Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[platform/kernel/linux-starfive.git] / drivers / crypto / amcc / crypto4xx_core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44
45 #define PPC4XX_SEC_VERSION_STR                  "0.5"
46
47 /**
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52         union ce_ring_size ring_size;
53         union ce_ring_control ring_ctrl;
54         union ce_part_ring_size part_ring_size;
55         union ce_io_threshold io_threshold;
56         u32 rand_num;
57         union ce_pe_dma_cfg pe_dma_cfg;
58         u32 device_ctrl;
59
60         writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61         /* setup pe dma, include reset sg, pdr and pe, then release reset */
62         pe_dma_cfg.w = 0;
63         pe_dma_cfg.bf.bo_sgpd_en = 1;
64         pe_dma_cfg.bf.bo_data_en = 0;
65         pe_dma_cfg.bf.bo_sa_en = 1;
66         pe_dma_cfg.bf.bo_pd_en = 1;
67         pe_dma_cfg.bf.dynamic_sa_en = 1;
68         pe_dma_cfg.bf.reset_sg = 1;
69         pe_dma_cfg.bf.reset_pdr = 1;
70         pe_dma_cfg.bf.reset_pe = 1;
71         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72         /* un reset pe,sg and pdr */
73         pe_dma_cfg.bf.pe_mode = 0;
74         pe_dma_cfg.bf.reset_sg = 0;
75         pe_dma_cfg.bf.reset_pdr = 0;
76         pe_dma_cfg.bf.reset_pe = 0;
77         pe_dma_cfg.bf.bo_td_en = 0;
78         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81         writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82         get_random_bytes(&rand_num, sizeof(rand_num));
83         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84         get_random_bytes(&rand_num, sizeof(rand_num));
85         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86         ring_size.w = 0;
87         ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88         ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89         writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90         ring_ctrl.w = 0;
91         writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92         device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93         device_ctrl |= PPC4XX_DC_3DES_EN;
94         writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95         writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96         writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97         part_ring_size.w = 0;
98         part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99         part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100         writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101         writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102         io_threshold.w = 0;
103         io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104         io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105         writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106         writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107         writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108         writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109         writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110         writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111         writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112         writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113         /* un reset pe,sg and pdr */
114         pe_dma_cfg.bf.pe_mode = 1;
115         pe_dma_cfg.bf.reset_sg = 0;
116         pe_dma_cfg.bf.reset_pdr = 0;
117         pe_dma_cfg.bf.reset_pe = 0;
118         pe_dma_cfg.bf.bo_td_en = 0;
119         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120         /*clear all pending interrupt*/
121         writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124         writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125         if (dev->is_revb) {
126                 writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127                        dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128                 writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129                        dev->ce_base + CRYPTO4XX_INT_EN);
130         } else {
131                 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132         }
133 }
134
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137         ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138         if (ctx->sa_in == NULL)
139                 return -ENOMEM;
140
141         ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142         if (ctx->sa_out == NULL) {
143                 kfree(ctx->sa_in);
144                 ctx->sa_in = NULL;
145                 return -ENOMEM;
146         }
147
148         ctx->sa_len = size;
149
150         return 0;
151 }
152
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155         kfree(ctx->sa_in);
156         ctx->sa_in = NULL;
157         kfree(ctx->sa_out);
158         ctx->sa_out = NULL;
159         ctx->sa_len = 0;
160 }
161
162 /**
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169         int i;
170         dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171                                       sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172                                       &dev->pdr_pa, GFP_ATOMIC);
173         if (!dev->pdr)
174                 return -ENOMEM;
175
176         dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177                                  GFP_KERNEL);
178         if (!dev->pdr_uinfo) {
179                 dma_free_coherent(dev->core_dev->device,
180                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181                                   dev->pdr,
182                                   dev->pdr_pa);
183                 return -ENOMEM;
184         }
185         dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186                                    sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187                                    &dev->shadow_sa_pool_pa,
188                                    GFP_ATOMIC);
189         if (!dev->shadow_sa_pool)
190                 return -ENOMEM;
191
192         dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193                          sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194                          &dev->shadow_sr_pool_pa, GFP_ATOMIC);
195         if (!dev->shadow_sr_pool)
196                 return -ENOMEM;
197         for (i = 0; i < PPC4XX_NUM_PD; i++) {
198                 struct ce_pd *pd = &dev->pdr[i];
199                 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200
201                 pd->sa = dev->shadow_sa_pool_pa +
202                         sizeof(union shadow_sa_buf) * i;
203
204                 /* alloc 256 bytes which is enough for any kind of dynamic sa */
205                 pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206
207                 /* alloc state record */
208                 pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209                 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210                     sizeof(struct sa_state_record) * i;
211         }
212
213         return 0;
214 }
215
216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218         if (dev->pdr)
219                 dma_free_coherent(dev->core_dev->device,
220                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221                                   dev->pdr, dev->pdr_pa);
222
223         if (dev->shadow_sa_pool)
224                 dma_free_coherent(dev->core_dev->device,
225                         sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226                         dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227
228         if (dev->shadow_sr_pool)
229                 dma_free_coherent(dev->core_dev->device,
230                         sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231                         dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232
233         kfree(dev->pdr_uinfo);
234 }
235
236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238         u32 retval;
239         u32 tmp;
240
241         retval = dev->pdr_head;
242         tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243
244         if (tmp == dev->pdr_tail)
245                 return ERING_WAS_FULL;
246
247         dev->pdr_head = tmp;
248
249         return retval;
250 }
251
252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255         u32 tail;
256         unsigned long flags;
257
258         spin_lock_irqsave(&dev->core_dev->lock, flags);
259         pd_uinfo->state = PD_ENTRY_FREE;
260
261         if (dev->pdr_tail != PPC4XX_LAST_PD)
262                 dev->pdr_tail++;
263         else
264                 dev->pdr_tail = 0;
265         tail = dev->pdr_tail;
266         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267
268         return tail;
269 }
270
271 /**
272  * alloc memory for the gather ring
273  * no need to alloc buf for the ring
274  * gdr_tail, gdr_head and gdr_count are initialized by this function
275  */
276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278         dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279                                       sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280                                       &dev->gdr_pa, GFP_ATOMIC);
281         if (!dev->gdr)
282                 return -ENOMEM;
283
284         return 0;
285 }
286
287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289         dma_free_coherent(dev->core_dev->device,
290                           sizeof(struct ce_gd) * PPC4XX_NUM_GD,
291                           dev->gdr, dev->gdr_pa);
292 }
293
294 /*
295  * when this function is called.
296  * preemption or interrupt must be disabled
297  */
298 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
299 {
300         u32 retval;
301         u32 tmp;
302
303         if (n >= PPC4XX_NUM_GD)
304                 return ERING_WAS_FULL;
305
306         retval = dev->gdr_head;
307         tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
308         if (dev->gdr_head > dev->gdr_tail) {
309                 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
310                         return ERING_WAS_FULL;
311         } else if (dev->gdr_head < dev->gdr_tail) {
312                 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
313                         return ERING_WAS_FULL;
314         }
315         dev->gdr_head = tmp;
316
317         return retval;
318 }
319
320 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
321 {
322         unsigned long flags;
323
324         spin_lock_irqsave(&dev->core_dev->lock, flags);
325         if (dev->gdr_tail == dev->gdr_head) {
326                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
327                 return 0;
328         }
329
330         if (dev->gdr_tail != PPC4XX_LAST_GD)
331                 dev->gdr_tail++;
332         else
333                 dev->gdr_tail = 0;
334
335         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
336
337         return 0;
338 }
339
340 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
341                                               dma_addr_t *gd_dma, u32 idx)
342 {
343         *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
344
345         return &dev->gdr[idx];
346 }
347
348 /**
349  * alloc memory for the scatter ring
350  * need to alloc buf for the ring
351  * sdr_tail, sdr_head and sdr_count are initialized by this function
352  */
353 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
354 {
355         int i;
356
357         /* alloc memory for scatter descriptor ring */
358         dev->sdr = dma_alloc_coherent(dev->core_dev->device,
359                                       sizeof(struct ce_sd) * PPC4XX_NUM_SD,
360                                       &dev->sdr_pa, GFP_ATOMIC);
361         if (!dev->sdr)
362                 return -ENOMEM;
363
364         dev->scatter_buffer_va =
365                 dma_alloc_coherent(dev->core_dev->device,
366                         PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
367                         &dev->scatter_buffer_pa, GFP_ATOMIC);
368         if (!dev->scatter_buffer_va) {
369                 dma_free_coherent(dev->core_dev->device,
370                                   sizeof(struct ce_sd) * PPC4XX_NUM_SD,
371                                   dev->sdr, dev->sdr_pa);
372                 return -ENOMEM;
373         }
374
375         for (i = 0; i < PPC4XX_NUM_SD; i++) {
376                 dev->sdr[i].ptr = dev->scatter_buffer_pa +
377                                   PPC4XX_SD_BUFFER_SIZE * i;
378         }
379
380         return 0;
381 }
382
383 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
384 {
385         if (dev->sdr)
386                 dma_free_coherent(dev->core_dev->device,
387                                   sizeof(struct ce_sd) * PPC4XX_NUM_SD,
388                                   dev->sdr, dev->sdr_pa);
389
390         if (dev->scatter_buffer_va)
391                 dma_free_coherent(dev->core_dev->device,
392                                   PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
393                                   dev->scatter_buffer_va,
394                                   dev->scatter_buffer_pa);
395 }
396
397 /*
398  * when this function is called.
399  * preemption or interrupt must be disabled
400  */
401 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
402 {
403         u32 retval;
404         u32 tmp;
405
406         if (n >= PPC4XX_NUM_SD)
407                 return ERING_WAS_FULL;
408
409         retval = dev->sdr_head;
410         tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
411         if (dev->sdr_head > dev->gdr_tail) {
412                 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
413                         return ERING_WAS_FULL;
414         } else if (dev->sdr_head < dev->sdr_tail) {
415                 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
416                         return ERING_WAS_FULL;
417         } /* the head = tail, or empty case is already take cared */
418         dev->sdr_head = tmp;
419
420         return retval;
421 }
422
423 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
424 {
425         unsigned long flags;
426
427         spin_lock_irqsave(&dev->core_dev->lock, flags);
428         if (dev->sdr_tail == dev->sdr_head) {
429                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
430                 return 0;
431         }
432         if (dev->sdr_tail != PPC4XX_LAST_SD)
433                 dev->sdr_tail++;
434         else
435                 dev->sdr_tail = 0;
436         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
437
438         return 0;
439 }
440
441 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
442                                               dma_addr_t *sd_dma, u32 idx)
443 {
444         *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
445
446         return &dev->sdr[idx];
447 }
448
449 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
450                                       struct ce_pd *pd,
451                                       struct pd_uinfo *pd_uinfo,
452                                       u32 nbytes,
453                                       struct scatterlist *dst)
454 {
455         unsigned int first_sd = pd_uinfo->first_sd;
456         unsigned int last_sd;
457         unsigned int overflow = 0;
458         unsigned int to_copy;
459         unsigned int dst_start = 0;
460
461         /*
462          * Because the scatter buffers are all neatly organized in one
463          * big continuous ringbuffer; scatterwalk_map_and_copy() can
464          * be instructed to copy a range of buffers in one go.
465          */
466
467         last_sd = (first_sd + pd_uinfo->num_sd);
468         if (last_sd > PPC4XX_LAST_SD) {
469                 last_sd = PPC4XX_LAST_SD;
470                 overflow = last_sd % PPC4XX_NUM_SD;
471         }
472
473         while (nbytes) {
474                 void *buf = dev->scatter_buffer_va +
475                         first_sd * PPC4XX_SD_BUFFER_SIZE;
476
477                 to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
478                                       (1 + last_sd - first_sd));
479                 scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
480                 nbytes -= to_copy;
481
482                 if (overflow) {
483                         first_sd = 0;
484                         last_sd = overflow;
485                         dst_start += to_copy;
486                         overflow = 0;
487                 }
488         }
489 }
490
491 static void crypto4xx_copy_digest_to_dst(void *dst,
492                                         struct pd_uinfo *pd_uinfo,
493                                         struct crypto4xx_ctx *ctx)
494 {
495         struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
496
497         if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
498                 memcpy(dst, pd_uinfo->sr_va->save_digest,
499                        SA_HASH_ALG_SHA1_DIGEST_SIZE);
500         }
501 }
502
503 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
504                                   struct pd_uinfo *pd_uinfo)
505 {
506         int i;
507         if (pd_uinfo->num_gd) {
508                 for (i = 0; i < pd_uinfo->num_gd; i++)
509                         crypto4xx_put_gd_to_gdr(dev);
510                 pd_uinfo->first_gd = 0xffffffff;
511                 pd_uinfo->num_gd = 0;
512         }
513         if (pd_uinfo->num_sd) {
514                 for (i = 0; i < pd_uinfo->num_sd; i++)
515                         crypto4xx_put_sd_to_sdr(dev);
516
517                 pd_uinfo->first_sd = 0xffffffff;
518                 pd_uinfo->num_sd = 0;
519         }
520 }
521
522 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
523                                      struct pd_uinfo *pd_uinfo,
524                                      struct ce_pd *pd)
525 {
526         struct skcipher_request *req;
527         struct scatterlist *dst;
528         dma_addr_t addr;
529
530         req = skcipher_request_cast(pd_uinfo->async_req);
531
532         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
533                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
534                                           req->cryptlen, req->dst);
535         } else {
536                 dst = pd_uinfo->dest_va;
537                 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
538                                     dst->offset, dst->length, DMA_FROM_DEVICE);
539         }
540
541         if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
542                 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
543
544                 crypto4xx_memcpy_from_le32((u32 *)req->iv,
545                         pd_uinfo->sr_va->save_iv,
546                         crypto_skcipher_ivsize(skcipher));
547         }
548
549         crypto4xx_ret_sg_desc(dev, pd_uinfo);
550
551         if (pd_uinfo->state & PD_ENTRY_BUSY)
552                 skcipher_request_complete(req, -EINPROGRESS);
553         skcipher_request_complete(req, 0);
554 }
555
556 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
557                                 struct pd_uinfo *pd_uinfo)
558 {
559         struct crypto4xx_ctx *ctx;
560         struct ahash_request *ahash_req;
561
562         ahash_req = ahash_request_cast(pd_uinfo->async_req);
563         ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
564
565         crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
566                                      crypto_tfm_ctx(ahash_req->base.tfm));
567         crypto4xx_ret_sg_desc(dev, pd_uinfo);
568
569         if (pd_uinfo->state & PD_ENTRY_BUSY)
570                 ahash_request_complete(ahash_req, -EINPROGRESS);
571         ahash_request_complete(ahash_req, 0);
572 }
573
574 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
575                                 struct pd_uinfo *pd_uinfo,
576                                 struct ce_pd *pd)
577 {
578         struct aead_request *aead_req = container_of(pd_uinfo->async_req,
579                 struct aead_request, base);
580         struct scatterlist *dst = pd_uinfo->dest_va;
581         size_t cp_len = crypto_aead_authsize(
582                 crypto_aead_reqtfm(aead_req));
583         u32 icv[AES_BLOCK_SIZE];
584         int err = 0;
585
586         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
587                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
588                                           pd->pd_ctl_len.bf.pkt_len,
589                                           dst);
590         } else {
591                 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
592                                 DMA_FROM_DEVICE);
593         }
594
595         if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
596                 /* append icv at the end */
597                 crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
598                                            sizeof(icv));
599
600                 scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
601                                          cp_len, 1);
602         } else {
603                 /* check icv at the end */
604                 scatterwalk_map_and_copy(icv, aead_req->src,
605                         aead_req->assoclen + aead_req->cryptlen -
606                         cp_len, cp_len, 0);
607
608                 crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
609
610                 if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
611                         err = -EBADMSG;
612         }
613
614         crypto4xx_ret_sg_desc(dev, pd_uinfo);
615
616         if (pd->pd_ctl.bf.status & 0xff) {
617                 if (!__ratelimit(&dev->aead_ratelimit)) {
618                         if (pd->pd_ctl.bf.status & 2)
619                                 pr_err("pad fail error\n");
620                         if (pd->pd_ctl.bf.status & 4)
621                                 pr_err("seqnum fail\n");
622                         if (pd->pd_ctl.bf.status & 8)
623                                 pr_err("error _notify\n");
624                         pr_err("aead return err status = 0x%02x\n",
625                                 pd->pd_ctl.bf.status & 0xff);
626                         pr_err("pd pad_ctl = 0x%08x\n",
627                                 pd->pd_ctl.bf.pd_pad_ctl);
628                 }
629                 err = -EINVAL;
630         }
631
632         if (pd_uinfo->state & PD_ENTRY_BUSY)
633                 aead_request_complete(aead_req, -EINPROGRESS);
634
635         aead_request_complete(aead_req, err);
636 }
637
638 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
639 {
640         struct ce_pd *pd = &dev->pdr[idx];
641         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
642
643         switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
644         case CRYPTO_ALG_TYPE_SKCIPHER:
645                 crypto4xx_cipher_done(dev, pd_uinfo, pd);
646                 break;
647         case CRYPTO_ALG_TYPE_AEAD:
648                 crypto4xx_aead_done(dev, pd_uinfo, pd);
649                 break;
650         case CRYPTO_ALG_TYPE_AHASH:
651                 crypto4xx_ahash_done(dev, pd_uinfo);
652                 break;
653         }
654 }
655
656 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
657 {
658         crypto4xx_destroy_pdr(core_dev->dev);
659         crypto4xx_destroy_gdr(core_dev->dev);
660         crypto4xx_destroy_sdr(core_dev->dev);
661         iounmap(core_dev->dev->ce_base);
662         kfree(core_dev->dev);
663         kfree(core_dev);
664 }
665
666 static u32 get_next_gd(u32 current)
667 {
668         if (current != PPC4XX_LAST_GD)
669                 return current + 1;
670         else
671                 return 0;
672 }
673
674 static u32 get_next_sd(u32 current)
675 {
676         if (current != PPC4XX_LAST_SD)
677                 return current + 1;
678         else
679                 return 0;
680 }
681
682 int crypto4xx_build_pd(struct crypto_async_request *req,
683                        struct crypto4xx_ctx *ctx,
684                        struct scatterlist *src,
685                        struct scatterlist *dst,
686                        const unsigned int datalen,
687                        const __le32 *iv, const u32 iv_len,
688                        const struct dynamic_sa_ctl *req_sa,
689                        const unsigned int sa_len,
690                        const unsigned int assoclen,
691                        struct scatterlist *_dst)
692 {
693         struct crypto4xx_device *dev = ctx->dev;
694         struct dynamic_sa_ctl *sa;
695         struct ce_gd *gd;
696         struct ce_pd *pd;
697         u32 num_gd, num_sd;
698         u32 fst_gd = 0xffffffff;
699         u32 fst_sd = 0xffffffff;
700         u32 pd_entry;
701         unsigned long flags;
702         struct pd_uinfo *pd_uinfo;
703         unsigned int nbytes = datalen;
704         size_t offset_to_sr_ptr;
705         u32 gd_idx = 0;
706         int tmp;
707         bool is_busy, force_sd;
708
709         /*
710          * There's a very subtile/disguised "bug" in the hardware that
711          * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
712          * of the hardware spec:
713          * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
714          * operation modes for >>> "Block ciphers" <<<.
715          *
716          * To workaround this issue and stop the hardware from causing
717          * "overran dst buffer" on crypttexts that are not a multiple
718          * of 16 (AES_BLOCK_SIZE), we force the driver to use the
719          * scatter buffers.
720          */
721         force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
722                 || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
723                 && (datalen % AES_BLOCK_SIZE);
724
725         /* figure how many gd are needed */
726         tmp = sg_nents_for_len(src, assoclen + datalen);
727         if (tmp < 0) {
728                 dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
729                 return tmp;
730         }
731         if (tmp == 1)
732                 tmp = 0;
733         num_gd = tmp;
734
735         if (assoclen) {
736                 nbytes += assoclen;
737                 dst = scatterwalk_ffwd(_dst, dst, assoclen);
738         }
739
740         /* figure how many sd are needed */
741         if (sg_is_last(dst) && force_sd == false) {
742                 num_sd = 0;
743         } else {
744                 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
745                         num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
746                         if (datalen % PPC4XX_SD_BUFFER_SIZE)
747                                 num_sd++;
748                 } else {
749                         num_sd = 1;
750                 }
751         }
752
753         /*
754          * The follow section of code needs to be protected
755          * The gather ring and scatter ring needs to be consecutive
756          * In case of run out of any kind of descriptor, the descriptor
757          * already got must be return the original place.
758          */
759         spin_lock_irqsave(&dev->core_dev->lock, flags);
760         /*
761          * Let the caller know to slow down, once more than 13/16ths = 81%
762          * of the available data contexts are being used simultaneously.
763          *
764          * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
765          * 31 more contexts. Before new requests have to be rejected.
766          */
767         if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
768                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
769                         ((PPC4XX_NUM_PD * 13) / 16);
770         } else {
771                 /*
772                  * To fix contention issues between ipsec (no blacklog) and
773                  * dm-crypto (backlog) reserve 32 entries for "no backlog"
774                  * data contexts.
775                  */
776                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
777                         ((PPC4XX_NUM_PD * 15) / 16);
778
779                 if (is_busy) {
780                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
781                         return -EBUSY;
782                 }
783         }
784
785         if (num_gd) {
786                 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
787                 if (fst_gd == ERING_WAS_FULL) {
788                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
789                         return -EAGAIN;
790                 }
791         }
792         if (num_sd) {
793                 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
794                 if (fst_sd == ERING_WAS_FULL) {
795                         if (num_gd)
796                                 dev->gdr_head = fst_gd;
797                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
798                         return -EAGAIN;
799                 }
800         }
801         pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
802         if (pd_entry == ERING_WAS_FULL) {
803                 if (num_gd)
804                         dev->gdr_head = fst_gd;
805                 if (num_sd)
806                         dev->sdr_head = fst_sd;
807                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
808                 return -EAGAIN;
809         }
810         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
811
812         pd = &dev->pdr[pd_entry];
813         pd->sa_len = sa_len;
814
815         pd_uinfo = &dev->pdr_uinfo[pd_entry];
816         pd_uinfo->num_gd = num_gd;
817         pd_uinfo->num_sd = num_sd;
818         pd_uinfo->dest_va = dst;
819         pd_uinfo->async_req = req;
820
821         if (iv_len)
822                 memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
823
824         sa = pd_uinfo->sa_va;
825         memcpy(sa, req_sa, sa_len * 4);
826
827         sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
828         offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
829         *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
830
831         if (num_gd) {
832                 dma_addr_t gd_dma;
833                 struct scatterlist *sg;
834
835                 /* get first gd we are going to use */
836                 gd_idx = fst_gd;
837                 pd_uinfo->first_gd = fst_gd;
838                 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
839                 pd->src = gd_dma;
840                 /* enable gather */
841                 sa->sa_command_0.bf.gather = 1;
842                 /* walk the sg, and setup gather array */
843
844                 sg = src;
845                 while (nbytes) {
846                         size_t len;
847
848                         len = min(sg->length, nbytes);
849                         gd->ptr = dma_map_page(dev->core_dev->device,
850                                 sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
851                         gd->ctl_len.len = len;
852                         gd->ctl_len.done = 0;
853                         gd->ctl_len.ready = 1;
854                         if (len >= nbytes)
855                                 break;
856
857                         nbytes -= sg->length;
858                         gd_idx = get_next_gd(gd_idx);
859                         gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
860                         sg = sg_next(sg);
861                 }
862         } else {
863                 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
864                                 src->offset, min(nbytes, src->length),
865                                 DMA_TO_DEVICE);
866                 /*
867                  * Disable gather in sa command
868                  */
869                 sa->sa_command_0.bf.gather = 0;
870                 /*
871                  * Indicate gather array is not used
872                  */
873                 pd_uinfo->first_gd = 0xffffffff;
874         }
875         if (!num_sd) {
876                 /*
877                  * we know application give us dst a whole piece of memory
878                  * no need to use scatter ring.
879                  */
880                 pd_uinfo->first_sd = 0xffffffff;
881                 sa->sa_command_0.bf.scatter = 0;
882                 pd->dest = (u32)dma_map_page(dev->core_dev->device,
883                                              sg_page(dst), dst->offset,
884                                              min(datalen, dst->length),
885                                              DMA_TO_DEVICE);
886         } else {
887                 dma_addr_t sd_dma;
888                 struct ce_sd *sd = NULL;
889
890                 u32 sd_idx = fst_sd;
891                 nbytes = datalen;
892                 sa->sa_command_0.bf.scatter = 1;
893                 pd_uinfo->first_sd = fst_sd;
894                 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
895                 pd->dest = sd_dma;
896                 /* setup scatter descriptor */
897                 sd->ctl.done = 0;
898                 sd->ctl.rdy = 1;
899                 /* sd->ptr should be setup by sd_init routine*/
900                 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
901                         nbytes -= PPC4XX_SD_BUFFER_SIZE;
902                 else
903                         nbytes = 0;
904                 while (nbytes) {
905                         sd_idx = get_next_sd(sd_idx);
906                         sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
907                         /* setup scatter descriptor */
908                         sd->ctl.done = 0;
909                         sd->ctl.rdy = 1;
910                         if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
911                                 nbytes -= PPC4XX_SD_BUFFER_SIZE;
912                         } else {
913                                 /*
914                                  * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
915                                  * which is more than nbytes, so done.
916                                  */
917                                 nbytes = 0;
918                         }
919                 }
920         }
921
922         pd->pd_ctl.w = PD_CTL_HOST_READY |
923                 ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
924                  (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
925                         PD_CTL_HASH_FINAL : 0);
926         pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
927         pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
928
929         wmb();
930         /* write any value to push engine to read a pd */
931         writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
932         writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
933         return is_busy ? -EBUSY : -EINPROGRESS;
934 }
935
936 /**
937  * Algorithm Registration Functions
938  */
939 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
940                                struct crypto4xx_ctx *ctx)
941 {
942         ctx->dev = amcc_alg->dev;
943         ctx->sa_in = NULL;
944         ctx->sa_out = NULL;
945         ctx->sa_len = 0;
946 }
947
948 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
949 {
950         struct skcipher_alg *alg = crypto_skcipher_alg(sk);
951         struct crypto4xx_alg *amcc_alg;
952         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
953
954         if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
955                 ctx->sw_cipher.cipher =
956                         crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
957                                               CRYPTO_ALG_NEED_FALLBACK);
958                 if (IS_ERR(ctx->sw_cipher.cipher))
959                         return PTR_ERR(ctx->sw_cipher.cipher);
960         }
961
962         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
963         crypto4xx_ctx_init(amcc_alg, ctx);
964         return 0;
965 }
966
967 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
968 {
969         crypto4xx_free_sa(ctx);
970 }
971
972 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
973 {
974         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
975
976         crypto4xx_common_exit(ctx);
977         if (ctx->sw_cipher.cipher)
978                 crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
979 }
980
981 static int crypto4xx_aead_init(struct crypto_aead *tfm)
982 {
983         struct aead_alg *alg = crypto_aead_alg(tfm);
984         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
985         struct crypto4xx_alg *amcc_alg;
986
987         ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
988                                                 CRYPTO_ALG_NEED_FALLBACK |
989                                                 CRYPTO_ALG_ASYNC);
990         if (IS_ERR(ctx->sw_cipher.aead))
991                 return PTR_ERR(ctx->sw_cipher.aead);
992
993         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
994         crypto4xx_ctx_init(amcc_alg, ctx);
995         crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
996                                 crypto_aead_reqsize(ctx->sw_cipher.aead),
997                                 sizeof(struct crypto4xx_aead_reqctx)));
998         return 0;
999 }
1000
1001 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
1002 {
1003         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1004
1005         crypto4xx_common_exit(ctx);
1006         crypto_free_aead(ctx->sw_cipher.aead);
1007 }
1008
1009 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1010                                   struct crypto4xx_alg_common *crypto_alg,
1011                                   int array_size)
1012 {
1013         struct crypto4xx_alg *alg;
1014         int i;
1015         int rc = 0;
1016
1017         for (i = 0; i < array_size; i++) {
1018                 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1019                 if (!alg)
1020                         return -ENOMEM;
1021
1022                 alg->alg = crypto_alg[i];
1023                 alg->dev = sec_dev;
1024
1025                 switch (alg->alg.type) {
1026                 case CRYPTO_ALG_TYPE_AEAD:
1027                         rc = crypto_register_aead(&alg->alg.u.aead);
1028                         break;
1029
1030                 case CRYPTO_ALG_TYPE_AHASH:
1031                         rc = crypto_register_ahash(&alg->alg.u.hash);
1032                         break;
1033
1034                 case CRYPTO_ALG_TYPE_RNG:
1035                         rc = crypto_register_rng(&alg->alg.u.rng);
1036                         break;
1037
1038                 default:
1039                         rc = crypto_register_skcipher(&alg->alg.u.cipher);
1040                         break;
1041                 }
1042
1043                 if (rc)
1044                         kfree(alg);
1045                 else
1046                         list_add_tail(&alg->entry, &sec_dev->alg_list);
1047         }
1048
1049         return 0;
1050 }
1051
1052 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1053 {
1054         struct crypto4xx_alg *alg, *tmp;
1055
1056         list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1057                 list_del(&alg->entry);
1058                 switch (alg->alg.type) {
1059                 case CRYPTO_ALG_TYPE_AHASH:
1060                         crypto_unregister_ahash(&alg->alg.u.hash);
1061                         break;
1062
1063                 case CRYPTO_ALG_TYPE_AEAD:
1064                         crypto_unregister_aead(&alg->alg.u.aead);
1065                         break;
1066
1067                 case CRYPTO_ALG_TYPE_RNG:
1068                         crypto_unregister_rng(&alg->alg.u.rng);
1069                         break;
1070
1071                 default:
1072                         crypto_unregister_skcipher(&alg->alg.u.cipher);
1073                 }
1074                 kfree(alg);
1075         }
1076 }
1077
1078 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1079 {
1080         struct device *dev = (struct device *)data;
1081         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1082         struct pd_uinfo *pd_uinfo;
1083         struct ce_pd *pd;
1084         u32 tail = core_dev->dev->pdr_tail;
1085         u32 head = core_dev->dev->pdr_head;
1086
1087         do {
1088                 pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1089                 pd = &core_dev->dev->pdr[tail];
1090                 if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1091                      ((READ_ONCE(pd->pd_ctl.w) &
1092                        (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1093                        PD_CTL_PE_DONE)) {
1094                         crypto4xx_pd_done(core_dev->dev, tail);
1095                         tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1096                 } else {
1097                         /* if tail not done, break */
1098                         break;
1099                 }
1100         } while (head != tail);
1101 }
1102
1103 /**
1104  * Top Half of isr.
1105  */
1106 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1107                                                       u32 clr_val)
1108 {
1109         struct device *dev = (struct device *)data;
1110         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1111
1112         writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1113         tasklet_schedule(&core_dev->tasklet);
1114
1115         return IRQ_HANDLED;
1116 }
1117
1118 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1119 {
1120         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1121 }
1122
1123 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1124 {
1125         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1126                 PPC4XX_TMO_ERR_INT);
1127 }
1128
1129 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1130                                  u8 *data, unsigned int max)
1131 {
1132         unsigned int i, curr = 0;
1133         u32 val[2];
1134
1135         do {
1136                 /* trigger PRN generation */
1137                 writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1138                        dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1139
1140                 for (i = 0; i < 1024; i++) {
1141                         /* usually 19 iterations are enough */
1142                         if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1143                              CRYPTO4XX_PRNG_STAT_BUSY))
1144                                 continue;
1145
1146                         val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1147                         val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1148                         break;
1149                 }
1150                 if (i == 1024)
1151                         return -ETIMEDOUT;
1152
1153                 if ((max - curr) >= 8) {
1154                         memcpy(data, &val, 8);
1155                         data += 8;
1156                         curr += 8;
1157                 } else {
1158                         /* copy only remaining bytes */
1159                         memcpy(data, &val, max - curr);
1160                         break;
1161                 }
1162         } while (curr < max);
1163
1164         return curr;
1165 }
1166
1167 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1168                                    const u8 *src, unsigned int slen,
1169                                    u8 *dstn, unsigned int dlen)
1170 {
1171         struct rng_alg *alg = crypto_rng_alg(tfm);
1172         struct crypto4xx_alg *amcc_alg;
1173         struct crypto4xx_device *dev;
1174         int ret;
1175
1176         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1177         dev = amcc_alg->dev;
1178
1179         mutex_lock(&dev->core_dev->rng_lock);
1180         ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1181         mutex_unlock(&dev->core_dev->rng_lock);
1182         return ret;
1183 }
1184
1185
1186 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1187                         unsigned int slen)
1188 {
1189         return 0;
1190 }
1191
1192 /**
1193  * Supported Crypto Algorithms
1194  */
1195 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1196         /* Crypto AES modes */
1197         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1198                 .base = {
1199                         .cra_name = "cbc(aes)",
1200                         .cra_driver_name = "cbc-aes-ppc4xx",
1201                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1202                         .cra_flags = CRYPTO_ALG_ASYNC |
1203                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1204                         .cra_blocksize = AES_BLOCK_SIZE,
1205                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1206                         .cra_module = THIS_MODULE,
1207                 },
1208                 .min_keysize = AES_MIN_KEY_SIZE,
1209                 .max_keysize = AES_MAX_KEY_SIZE,
1210                 .ivsize = AES_IV_SIZE,
1211                 .setkey = crypto4xx_setkey_aes_cbc,
1212                 .encrypt = crypto4xx_encrypt_iv_block,
1213                 .decrypt = crypto4xx_decrypt_iv_block,
1214                 .init = crypto4xx_sk_init,
1215                 .exit = crypto4xx_sk_exit,
1216         } },
1217         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1218                 .base = {
1219                         .cra_name = "cfb(aes)",
1220                         .cra_driver_name = "cfb-aes-ppc4xx",
1221                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1222                         .cra_flags = CRYPTO_ALG_ASYNC |
1223                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1224                         .cra_blocksize = 1,
1225                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1226                         .cra_module = THIS_MODULE,
1227                 },
1228                 .min_keysize = AES_MIN_KEY_SIZE,
1229                 .max_keysize = AES_MAX_KEY_SIZE,
1230                 .ivsize = AES_IV_SIZE,
1231                 .setkey = crypto4xx_setkey_aes_cfb,
1232                 .encrypt = crypto4xx_encrypt_iv_stream,
1233                 .decrypt = crypto4xx_decrypt_iv_stream,
1234                 .init = crypto4xx_sk_init,
1235                 .exit = crypto4xx_sk_exit,
1236         } },
1237         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1238                 .base = {
1239                         .cra_name = "ctr(aes)",
1240                         .cra_driver_name = "ctr-aes-ppc4xx",
1241                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1242                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1243                                 CRYPTO_ALG_ASYNC |
1244                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1245                         .cra_blocksize = 1,
1246                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1247                         .cra_module = THIS_MODULE,
1248                 },
1249                 .min_keysize = AES_MIN_KEY_SIZE,
1250                 .max_keysize = AES_MAX_KEY_SIZE,
1251                 .ivsize = AES_IV_SIZE,
1252                 .setkey = crypto4xx_setkey_aes_ctr,
1253                 .encrypt = crypto4xx_encrypt_ctr,
1254                 .decrypt = crypto4xx_decrypt_ctr,
1255                 .init = crypto4xx_sk_init,
1256                 .exit = crypto4xx_sk_exit,
1257         } },
1258         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1259                 .base = {
1260                         .cra_name = "rfc3686(ctr(aes))",
1261                         .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1262                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1263                         .cra_flags = CRYPTO_ALG_ASYNC |
1264                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1265                         .cra_blocksize = 1,
1266                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1267                         .cra_module = THIS_MODULE,
1268                 },
1269                 .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1270                 .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1271                 .ivsize = CTR_RFC3686_IV_SIZE,
1272                 .setkey = crypto4xx_setkey_rfc3686,
1273                 .encrypt = crypto4xx_rfc3686_encrypt,
1274                 .decrypt = crypto4xx_rfc3686_decrypt,
1275                 .init = crypto4xx_sk_init,
1276                 .exit = crypto4xx_sk_exit,
1277         } },
1278         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1279                 .base = {
1280                         .cra_name = "ecb(aes)",
1281                         .cra_driver_name = "ecb-aes-ppc4xx",
1282                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1283                         .cra_flags = CRYPTO_ALG_ASYNC |
1284                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1285                         .cra_blocksize = AES_BLOCK_SIZE,
1286                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1287                         .cra_module = THIS_MODULE,
1288                 },
1289                 .min_keysize = AES_MIN_KEY_SIZE,
1290                 .max_keysize = AES_MAX_KEY_SIZE,
1291                 .setkey = crypto4xx_setkey_aes_ecb,
1292                 .encrypt = crypto4xx_encrypt_noiv_block,
1293                 .decrypt = crypto4xx_decrypt_noiv_block,
1294                 .init = crypto4xx_sk_init,
1295                 .exit = crypto4xx_sk_exit,
1296         } },
1297         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1298                 .base = {
1299                         .cra_name = "ofb(aes)",
1300                         .cra_driver_name = "ofb-aes-ppc4xx",
1301                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1302                         .cra_flags = CRYPTO_ALG_ASYNC |
1303                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1304                         .cra_blocksize = 1,
1305                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1306                         .cra_module = THIS_MODULE,
1307                 },
1308                 .min_keysize = AES_MIN_KEY_SIZE,
1309                 .max_keysize = AES_MAX_KEY_SIZE,
1310                 .ivsize = AES_IV_SIZE,
1311                 .setkey = crypto4xx_setkey_aes_ofb,
1312                 .encrypt = crypto4xx_encrypt_iv_stream,
1313                 .decrypt = crypto4xx_decrypt_iv_stream,
1314                 .init = crypto4xx_sk_init,
1315                 .exit = crypto4xx_sk_exit,
1316         } },
1317
1318         /* AEAD */
1319         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1320                 .setkey         = crypto4xx_setkey_aes_ccm,
1321                 .setauthsize    = crypto4xx_setauthsize_aead,
1322                 .encrypt        = crypto4xx_encrypt_aes_ccm,
1323                 .decrypt        = crypto4xx_decrypt_aes_ccm,
1324                 .init           = crypto4xx_aead_init,
1325                 .exit           = crypto4xx_aead_exit,
1326                 .ivsize         = AES_BLOCK_SIZE,
1327                 .maxauthsize    = 16,
1328                 .base = {
1329                         .cra_name       = "ccm(aes)",
1330                         .cra_driver_name = "ccm-aes-ppc4xx",
1331                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1332                         .cra_flags      = CRYPTO_ALG_ASYNC |
1333                                           CRYPTO_ALG_NEED_FALLBACK |
1334                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1335                         .cra_blocksize  = 1,
1336                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1337                         .cra_module     = THIS_MODULE,
1338                 },
1339         } },
1340         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1341                 .setkey         = crypto4xx_setkey_aes_gcm,
1342                 .setauthsize    = crypto4xx_setauthsize_aead,
1343                 .encrypt        = crypto4xx_encrypt_aes_gcm,
1344                 .decrypt        = crypto4xx_decrypt_aes_gcm,
1345                 .init           = crypto4xx_aead_init,
1346                 .exit           = crypto4xx_aead_exit,
1347                 .ivsize         = GCM_AES_IV_SIZE,
1348                 .maxauthsize    = 16,
1349                 .base = {
1350                         .cra_name       = "gcm(aes)",
1351                         .cra_driver_name = "gcm-aes-ppc4xx",
1352                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1353                         .cra_flags      = CRYPTO_ALG_ASYNC |
1354                                           CRYPTO_ALG_NEED_FALLBACK |
1355                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1356                         .cra_blocksize  = 1,
1357                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1358                         .cra_module     = THIS_MODULE,
1359                 },
1360         } },
1361         { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1362                 .base = {
1363                         .cra_name               = "stdrng",
1364                         .cra_driver_name        = "crypto4xx_rng",
1365                         .cra_priority           = 300,
1366                         .cra_ctxsize            = 0,
1367                         .cra_module             = THIS_MODULE,
1368                 },
1369                 .generate               = crypto4xx_prng_generate,
1370                 .seed                   = crypto4xx_prng_seed,
1371                 .seedsize               = 0,
1372         } },
1373 };
1374
1375 /**
1376  * Module Initialization Routine
1377  */
1378 static int crypto4xx_probe(struct platform_device *ofdev)
1379 {
1380         int rc;
1381         struct resource res;
1382         struct device *dev = &ofdev->dev;
1383         struct crypto4xx_core_device *core_dev;
1384         u32 pvr;
1385         bool is_revb = true;
1386
1387         rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1388         if (rc)
1389                 return -ENODEV;
1390
1391         if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1392                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1393                        mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1394                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1395                        mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1396         } else if (of_find_compatible_node(NULL, NULL,
1397                         "amcc,ppc405ex-crypto")) {
1398                 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1399                        mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1400                 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1401                        mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1402                 is_revb = false;
1403         } else if (of_find_compatible_node(NULL, NULL,
1404                         "amcc,ppc460sx-crypto")) {
1405                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1406                        mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1407                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1408                        mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1409         } else {
1410                 printk(KERN_ERR "Crypto Function Not supported!\n");
1411                 return -EINVAL;
1412         }
1413
1414         core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1415         if (!core_dev)
1416                 return -ENOMEM;
1417
1418         dev_set_drvdata(dev, core_dev);
1419         core_dev->ofdev = ofdev;
1420         core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1421         rc = -ENOMEM;
1422         if (!core_dev->dev)
1423                 goto err_alloc_dev;
1424
1425         /*
1426          * Older version of 460EX/GT have a hardware bug.
1427          * Hence they do not support H/W based security intr coalescing
1428          */
1429         pvr = mfspr(SPRN_PVR);
1430         if (is_revb && ((pvr >> 4) == 0x130218A)) {
1431                 u32 min = PVR_MIN(pvr);
1432
1433                 if (min < 4) {
1434                         dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1435                         is_revb = false;
1436                 }
1437         }
1438
1439         core_dev->dev->core_dev = core_dev;
1440         core_dev->dev->is_revb = is_revb;
1441         core_dev->device = dev;
1442         mutex_init(&core_dev->rng_lock);
1443         spin_lock_init(&core_dev->lock);
1444         INIT_LIST_HEAD(&core_dev->dev->alg_list);
1445         ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1446         rc = crypto4xx_build_pdr(core_dev->dev);
1447         if (rc)
1448                 goto err_build_pdr;
1449
1450         rc = crypto4xx_build_gdr(core_dev->dev);
1451         if (rc)
1452                 goto err_build_pdr;
1453
1454         rc = crypto4xx_build_sdr(core_dev->dev);
1455         if (rc)
1456                 goto err_build_sdr;
1457
1458         /* Init tasklet for bottom half processing */
1459         tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1460                      (unsigned long) dev);
1461
1462         core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1463         if (!core_dev->dev->ce_base) {
1464                 dev_err(dev, "failed to of_iomap\n");
1465                 rc = -ENOMEM;
1466                 goto err_iomap;
1467         }
1468
1469         /* Register for Crypto isr, Crypto Engine IRQ */
1470         core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1471         rc = request_irq(core_dev->irq, is_revb ?
1472                          crypto4xx_ce_interrupt_handler_revb :
1473                          crypto4xx_ce_interrupt_handler, 0,
1474                          KBUILD_MODNAME, dev);
1475         if (rc)
1476                 goto err_request_irq;
1477
1478         /* need to setup pdr, rdr, gdr and sdr before this */
1479         crypto4xx_hw_init(core_dev->dev);
1480
1481         /* Register security algorithms with Linux CryptoAPI */
1482         rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1483                                ARRAY_SIZE(crypto4xx_alg));
1484         if (rc)
1485                 goto err_start_dev;
1486
1487         ppc4xx_trng_probe(core_dev);
1488         return 0;
1489
1490 err_start_dev:
1491         free_irq(core_dev->irq, dev);
1492 err_request_irq:
1493         irq_dispose_mapping(core_dev->irq);
1494         iounmap(core_dev->dev->ce_base);
1495 err_iomap:
1496         tasklet_kill(&core_dev->tasklet);
1497 err_build_sdr:
1498         crypto4xx_destroy_sdr(core_dev->dev);
1499         crypto4xx_destroy_gdr(core_dev->dev);
1500 err_build_pdr:
1501         crypto4xx_destroy_pdr(core_dev->dev);
1502         kfree(core_dev->dev);
1503 err_alloc_dev:
1504         kfree(core_dev);
1505
1506         return rc;
1507 }
1508
1509 static int crypto4xx_remove(struct platform_device *ofdev)
1510 {
1511         struct device *dev = &ofdev->dev;
1512         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1513
1514         ppc4xx_trng_remove(core_dev);
1515
1516         free_irq(core_dev->irq, dev);
1517         irq_dispose_mapping(core_dev->irq);
1518
1519         tasklet_kill(&core_dev->tasklet);
1520         /* Un-register with Linux CryptoAPI */
1521         crypto4xx_unregister_alg(core_dev->dev);
1522         mutex_destroy(&core_dev->rng_lock);
1523         /* Free all allocated memory */
1524         crypto4xx_stop_all(core_dev);
1525
1526         return 0;
1527 }
1528
1529 static const struct of_device_id crypto4xx_match[] = {
1530         { .compatible      = "amcc,ppc4xx-crypto",},
1531         { },
1532 };
1533 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1534
1535 static struct platform_driver crypto4xx_driver = {
1536         .driver = {
1537                 .name = KBUILD_MODNAME,
1538                 .of_match_table = crypto4xx_match,
1539         },
1540         .probe          = crypto4xx_probe,
1541         .remove         = crypto4xx_remove,
1542 };
1543
1544 module_platform_driver(crypto4xx_driver);
1545
1546 MODULE_LICENSE("GPL");
1547 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1548 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");