
744                 }
745
746                 sg_init_table(&dd->aligned_sg, 1);
747                 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
748         }
749
750         if (dd->src.sg == dd->dst.sg) {
751                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
752                                             DMA_BIDIRECTIONAL);
753                 dd->dst.sg_len = dd->src.sg_len;
754                 if (!dd->src.sg_len)
755                         return -EFAULT;
756         } else {
757                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
758                                             DMA_TO_DEVICE);
759                 if (!dd->src.sg_len)
760                         return -EFAULT;
761
762                 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
763                                             DMA_FROM_DEVICE);
764                 if (!dd->dst.sg_len) {
765                         dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
766                                      DMA_TO_DEVICE);
767                         return -EFAULT;
768                 }
769         }
770
771         return 0;
772 }
773
774 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
775 {
776         if (dd->src.sg == dd->dst.sg) {
777                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
778                              DMA_BIDIRECTIONAL);
779
780                 if (dd->src.sg != &dd->aligned_sg)
781                         atmel_aes_restore_sg(&dd->src);
782         } else {
783                 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
784                              DMA_FROM_DEVICE);
785
786                 if (dd->dst.sg != &dd->aligned_sg)
787                         atmel_aes_restore_sg(&dd->dst);
788
789                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
790                              DMA_TO_DEVICE);
791
792                 if (dd->src.sg != &dd->aligned_sg)
793                         atmel_aes_restore_sg(&dd->src);
794         }
795
796         if (dd->dst.sg == &dd->aligned_sg)
797                 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
798                                     dd->buf, dd->total);
799 }
800
801 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
802                                         enum dma_slave_buswidth addr_width,
803                                         enum dma_transfer_direction dir,
804                                         u32 maxburst)
805 {
806         struct dma_async_tx_descriptor *desc;
807         struct dma_slave_config config;
808         dma_async_tx_callback callback;
809         struct atmel_aes_dma *dma;
810         int err;
811
812         memset(&config, 0, sizeof(config));
813         config.src_addr_width = addr_width;
814         config.dst_addr_width = addr_width;
815         config.src_maxburst = maxburst;
816         config.dst_maxburst = maxburst;
817
818         switch (dir) {
819         case DMA_MEM_TO_DEV:
820                 dma = &dd->src;
821                 callback = NULL;
822                 config.dst_addr = dd->phys_base + AES_IDATAR(0);
823                 break;
824
825         case DMA_DEV_TO_MEM:
826                 dma = &dd->dst;
827                 callback = atmel_aes_dma_callback;
828                 config.src_addr = dd->phys_base + AES_ODATAR(0);
829                 break;
830
831         default:
832                 return -EINVAL;
833         }
834
835         err = dmaengine_slave_config(dma->chan, &config);
836         if (err)
837                 return err;
838
839         desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
840                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
841         if (!desc)
842                 return -ENOMEM;
843
844         desc->callback = callback;
845         desc->callback_param = dd;
846         dmaengine_submit(desc);
847         dma_async_issue_pending(dma->chan);
848
849         return 0;
850 }
851
852 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
853                                struct scatterlist *src,
854                                struct scatterlist *dst,
855                                size_t len,
856                                atmel_aes_fn_t resume)
857 {
858         enum dma_slave_buswidth addr_width;
859         u32 maxburst;
860         int err;
861
862         switch (dd->ctx->block_size) {
863         case CFB8_BLOCK_SIZE:
864                 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
865                 maxburst = 1;
866                 break;
867
868         case CFB16_BLOCK_SIZE:
869                 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
870                 maxburst = 1;
871                 break;
872
873         case CFB32_BLOCK_SIZE:
874         case CFB64_BLOCK_SIZE:
875                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
876                 maxburst = 1;
877                 break;
878
879         case AES_BLOCK_SIZE:
880                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
881                 maxburst = dd->caps.max_burst_size;
882                 break;
883
884         default:
885                 err = -EINVAL;
886                 goto exit;
887         }
888
889         err = atmel_aes_map(dd, src, dst, len);
890         if (err)
891                 goto exit;
892
893         dd->resume = resume;
894
895         /* Set output DMA transfer first */
896         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
897                                            maxburst);
898         if (err)
899                 goto unmap;
900
901         /* Then set input DMA transfer */
902         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
903                                            maxburst);
904         if (err)
905                 goto output_transfer_stop;
906
907         return -EINPROGRESS;
908
909 output_transfer_stop:
910         dmaengine_terminate_sync(dd->dst.chan);
911 unmap:
912         atmel_aes_unmap(dd);
913 exit:
914         return atmel_aes_complete(dd, err);
915 }
916
917 static void atmel_aes_dma_callback(void *data)
918 {
919         struct atmel_aes_dev *dd = data;
920
921         atmel_aes_unmap(dd);
922         dd->is_async = true;
923         (void)dd->resume(dd);
924 }
925
926 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
927                                   struct crypto_async_request *new_areq)
928 {
929         struct crypto_async_request *areq, *backlog;
930         struct atmel_aes_base_ctx *ctx;
931         unsigned long flags;
932         bool start_async;
933         int err, ret = 0;
934
935         spin_lock_irqsave(&dd->lock, flags);
936         if (new_areq)
937                 ret = crypto_enqueue_request(&dd->queue, new_areq);
938         if (dd->flags & AES_FLAGS_BUSY) {
939                 spin_unlock_irqrestore(&dd->lock, flags);
940                 return ret;
941         }
942         backlog = crypto_get_backlog(&dd->queue);
943         areq = crypto_dequeue_request(&dd->queue);
944         if (areq)
945                 dd->flags |= AES_FLAGS_BUSY;
946         spin_unlock_irqrestore(&dd->lock, flags);
947
948         if (!areq)
949                 return ret;
950
951         if (backlog)
952                 crypto_request_complete(backlog, -EINPROGRESS);
953
954         ctx = crypto_tfm_ctx(areq->tfm);
955
956         dd->areq = areq;
957         dd->ctx = ctx;
958         start_async = (areq != new_areq);
959         dd->is_async = start_async;
960
961         /* WARNING: ctx->start() MAY change dd->is_async. */
962         err = ctx->start(dd);
963         return (start_async) ? ret : err;
964 }
965
966
967 /* AES async block ciphers */
968
969 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
970 {
971         return atmel_aes_complete(dd, 0);
972 }
973
974 static int atmel_aes_start(struct atmel_aes_dev *dd)
975 {
976         struct skcipher_request *req = skcipher_request_cast(dd->areq);
977         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
978         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
979                         dd->ctx->block_size != AES_BLOCK_SIZE);
980         int err;
981
982         atmel_aes_set_mode(dd, rctx);
983
984         err = atmel_aes_hw_init(dd);
985         if (err)
986                 return atmel_aes_complete(dd, err);
987
988         atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
989         if (use_dma)
990                 return atmel_aes_dma_start(dd, req->src, req->dst,
991                                            req->cryptlen,
992                                            atmel_aes_transfer_complete);
993
994         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
995                                    atmel_aes_transfer_complete);
996 }
997
998 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
999 {
1000         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1001         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1002         struct scatterlist *src, *dst;
1003         size_t datalen;
1004         u32 ctr;
1005         u16 start, end;
1006         bool use_dma, fragmented = false;
1007
1008         /* Check for transfer completion. */
1009         ctx->offset += dd->total;
1010         if (ctx->offset >= req->cryptlen)
1011                 return atmel_aes_transfer_complete(dd);
1012
1013         /* Compute data length. */
1014         datalen = req->cryptlen - ctx->offset;
1015         ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1016         ctr = be32_to_cpu(ctx->iv[3]);
1017
1018         /* Check 16bit counter overflow. */
1019         start = ctr & 0xffff;
1020         end = start + ctx->blocks - 1;
1021
1022         if (ctx->blocks >> 16 || end < start) {
1023                 ctr |= 0xffff;
1024                 datalen = AES_BLOCK_SIZE * (0x10000 - start);
1025                 fragmented = true;
1026         }
1027
1028         use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1029
1030         /* Jump to offset. */
1031         src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1032         dst = ((req->src == req->dst) ? src :
1033                scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1034
1035         /* Configure hardware. */
1036         atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1037         if (unlikely(fragmented)) {
1038                 /*
1039                  * Increment the counter manually to cope with the hardware
1040                  * counter overflow.
1041                  */
1042                 ctx->iv[3] = cpu_to_be32(ctr);
1043                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1044         }
1045
1046         if (use_dma)
1047                 return atmel_aes_dma_start(dd, src, dst, datalen,
1048                                            atmel_aes_ctr_transfer);
1049
1050         return atmel_aes_cpu_start(dd, src, dst, datalen,
1051                                    atmel_aes_ctr_transfer);
1052 }
1053
1054 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1055 {
1056         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1057         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1058         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1059         int err;
1060
1061         atmel_aes_set_mode(dd, rctx);
1062
1063         err = atmel_aes_hw_init(dd);
1064         if (err)
1065                 return atmel_aes_complete(dd, err);
1066
1067         memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1068         ctx->offset = 0;
1069         dd->total = 0;
1070         return atmel_aes_ctr_transfer(dd);
1071 }
1072
1073 static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1074 {
1075         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1076         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1077                         crypto_skcipher_reqtfm(req));
1078
1079         skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1080         skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1081                                       req->base.complete, req->base.data);
1082         skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1083                                    req->cryptlen, req->iv);
1084
1085         return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1086                      crypto_skcipher_decrypt(&rctx->fallback_req);
1087 }
1088
1089 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1090 {
1091         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1092         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1093         struct atmel_aes_reqctx *rctx;
1094         u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1095
1096         if (opmode == AES_FLAGS_XTS) {
1097                 if (req->cryptlen < XTS_BLOCK_SIZE)
1098                         return -EINVAL;
1099
1100                 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1101                         return atmel_aes_xts_fallback(req,
1102                                                       mode & AES_FLAGS_ENCRYPT);
1103         }
1104
1105         /*
1106          * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1107          * to have a positve integer length.
1108          */
1109         if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1110                 return 0;
1111
1112         if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1113             !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1114                 return -EINVAL;
1115
1116         switch (mode & AES_FLAGS_OPMODE_MASK) {
1117         case AES_FLAGS_CFB8:
1118                 ctx->block_size = CFB8_BLOCK_SIZE;
1119                 break;
1120
1121         case AES_FLAGS_CFB16:
1122                 ctx->block_size = CFB16_BLOCK_SIZE;
1123                 break;
1124
1125         case AES_FLAGS_CFB32:
1126                 ctx->block_size = CFB32_BLOCK_SIZE;
1127                 break;
1128
1129         case AES_FLAGS_CFB64:
1130                 ctx->block_size = CFB64_BLOCK_SIZE;
1131                 break;
1132
1133         default:
1134                 ctx->block_size = AES_BLOCK_SIZE;
1135                 break;
1136         }
1137         ctx->is_aead = false;
1138
1139         rctx = skcipher_request_ctx(req);
1140         rctx->mode = mode;
1141
1142         if (opmode != AES_FLAGS_ECB &&
1143             !(mode & AES_FLAGS_ENCRYPT)) {
1144                 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1145
1146                 if (req->cryptlen >= ivsize)
1147                         scatterwalk_map_and_copy(rctx->lastc, req->src,
1148                                                  req->cryptlen - ivsize,
1149                                                  ivsize, 0);
1150         }
1151
1152         return atmel_aes_handle_queue(ctx->dd, &req->base);
1153 }
1154
1155 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1156                            unsigned int keylen)
1157 {
1158         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1159
1160         if (keylen != AES_KEYSIZE_128 &&
1161             keylen != AES_KEYSIZE_192 &&
1162             keylen != AES_KEYSIZE_256)
1163                 return -EINVAL;
1164
1165         memcpy(ctx->key, key, keylen);
1166         ctx->keylen = keylen;
1167
1168         return 0;
1169 }
1170
1171 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1172 {
1173         return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1174 }
1175
1176 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1177 {
1178         return atmel_aes_crypt(req, AES_FLAGS_ECB);
1179 }
1180
1181 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1182 {
1183         return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1184 }
1185
1186 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1187 {
1188         return atmel_aes_crypt(req, AES_FLAGS_CBC);
1189 }
1190
1191 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1192 {
1193         return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1194 }
1195
1196 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1197 {
1198         return atmel_aes_crypt(req, AES_FLAGS_OFB);
1199 }
1200
1201 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1202 {
1203         return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1204 }
1205
1206 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1207 {
1208         return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1209 }
1210
1211 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1212 {
1213         return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1214 }
1215
1216 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1217 {
1218         return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1219 }
1220
1221 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1222 {
1223         return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1224 }
1225
1226 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1227 {
1228         return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1229 }
1230
1231 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1232 {
1233         return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1234 }
1235
1236 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1237 {
1238         return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1239 }
1240
1241 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1242 {
1243         return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1244 }
1245
1246 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1247 {
1248         return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1249 }
1250
1251 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1252 {
1253         return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1254 }
1255
1256 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1257 {
1258         return atmel_aes_crypt(req, AES_FLAGS_CTR);
1259 }
1260
1261 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1262 {
1263         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1264         struct atmel_aes_dev *dd;
1265
1266         dd = atmel_aes_dev_alloc(&ctx->base);
1267         if (!dd)
1268                 return -ENODEV;
1269
1270         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1271         ctx->base.dd = dd;
1272         ctx->base.start = atmel_aes_start;
1273
1274         return 0;
1275 }
1276
1277 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1278 {
1279         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1280         struct atmel_aes_dev *dd;
1281
1282         dd = atmel_aes_dev_alloc(&ctx->base);
1283         if (!dd)
1284                 return -ENODEV;
1285
1286         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1287         ctx->base.dd = dd;
1288         ctx->base.start = atmel_aes_ctr_start;
1289
1290         return 0;
1291 }
1292
1293 static struct skcipher_alg aes_algs[] = {
1294 {
1295         .base.cra_name          = "ecb(aes)",
1296         .base.cra_driver_name   = "atmel-ecb-aes",
1297         .base.cra_blocksize     = AES_BLOCK_SIZE,
1298         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1299
1300         .init                   = atmel_aes_init_tfm,
1301         .min_keysize            = AES_MIN_KEY_SIZE,
1302         .max_keysize            = AES_MAX_KEY_SIZE,
1303         .setkey                 = atmel_aes_setkey,
1304         .encrypt                = atmel_aes_ecb_encrypt,
1305         .decrypt                = atmel_aes_ecb_decrypt,
1306 },
1307 {
1308         .base.cra_name          = "cbc(aes)",
1309         .base.cra_driver_name   = "atmel-cbc-aes",
1310         .base.cra_blocksize     = AES_BLOCK_SIZE,
1311         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1312
1313         .init                   = atmel_aes_init_tfm,
1314         .min_keysize            = AES_MIN_KEY_SIZE,
1315         .max_keysize            = AES_MAX_KEY_SIZE,
1316         .setkey                 = atmel_aes_setkey,
1317         .encrypt                = atmel_aes_cbc_encrypt,
1318         .decrypt                = atmel_aes_cbc_decrypt,
1319         .ivsize                 = AES_BLOCK_SIZE,
1320 },
1321 {
1322         .base.cra_name          = "ofb(aes)",
1323         .base.cra_driver_name   = "atmel-ofb-aes",
1324         .base.cra_blocksize     = 1,
1325         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1326
1327         .init                   = atmel_aes_init_tfm,
1328         .min_keysize            = AES_MIN_KEY_SIZE,
1329         .max_keysize            = AES_MAX_KEY_SIZE,
1330         .setkey                 = atmel_aes_setkey,
1331         .encrypt                = atmel_aes_ofb_encrypt,
1332         .decrypt                = atmel_aes_ofb_decrypt,
1333         .ivsize                 = AES_BLOCK_SIZE,
1334 },
1335 {
1336         .base.cra_name          = "cfb(aes)",
1337         .base.cra_driver_name   = "atmel-cfb-aes",
1338         .base.cra_blocksize     = 1,
1339         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1340
1341         .init                   = atmel_aes_init_tfm,
1342         .min_keysize            = AES_MIN_KEY_SIZE,
1343         .max_keysize            = AES_MAX_KEY_SIZE,
1344         .setkey                 = atmel_aes_setkey,
1345         .encrypt                = atmel_aes_cfb_encrypt,
1346         .decrypt                = atmel_aes_cfb_decrypt,
1347         .ivsize                 = AES_BLOCK_SIZE,
1348 },
1349 {
1350         .base.cra_name          = "cfb32(aes)",
1351         .base.cra_driver_name   = "atmel-cfb32-aes",
1352         .base.cra_blocksize     = CFB32_BLOCK_SIZE,
1353         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1354
1355         .init                   = atmel_aes_init_tfm,
1356         .min_keysize            = AES_MIN_KEY_SIZE,
1357         .max_keysize            = AES_MAX_KEY_SIZE,
1358         .setkey                 = atmel_aes_setkey,
1359         .encrypt                = atmel_aes_cfb32_encrypt,
1360         .decrypt                = atmel_aes_cfb32_decrypt,
1361         .ivsize                 = AES_BLOCK_SIZE,
1362 },
1363 {
1364         .base.cra_name          = "cfb16(aes)",
1365         .base.cra_driver_name   = "atmel-cfb16-aes",
1366         .base.cra_blocksize     = CFB16_BLOCK_SIZE,
1367         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1368
1369         .init                   = atmel_aes_init_tfm,
1370         .min_keysize            = AES_MIN_KEY_SIZE,
1371         .max_keysize            = AES_MAX_KEY_SIZE,
1372         .setkey                 = atmel_aes_setkey,
1373         .encrypt                = atmel_aes_cfb16_encrypt,
1374         .decrypt                = atmel_aes_cfb16_decrypt,
1375         .ivsize                 = AES_BLOCK_SIZE,
1376 },
1377 {
1378         .base.cra_name          = "cfb8(aes)",
1379         .base.cra_driver_name   = "atmel-cfb8-aes",
1380         .base.cra_blocksize     = CFB8_BLOCK_SIZE,
1381         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1382
1383         .init                   = atmel_aes_init_tfm,
1384         .min_keysize            = AES_MIN_KEY_SIZE,
1385         .max_keysize            = AES_MAX_KEY_SIZE,
1386         .setkey                 = atmel_aes_setkey,
1387         .encrypt                = atmel_aes_cfb8_encrypt,
1388         .decrypt                = atmel_aes_cfb8_decrypt,
1389         .ivsize                 = AES_BLOCK_SIZE,
1390 },
1391 {
1392         .base.cra_name          = "ctr(aes)",
1393         .base.cra_driver_name   = "atmel-ctr-aes",
1394         .base.cra_blocksize     = 1,
1395         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctr_ctx),
1396
1397         .init                   = atmel_aes_ctr_init_tfm,
1398         .min_keysize            = AES_MIN_KEY_SIZE,
1399         .max_keysize            = AES_MAX_KEY_SIZE,
1400         .setkey                 = atmel_aes_setkey,
1401         .encrypt                = atmel_aes_ctr_encrypt,
1402         .decrypt                = atmel_aes_ctr_decrypt,
1403         .ivsize                 = AES_BLOCK_SIZE,
1404 },
1405 };
1406
1407 static struct skcipher_alg aes_cfb64_alg = {
1408         .base.cra_name          = "cfb64(aes)",
1409         .base.cra_driver_name   = "atmel-cfb64-aes",
1410         .base.cra_blocksize     = CFB64_BLOCK_SIZE,
1411         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1412
1413         .init                   = atmel_aes_init_tfm,
1414         .min_keysize            = AES_MIN_KEY_SIZE,
1415         .max_keysize            = AES_MAX_KEY_SIZE,
1416         .setkey                 = atmel_aes_setkey,
1417         .encrypt                = atmel_aes_cfb64_encrypt,
1418         .decrypt                = atmel_aes_cfb64_decrypt,
1419         .ivsize                 = AES_BLOCK_SIZE,
1420 };
1421
1422
1423 /* gcm aead functions */
1424
1425 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1426                                const u32 *data, size_t datalen,
1427                                const __be32 *ghash_in, __be32 *ghash_out,
1428                                atmel_aes_fn_t resume);
1429 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1430 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1431
1432 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1433 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1434 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1435 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1436 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1437 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1438 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1439
1440 static inline struct atmel_aes_gcm_ctx *
1441 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1442 {
1443         return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1444 }
1445
1446 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1447                                const u32 *data, size_t datalen,
1448                                const __be32 *ghash_in, __be32 *ghash_out,
1449                                atmel_aes_fn_t resume)
1450 {
1451         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1452
1453         dd->data = (u32 *)data;
1454         dd->datalen = datalen;
1455         ctx->ghash_in = ghash_in;
1456         ctx->ghash_out = ghash_out;
1457         ctx->ghash_resume = resume;
1458
1459         atmel_aes_write_ctrl(dd, false, NULL);
1460         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1461 }
1462
1463 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1464 {
1465         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1466
1467         /* Set the data length. */
1468         atmel_aes_write(dd, AES_AADLENR, dd->total);
1469         atmel_aes_write(dd, AES_CLENR, 0);
1470
1471         /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1472         if (ctx->ghash_in)
1473                 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1474
1475         return atmel_aes_gcm_ghash_finalize(dd);
1476 }
1477
1478 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1479 {
1480         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1481         u32 isr;
1482
1483         /* Write data into the Input Data Registers. */
1484         while (dd->datalen > 0) {
1485                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1486                 dd->data += 4;
1487                 dd->datalen -= AES_BLOCK_SIZE;
1488
1489                 isr = atmel_aes_read(dd, AES_ISR);
1490                 if (!(isr & AES_INT_DATARDY)) {
1491                         dd->resume = atmel_aes_gcm_ghash_finalize;
1492                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1493                         return -EINPROGRESS;
1494                 }
1495         }
1496
1497         /* Read the computed hash from GHASHRx. */
1498         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1499
1500         return ctx->ghash_resume(dd);
1501 }
1502
1503
1504 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1505 {
1506         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507         struct aead_request *req = aead_request_cast(dd->areq);
1508         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1509         struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1510         size_t ivsize = crypto_aead_ivsize(tfm);
1511         size_t datalen, padlen;
1512         const void *iv = req->iv;
1513         u8 *data = dd->buf;
1514         int err;
1515
1516         atmel_aes_set_mode(dd, rctx);
1517
1518         err = atmel_aes_hw_init(dd);
1519         if (err)
1520                 return atmel_aes_complete(dd, err);
1521
1522         if (likely(ivsize == GCM_AES_IV_SIZE)) {
1523                 memcpy(ctx->j0, iv, ivsize);
1524                 ctx->j0[3] = cpu_to_be32(1);
1525                 return atmel_aes_gcm_process(dd);
1526         }
1527
1528         padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1529         datalen = ivsize + padlen + AES_BLOCK_SIZE;
1530         if (datalen > dd->buflen)
1531                 return atmel_aes_complete(dd, -EINVAL);
1532
1533         memcpy(data, iv, ivsize);
1534         memset(data + ivsize, 0, padlen + sizeof(u64));
1535         ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1536
1537         return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1538                                    NULL, ctx->j0, atmel_aes_gcm_process);
1539 }
1540
1541 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1542 {
1543         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1544         struct aead_request *req = aead_request_cast(dd->areq);
1545         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1546         bool enc = atmel_aes_is_encrypt(dd);
1547         u32 authsize;
1548
1549         /* Compute text length. */
1550         authsize = crypto_aead_authsize(tfm);
1551         ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1552
1553         /*
1554          * According to tcrypt test suite, the GCM Automatic Tag Generation
1555          * fails when both the message and its associated data are empty.
1556          */
1557         if (likely(req->assoclen != 0 || ctx->textlen != 0))
1558                 dd->flags |= AES_FLAGS_GTAGEN;
1559
1560         atmel_aes_write_ctrl(dd, false, NULL);
1561         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1562 }
1563
1564 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1565 {
1566         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1567         struct aead_request *req = aead_request_cast(dd->areq);
1568         __be32 j0_lsw, *j0 = ctx->j0;
1569         size_t padlen;
1570
1571         /* Write incr32(J0) into IV. */
1572         j0_lsw = j0[3];
1573         be32_add_cpu(&j0[3], 1);
1574         atmel_aes_write_block(dd, AES_IVR(0), j0);
1575         j0[3] = j0_lsw;
1576
1577         /* Set aad and text lengths. */
1578         atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1579         atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1580
1581         /* Check whether AAD are present. */
1582         if (unlikely(req->assoclen == 0)) {
1583                 dd->datalen = 0;
1584                 return atmel_aes_gcm_data(dd);
1585         }
1586
1587         /* Copy assoc data and add padding. */
1588         padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1589         if (unlikely(req->assoclen + padlen > dd->buflen))
1590                 return atmel_aes_complete(dd, -EINVAL);
1591         sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1592
1593         /* Write assoc data into the Input Data register. */
1594         dd->data = (u32 *)dd->buf;
1595         dd->datalen = req->assoclen + padlen;
1596         return atmel_aes_gcm_data(dd);
1597 }
1598
1599 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1600 {
1601         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1602         struct aead_request *req = aead_request_cast(dd->areq);
1603         bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1604         struct scatterlist *src, *dst;
1605         u32 isr, mr;
1606
1607         /* Write AAD first. */
1608         while (dd->datalen > 0) {
1609                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1610                 dd->data += 4;
1611                 dd->datalen -= AES_BLOCK_SIZE;
1612
1613                 isr = atmel_aes_read(dd, AES_ISR);
1614                 if (!(isr & AES_INT_DATARDY)) {
1615                         dd->resume = atmel_aes_gcm_data;
1616                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1617                         return -EINPROGRESS;
1618                 }
1619         }
1620
1621         /* GMAC only. */
1622         if (unlikely(ctx->textlen == 0))
1623                 return atmel_aes_gcm_tag_init(dd);
1624
1625         /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1626         src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1627         dst = ((req->src == req->dst) ? src :
1628                scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1629
1630         if (use_dma) {
1631                 /* Update the Mode Register for DMA transfers. */
1632                 mr = atmel_aes_read(dd, AES_MR);
1633                 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1634                 mr |= AES_MR_SMOD_IDATAR0;
1635                 if (dd->caps.has_dualbuff)
1636                         mr |= AES_MR_DUALBUFF;
1637                 atmel_aes_write(dd, AES_MR, mr);
1638
1639                 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1640                                            atmel_aes_gcm_tag_init);
1641         }
1642
1643         return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1644                                    atmel_aes_gcm_tag_init);
1645 }
1646
1647 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1648 {
1649         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1650         struct aead_request *req = aead_request_cast(dd->areq);
1651         __be64 *data = dd->buf;
1652
1653         if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1654                 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1655                         dd->resume = atmel_aes_gcm_tag_init;
1656                         atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1657                         return -EINPROGRESS;
1658                 }
1659
1660                 return atmel_aes_gcm_finalize(dd);
1661         }
1662
1663         /* Read the GCM Intermediate Hash Word Registers. */
1664         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1665
1666         data[0] = cpu_to_be64(req->assoclen * 8);
1667         data[1] = cpu_to_be64(ctx->textlen * 8);
1668
1669         return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1670                                    ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1671 }
1672
1673 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1674 {
1675         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676         unsigned long flags;
1677
1678         /*
1679          * Change mode to CTR to complete the tag generation.
1680          * Use J0 as Initialization Vector.
1681          */
1682         flags = dd->flags;
1683         dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1684         dd->flags |= AES_FLAGS_CTR;
1685         atmel_aes_write_ctrl(dd, false, ctx->j0);
1686         dd->flags = flags;
1687
1688         atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1689         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1690 }
1691
1692 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1693 {
1694         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1695         struct aead_request *req = aead_request_cast(dd->areq);
1696         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1697         bool enc = atmel_aes_is_encrypt(dd);
1698         u32 offset, authsize, itag[4], *otag = ctx->tag;
1699         int err;
1700
1701         /* Read the computed tag. */
1702         if (likely(dd->flags & AES_FLAGS_GTAGEN))
1703                 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1704         else
1705                 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1706
1707         offset = req->assoclen + ctx->textlen;
1708         authsize = crypto_aead_authsize(tfm);
1709         if (enc) {
1710                 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1711                 err = 0;
1712         } else {
1713                 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1714                 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1715         }
1716
1717         return atmel_aes_complete(dd, err);
1718 }
1719
1720 static int atmel_aes_gcm_crypt(struct aead_request *req,
1721                                unsigned long mode)
1722 {
1723         struct atmel_aes_base_ctx *ctx;
1724         struct atmel_aes_reqctx *rctx;
1725
1726         ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1727         ctx->block_size = AES_BLOCK_SIZE;
1728         ctx->is_aead = true;
1729
1730         rctx = aead_request_ctx(req);
1731         rctx->mode = AES_FLAGS_GCM | mode;
1732
1733         return atmel_aes_handle_queue(ctx->dd, &req->base);
1734 }
1735
1736 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1737                                 unsigned int keylen)
1738 {
1739         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1740
1741         if (keylen != AES_KEYSIZE_256 &&
1742             keylen != AES_KEYSIZE_192 &&
1743             keylen != AES_KEYSIZE_128)
1744                 return -EINVAL;
1745
1746         memcpy(ctx->key, key, keylen);
1747         ctx->keylen = keylen;
1748
1749         return 0;
1750 }
1751
1752 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1753                                      unsigned int authsize)
1754 {
1755         return crypto_gcm_check_authsize(authsize);
1756 }
1757
1758 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1759 {
1760         return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1761 }
1762
1763 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1764 {
1765         return atmel_aes_gcm_crypt(req, 0);
1766 }
1767
1768 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1769 {
1770         struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1771         struct atmel_aes_dev *dd;
1772
1773         dd = atmel_aes_dev_alloc(&ctx->base);
1774         if (!dd)
1775                 return -ENODEV;
1776
1777         crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1778         ctx->base.dd = dd;
1779         ctx->base.start = atmel_aes_gcm_start;
1780
1781         return 0;
1782 }
1783
1784 static struct aead_alg aes_gcm_alg = {
1785         .setkey         = atmel_aes_gcm_setkey,
1786         .setauthsize    = atmel_aes_gcm_setauthsize,
1787         .encrypt        = atmel_aes_gcm_encrypt,
1788         .decrypt        = atmel_aes_gcm_decrypt,
1789         .init           = atmel_aes_gcm_init,
1790         .ivsize         = GCM_AES_IV_SIZE,
1791         .maxauthsize    = AES_BLOCK_SIZE,
1792
1793         .base = {
1794                 .cra_name               = "gcm(aes)",
1795                 .cra_driver_name        = "atmel-gcm-aes",
1796                 .cra_blocksize          = 1,
1797                 .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1798         },
1799 };
1800
1801
1802 /* xts functions */
1803
1804 static inline struct atmel_aes_xts_ctx *
1805 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1806 {
1807         return container_of(ctx, struct atmel_aes_xts_ctx, base);
1808 }
1809
1810 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1811
1812 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1813 {
1814         struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1815         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1816         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1817         unsigned long flags;
1818         int err;
1819
1820         atmel_aes_set_mode(dd, rctx);
1821
1822         err = atmel_aes_hw_init(dd);
1823         if (err)
1824                 return atmel_aes_complete(dd, err);
1825
1826         /* Compute the tweak value from req->iv with ecb(aes). */
1827         flags = dd->flags;
1828         dd->flags &= ~AES_FLAGS_MODE_MASK;
1829         dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1830         atmel_aes_write_ctrl_key(dd, false, NULL,
1831                                  ctx->key2, ctx->base.keylen);
1832         dd->flags = flags;
1833
1834         atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1835         return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1836 }
1837
1838 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1839 {
1840         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1841         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1842         u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1843         static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1844         u8 *tweak_bytes = (u8 *)tweak;
1845         int i;
1846
1847         /* Read the computed ciphered tweak value. */
1848         atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1849         /*
1850          * Hardware quirk:
1851          * the order of the ciphered tweak bytes need to be reversed before
1852          * writing them into the ODATARx registers.
1853          */
1854         for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1855                 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1856
1857         /* Process the data. */
1858         atmel_aes_write_ctrl(dd, use_dma, NULL);
1859         atmel_aes_write_block(dd, AES_TWR(0), tweak);
1860         atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1861         if (use_dma)
1862                 return atmel_aes_dma_start(dd, req->src, req->dst,
1863                                            req->cryptlen,
1864                                            atmel_aes_transfer_complete);
1865
1866         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1867                                    atmel_aes_transfer_complete);
1868 }
1869
1870 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1871                                 unsigned int keylen)
1872 {
1873         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1874         int err;
1875
1876         err = xts_verify_key(tfm, key, keylen);
1877         if (err)
1878                 return err;
1879
1880         crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1881         crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1882                                   CRYPTO_TFM_REQ_MASK);
1883         err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1884         if (err)
1885                 return err;
1886
1887         memcpy(ctx->base.key, key, keylen/2);
1888         memcpy(ctx->key2, key + keylen/2, keylen/2);
1889         ctx->base.keylen = keylen/2;
1890
1891         return 0;
1892 }
1893
1894 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1895 {
1896         return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1897 }
1898
1899 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1900 {
1901         return atmel_aes_crypt(req, AES_FLAGS_XTS);
1902 }
1903
1904 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1905 {
1906         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1907         struct atmel_aes_dev *dd;
1908         const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1909
1910         dd = atmel_aes_dev_alloc(&ctx->base);
1911         if (!dd)
1912                 return -ENODEV;
1913
1914         ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1915                                                   CRYPTO_ALG_NEED_FALLBACK);
1916         if (IS_ERR(ctx->fallback_tfm))
1917                 return PTR_ERR(ctx->fallback_tfm);
1918
1919         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1920                                     crypto_skcipher_reqsize(ctx->fallback_tfm));
1921         ctx->base.dd = dd;
1922         ctx->base.start = atmel_aes_xts_start;
1923
1924         return 0;
1925 }
1926
1927 static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1928 {
1929         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1930
1931         crypto_free_skcipher(ctx->fallback_tfm);
1932 }
1933
1934 static struct skcipher_alg aes_xts_alg = {
1935         .base.cra_name          = "xts(aes)",
1936         .base.cra_driver_name   = "atmel-xts-aes",
1937         .base.cra_blocksize     = AES_BLOCK_SIZE,
1938         .base.cra_ctxsize       = sizeof(struct atmel_aes_xts_ctx),
1939         .base.cra_flags         = CRYPTO_ALG_NEED_FALLBACK,
1940
1941         .min_keysize            = 2 * AES_MIN_KEY_SIZE,
1942         .max_keysize            = 2 * AES_MAX_KEY_SIZE,
1943         .ivsize                 = AES_BLOCK_SIZE,
1944         .setkey                 = atmel_aes_xts_setkey,
1945         .encrypt                = atmel_aes_xts_encrypt,
1946         .decrypt                = atmel_aes_xts_decrypt,
1947         .init                   = atmel_aes_xts_init_tfm,
1948         .exit                   = atmel_aes_xts_exit_tfm,
1949 };
1950
1951 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1952 /* authenc aead functions */
1953
1954 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1955 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1956                                   bool is_async);
1957 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1958                                       bool is_async);
1959 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1960 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1961                                    bool is_async);
1962
1963 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1964 {
1965         struct aead_request *req = aead_request_cast(dd->areq);
1966         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1967
1968         if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1969                 atmel_sha_authenc_abort(&rctx->auth_req);
1970         dd->flags &= ~AES_FLAGS_OWN_SHA;
1971 }
1972
1973 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1974 {
1975         struct aead_request *req = aead_request_cast(dd->areq);
1976         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1977         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1978         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1979         int err;
1980
1981         atmel_aes_set_mode(dd, &rctx->base);
1982
1983         err = atmel_aes_hw_init(dd);
1984         if (err)
1985                 return atmel_aes_complete(dd, err);
1986
1987         return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1988                                           atmel_aes_authenc_init, dd);
1989 }
1990
1991 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1992                                   bool is_async)
1993 {
1994         struct aead_request *req = aead_request_cast(dd->areq);
1995         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996
1997         if (is_async)
1998                 dd->is_async = true;
1999         if (err)
2000                 return atmel_aes_complete(dd, err);
2001
2002         /* If here, we've got the ownership of the SHA device. */
2003         dd->flags |= AES_FLAGS_OWN_SHA;
2004
2005         /* Configure the SHA device. */
2006         return atmel_sha_authenc_init(&rctx->auth_req,
2007                                       req->src, req->assoclen,
2008                                       rctx->textlen,
2009                                       atmel_aes_authenc_transfer, dd);
2010 }
2011
2012 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2013                                       bool is_async)
2014 {
2015         struct aead_request *req = aead_request_cast(dd->areq);
2016         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2017         bool enc = atmel_aes_is_encrypt(dd);
2018         struct scatterlist *src, *dst;
2019         __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2020         u32 emr;
2021
2022         if (is_async)
2023                 dd->is_async = true;
2024         if (err)
2025                 return atmel_aes_complete(dd, err);
2026
2027         /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2028         src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2029         dst = src;
2030
2031         if (req->src != req->dst)
2032                 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2033
2034         /* Configure the AES device. */
2035         memcpy(iv, req->iv, sizeof(iv));
2036
2037         /*
2038          * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2039          * 'true' even if the data transfer is actually performed by the CPU (so
2040          * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2041          * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2042          * must be set to *_MR_SMOD_IDATAR0.
2043          */
2044         atmel_aes_write_ctrl(dd, true, iv);
2045         emr = AES_EMR_PLIPEN;
2046         if (!enc)
2047                 emr |= AES_EMR_PLIPD;
2048         atmel_aes_write(dd, AES_EMR, emr);
2049
2050         /* Transfer data. */
2051         return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2052                                    atmel_aes_authenc_digest);
2053 }
2054
2055 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2056 {
2057         struct aead_request *req = aead_request_cast(dd->areq);
2058         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2059
2060         /* atmel_sha_authenc_final() releases the SHA device. */
2061         dd->flags &= ~AES_FLAGS_OWN_SHA;
2062         return atmel_sha_authenc_final(&rctx->auth_req,
2063                                        rctx->digest, sizeof(rctx->digest),
2064                                        atmel_aes_authenc_final, dd);
2065 }
2066
2067 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2068                                    bool is_async)
2069 {
2070         struct aead_request *req = aead_request_cast(dd->areq);
2071         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2072         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2073         bool enc = atmel_aes_is_encrypt(dd);
2074         u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2075         u32 offs, authsize;
2076
2077         if (is_async)
2078                 dd->is_async = true;
2079         if (err)
2080                 goto complete;
2081
2082         offs = req->assoclen + rctx->textlen;
2083         authsize = crypto_aead_authsize(tfm);
2084         if (enc) {
2085                 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2086         } else {
2087                 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2088                 if (crypto_memneq(idigest, odigest, authsize))
2089                         err = -EBADMSG;
2090         }
2091
2092 complete:
2093         return atmel_aes_complete(dd, err);
2094 }
2095
2096 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2097                                     unsigned int keylen)
2098 {
2099         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2100         struct crypto_authenc_keys keys;
2101         int err;
2102
2103         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2104                 goto badkey;
2105
2106         if (keys.enckeylen > sizeof(ctx->base.key))
2107                 goto badkey;
2108
2109         /* Save auth key. */
2110         err = atmel_sha_authenc_setkey(ctx->auth,
2111                                        keys.authkey, keys.authkeylen,
2112                                        crypto_aead_get_flags(tfm));
2113         if (err) {
2114                 memzero_explicit(&keys, sizeof(keys));
2115                 return err;
2116         }
2117
2118         /* Save enc key. */
2119         ctx->base.keylen = keys.enckeylen;
2120         memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2121
2122         memzero_explicit(&keys, sizeof(keys));
2123         return 0;
2124
2125 badkey:
2126         memzero_explicit(&keys, sizeof(keys));
2127         return -EINVAL;
2128 }
2129
2130 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2131                                       unsigned long auth_mode)
2132 {
2133         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2134         unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2135         struct atmel_aes_dev *dd;
2136
2137         dd = atmel_aes_dev_alloc(&ctx->base);
2138         if (!dd)
2139                 return -ENODEV;
2140
2141         ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2142         if (IS_ERR(ctx->auth))
2143                 return PTR_ERR(ctx->auth);
2144
2145         crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2146                                       auth_reqsize));
2147         ctx->base.dd = dd;
2148         ctx->base.start = atmel_aes_authenc_start;
2149
2150         return 0;
2151 }
2152
2153 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2154 {
2155         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2156 }
2157
2158 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2159 {
2160         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2161 }
2162
2163 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2164 {
2165         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2166 }
2167
2168 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2169 {
2170         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2171 }
2172
2173 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2174 {
2175         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2176 }
2177
2178 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2179 {
2180         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2181
2182         atmel_sha_authenc_free(ctx->auth);
2183 }
2184
2185 static int atmel_aes_authenc_crypt(struct aead_request *req,
2186                                    unsigned long mode)
2187 {
2188         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2189         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2190         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2191         u32 authsize = crypto_aead_authsize(tfm);
2192         bool enc = (mode & AES_FLAGS_ENCRYPT);
2193
2194         /* Compute text length. */
2195         if (!enc && req->cryptlen < authsize)
2196                 return -EINVAL;
2197         rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2198
2199         /*
2200          * Currently, empty messages are not supported yet:
2201          * the SHA auto-padding can be used only on non-empty messages.
2202          * Hence a special case needs to be implemented for empty message.
2203          */
2204         if (!rctx->textlen && !req->assoclen)
2205                 return -EINVAL;
2206
2207         rctx->base.mode = mode;
2208         ctx->block_size = AES_BLOCK_SIZE;
2209         ctx->is_aead = true;
2210
2211         return atmel_aes_handle_queue(ctx->dd, &req->base);
2212 }
2213
2214 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2215 {
2216         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2217 }
2218
2219 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2220 {
2221         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2222 }
2223
2224 static struct aead_alg aes_authenc_algs[] = {
2225 {
2226         .setkey         = atmel_aes_authenc_setkey,
2227         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2228         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2229         .init           = atmel_aes_authenc_hmac_sha1_init_tfm,
2230         .exit           = atmel_aes_authenc_exit_tfm,
2231         .ivsize         = AES_BLOCK_SIZE,
2232         .maxauthsize    = SHA1_DIGEST_SIZE,
2233
2234         .base = {
2235                 .cra_name               = "authenc(hmac(sha1),cbc(aes))",
2236                 .cra_driver_name        = "atmel-authenc-hmac-sha1-cbc-aes",
2237                 .cra_blocksize          = AES_BLOCK_SIZE,
2238                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2239         },
2240 },
2241 {
2242         .setkey         = atmel_aes_authenc_setkey,
2243         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2244         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2245         .init           = atmel_aes_authenc_hmac_sha224_init_tfm,
2246         .exit           = atmel_aes_authenc_exit_tfm,
2247         .ivsize         = AES_BLOCK_SIZE,
2248         .maxauthsize    = SHA224_DIGEST_SIZE,
2249
2250         .base = {
2251                 .cra_name               = "authenc(hmac(sha224),cbc(aes))",
2252                 .cra_driver_name        = "atmel-authenc-hmac-sha224-cbc-aes",
2253                 .cra_blocksize          = AES_BLOCK_SIZE,
2254                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2255         },
2256 },
2257 {
2258         .setkey         = atmel_aes_authenc_setkey,
2259         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2260         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2261         .init           = atmel_aes_authenc_hmac_sha256_init_tfm,
2262         .exit           = atmel_aes_authenc_exit_tfm,
2263         .ivsize         = AES_BLOCK_SIZE,
2264         .maxauthsize    = SHA256_DIGEST_SIZE,
2265
2266         .base = {
2267                 .cra_name               = "authenc(hmac(sha256),cbc(aes))",
2268                 .cra_driver_name        = "atmel-authenc-hmac-sha256-cbc-aes",
2269                 .cra_blocksize          = AES_BLOCK_SIZE,
2270                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2271         },
2272 },
2273 {
2274         .setkey         = atmel_aes_authenc_setkey,
2275         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2276         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2277         .init           = atmel_aes_authenc_hmac_sha384_init_tfm,
2278         .exit           = atmel_aes_authenc_exit_tfm,
2279         .ivsize         = AES_BLOCK_SIZE,
2280         .maxauthsize    = SHA384_DIGEST_SIZE,
2281
2282         .base = {
2283                 .cra_name               = "authenc(hmac(sha384),cbc(aes))",
2284                 .cra_driver_name        = "atmel-authenc-hmac-sha384-cbc-aes",
2285                 .cra_blocksize          = AES_BLOCK_SIZE,
2286                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2287         },
2288 },
2289 {
2290         .setkey         = atmel_aes_authenc_setkey,
2291         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2292         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2293         .init           = atmel_aes_authenc_hmac_sha512_init_tfm,
2294         .exit           = atmel_aes_authenc_exit_tfm,
2295         .ivsize         = AES_BLOCK_SIZE,
2296         .maxauthsize    = SHA512_DIGEST_SIZE,
2297
2298         .base = {
2299                 .cra_name               = "authenc(hmac(sha512),cbc(aes))",
2300                 .cra_driver_name        = "atmel-authenc-hmac-sha512-cbc-aes",
2301                 .cra_blocksize          = AES_BLOCK_SIZE,
2302                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2303         },
2304 },
2305 };
2306 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2307
2308 /* Probe functions */
2309
2310 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2311 {
2312         dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2313         dd->buflen = ATMEL_AES_BUFFER_SIZE;
2314         dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2315
2316         if (!dd->buf) {
2317                 dev_err(dd->dev, "unable to alloc pages.\n");
2318                 return -ENOMEM;
2319         }
2320
2321         return 0;
2322 }
2323
2324 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2325 {
2326         free_page((unsigned long)dd->buf);
2327 }
2328
2329 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2330 {
2331         int ret;
2332
2333         /* Try to grab 2 DMA channels */
2334         dd->src.chan = dma_request_chan(dd->dev, "tx");
2335         if (IS_ERR(dd->src.chan)) {
2336                 ret = PTR_ERR(dd->src.chan);
2337                 goto err_dma_in;
2338         }
2339
2340         dd->dst.chan = dma_request_chan(dd->dev, "rx");
2341         if (IS_ERR(dd->dst.chan)) {
2342                 ret = PTR_ERR(dd->dst.chan);
2343                 goto err_dma_out;
2344         }
2345
2346         return 0;
2347
2348 err_dma_out:
2349         dma_release_channel(dd->src.chan);
2350 err_dma_in:
2351         dev_err(dd->dev, "no DMA channel available\n");
2352         return ret;
2353 }
2354
2355 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2356 {
2357         dma_release_channel(dd->dst.chan);
2358         dma_release_channel(dd->src.chan);
2359 }
2360
2361 static void atmel_aes_queue_task(unsigned long data)
2362 {
2363         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2364
2365         atmel_aes_handle_queue(dd, NULL);
2366 }
2367
2368 static void atmel_aes_done_task(unsigned long data)
2369 {
2370         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2371
2372         dd->is_async = true;
2373         (void)dd->resume(dd);
2374 }
2375
2376 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2377 {
2378         struct atmel_aes_dev *aes_dd = dev_id;
2379         u32 reg;
2380
2381         reg = atmel_aes_read(aes_dd, AES_ISR);
2382         if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2383                 atmel_aes_write(aes_dd, AES_IDR, reg);
2384                 if (AES_FLAGS_BUSY & aes_dd->flags)
2385                         tasklet_schedule(&aes_dd->done_task);
2386                 else
2387                         dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2388                 return IRQ_HANDLED;
2389         }
2390
2391         return IRQ_NONE;
2392 }
2393
2394 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2395 {
2396         int i;
2397
2398 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2399         if (dd->caps.has_authenc)
2400                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2401                         crypto_unregister_aead(&aes_authenc_algs[i]);
2402 #endif
2403
2404         if (dd->caps.has_xts)
2405                 crypto_unregister_skcipher(&aes_xts_alg);
2406
2407         if (dd->caps.has_gcm)
2408                 crypto_unregister_aead(&aes_gcm_alg);
2409
2410         if (dd->caps.has_cfb64)
2411                 crypto_unregister_skcipher(&aes_cfb64_alg);
2412
2413         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2414                 crypto_unregister_skcipher(&aes_algs[i]);
2415 }
2416
2417 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2418 {
2419         alg->cra_flags |= CRYPTO_ALG_ASYNC;
2420         alg->cra_alignmask = 0xf;
2421         alg->cra_priority = ATMEL_AES_PRIORITY;
2422         alg->cra_module = THIS_MODULE;
2423 }
2424
2425 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2426 {
2427         int err, i, j;
2428
2429         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2430                 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2431
2432                 err = crypto_register_skcipher(&aes_algs[i]);
2433                 if (err)
2434                         goto err_aes_algs;
2435         }
2436
2437         if (dd->caps.has_cfb64) {
2438                 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2439
2440                 err = crypto_register_skcipher(&aes_cfb64_alg);
2441                 if (err)
2442                         goto err_aes_cfb64_alg;
2443         }
2444
2445         if (dd->caps.has_gcm) {
2446                 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2447
2448                 err = crypto_register_aead(&aes_gcm_alg);
2449                 if (err)
2450                         goto err_aes_gcm_alg;
2451         }
2452
2453         if (dd->caps.has_xts) {
2454                 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2455
2456                 err = crypto_register_skcipher(&aes_xts_alg);
2457                 if (err)
2458                         goto err_aes_xts_alg;
2459         }
2460
2461 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2462         if (dd->caps.has_authenc) {
2463                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2464                         atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2465
2466                         err = crypto_register_aead(&aes_authenc_algs[i]);
2467                         if (err)
2468                                 goto err_aes_authenc_alg;
2469                 }
2470         }
2471 #endif
2472
2473         return 0;
2474
2475 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2476         /* i = ARRAY_SIZE(aes_authenc_algs); */
2477 err_aes_authenc_alg:
2478         for (j = 0; j < i; j++)
2479                 crypto_unregister_aead(&aes_authenc_algs[j]);
2480         crypto_unregister_skcipher(&aes_xts_alg);
2481 #endif
2482 err_aes_xts_alg:
2483         crypto_unregister_aead(&aes_gcm_alg);
2484 err_aes_gcm_alg:
2485         crypto_unregister_skcipher(&aes_cfb64_alg);
2486 err_aes_cfb64_alg:
2487         i = ARRAY_SIZE(aes_algs);
2488 err_aes_algs:
2489         for (j = 0; j < i; j++)
2490                 crypto_unregister_skcipher(&aes_algs[j]);
2491
2492         return err;
2493 }
2494
2495 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2496 {
2497         dd->caps.has_dualbuff = 0;
2498         dd->caps.has_cfb64 = 0;
2499         dd->caps.has_gcm = 0;
2500         dd->caps.has_xts = 0;
2501         dd->caps.has_authenc = 0;
2502         dd->caps.max_burst_size = 1;
2503
2504         /* keep only major version number */
2505         switch (dd->hw_version & 0xff0) {
2506         case 0x700:
2507         case 0x600:
2508         case 0x500:
2509                 dd->caps.has_dualbuff = 1;
2510                 dd->caps.has_cfb64 = 1;
2511                 dd->caps.has_gcm = 1;
2512                 dd->caps.has_xts = 1;
2513                 dd->caps.has_authenc = 1;
2514                 dd->caps.max_burst_size = 4;
2515                 break;
2516         case 0x200:
2517                 dd->caps.has_dualbuff = 1;
2518                 dd->caps.has_cfb64 = 1;
2519                 dd->caps.has_gcm = 1;
2520                 dd->caps.max_burst_size = 4;
2521                 break;
2522         case 0x130:
2523                 dd->caps.has_dualbuff = 1;
2524                 dd->caps.has_cfb64 = 1;
2525                 dd->caps.max_burst_size = 4;
2526                 break;
2527         case 0x120:
2528                 break;
2529         default:
2530                 dev_warn(dd->dev,
2531                                 "Unmanaged aes version, set minimum capabilities\n");
2532                 break;
2533         }
2534 }
2535
2536 static const struct of_device_id atmel_aes_dt_ids[] = {
2537         { .compatible = "atmel,at91sam9g46-aes" },
2538         { /* sentinel */ }
2539 };
2540 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2541
2542 static int atmel_aes_probe(struct platform_device *pdev)
2543 {
2544         struct atmel_aes_dev *aes_dd;
2545         struct device *dev = &pdev->dev;
2546         struct resource *aes_res;
2547         int err;
2548
2549         aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2550         if (!aes_dd)
2551                 return -ENOMEM;
2552
2553         aes_dd->dev = dev;
2554
2555         platform_set_drvdata(pdev, aes_dd);
2556
2557         INIT_LIST_HEAD(&aes_dd->list);
2558         spin_lock_init(&aes_dd->lock);
2559
2560         tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2561                                         (unsigned long)aes_dd);
2562         tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2563                                         (unsigned long)aes_dd);
2564
2565         crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2566
2567         aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2568         if (IS_ERR(aes_dd->io_base)) {
2569                 err = PTR_ERR(aes_dd->io_base);
2570                 goto err_tasklet_kill;
2571         }
2572         aes_dd->phys_base = aes_res->start;
2573
2574         /* Get the IRQ */
2575         aes_dd->irq = platform_get_irq(pdev,  0);
2576         if (aes_dd->irq < 0) {
2577                 err = aes_dd->irq;
2578                 goto err_tasklet_kill;
2579         }
2580
2581         err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2582                                IRQF_SHARED, "atmel-aes", aes_dd);
2583         if (err) {
2584                 dev_err(dev, "unable to request aes irq.\n");
2585                 goto err_tasklet_kill;
2586         }
2587
2588         /* Initializing the clock */
2589         aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2590         if (IS_ERR(aes_dd->iclk)) {
2591                 dev_err(dev, "clock initialization failed.\n");
2592                 err = PTR_ERR(aes_dd->iclk);
2593                 goto err_tasklet_kill;
2594         }
2595
2596         err = clk_prepare(aes_dd->iclk);
2597         if (err)
2598                 goto err_tasklet_kill;
2599
2600         err = atmel_aes_hw_version_init(aes_dd);
2601         if (err)
2602                 goto err_iclk_unprepare;
2603
2604         atmel_aes_get_cap(aes_dd);
2605
2606 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2607         if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2608                 err = -EPROBE_DEFER;
2609                 goto err_iclk_unprepare;
2610         }
2611 #endif
2612
2613         err = atmel_aes_buff_init(aes_dd);
2614         if (err)
2615                 goto err_iclk_unprepare;
2616
2617         err = atmel_aes_dma_init(aes_dd);
2618         if (err)
2619                 goto err_buff_cleanup;
2620
2621         spin_lock(&atmel_aes.lock);
2622         list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2623         spin_unlock(&atmel_aes.lock);
2624
2625         err = atmel_aes_register_algs(aes_dd);
2626         if (err)
2627                 goto err_algs;
2628
2629         dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2630                         dma_chan_name(aes_dd->src.chan),
2631                         dma_chan_name(aes_dd->dst.chan));
2632
2633         return 0;
2634
2635 err_algs:
2636         spin_lock(&atmel_aes.lock);
2637         list_del(&aes_dd->list);
2638         spin_unlock(&atmel_aes.lock);
2639         atmel_aes_dma_cleanup(aes_dd);
2640 err_buff_cleanup:
2641         atmel_aes_buff_cleanup(aes_dd);
2642 err_iclk_unprepare:
2643         clk_unprepare(aes_dd->iclk);
2644 err_tasklet_kill:
2645         tasklet_kill(&aes_dd->done_task);
2646         tasklet_kill(&aes_dd->queue_task);
2647
2648         return err;
2649 }
2650
2651 static int atmel_aes_remove(struct platform_device *pdev)
2652 {
2653         struct atmel_aes_dev *aes_dd;
2654
2655         aes_dd = platform_get_drvdata(pdev);
2656
2657         spin_lock(&atmel_aes.lock);
2658         list_del(&aes_dd->list);
2659         spin_unlock(&atmel_aes.lock);
2660
2661         atmel_aes_unregister_algs(aes_dd);
2662
2663         tasklet_kill(&aes_dd->done_task);
2664         tasklet_kill(&aes_dd->queue_task);
2665
2666         atmel_aes_dma_cleanup(aes_dd);
2667         atmel_aes_buff_cleanup(aes_dd);
2668
2669         clk_unprepare(aes_dd->iclk);
2670
2671         return 0;
2672 }
2673
2674 static struct platform_driver atmel_aes_driver = {
2675         .probe          = atmel_aes_probe,
2676         .remove         = atmel_aes_remove,
2677         .driver         = {
2678                 .name   = "atmel_aes",
2679                 .of_match_table = atmel_aes_dt_ids,
2680         },
2681 };
2682
2683 module_platform_driver(atmel_aes_driver);
2684
2685 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2686 MODULE_LICENSE("GPL v2");
2687 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");