1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * coupled.c - helper functions to enter the same idle state on multiple cpus
5 * Copyright (c) 2011 Google, Inc.
7 * Author: Colin Cross <ccross@android.com>
10 #include <linux/kernel.h>
11 #include <linux/cpu.h>
12 #include <linux/cpuidle.h>
13 #include <linux/mutex.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
21 * DOC: Coupled cpuidle states
23 * On some ARM SMP SoCs (OMAP4460, Tegra 2, and probably more), the
24 * cpus cannot be independently powered down, either due to
25 * sequencing restrictions (on Tegra 2, cpu 0 must be the last to
26 * power down), or due to HW bugs (on OMAP4460, a cpu powering up
27 * will corrupt the gic state unless the other cpu runs a work
28 * around). Each cpu has a power state that it can enter without
29 * coordinating with the other cpu (usually Wait For Interrupt, or
30 * WFI), and one or more "coupled" power states that affect blocks
31 * shared between the cpus (L2 cache, interrupt controller, and
32 * sometimes the whole SoC). Entering a coupled power state must
33 * be tightly controlled on both cpus.
35 * This file implements a solution, where each cpu will wait in the
36 * WFI state until all cpus are ready to enter a coupled state, at
37 * which point the coupled state function will be called on all
38 * cpus at approximately the same time.
40 * Once all cpus are ready to enter idle, they are woken by an smp
41 * cross call. At this point, there is a chance that one of the
42 * cpus will find work to do, and choose not to enter idle. A
43 * final pass is needed to guarantee that all cpus will call the
44 * power state enter function at the same time. During this pass,
45 * each cpu will increment the ready counter, and continue once the
46 * ready counter matches the number of online coupled cpus. If any
47 * cpu exits idle, the other cpus will decrement their counter and
50 * requested_state stores the deepest coupled idle state each cpu
51 * is ready for. It is assumed that the states are indexed from
52 * shallowest (highest power, lowest exit latency) to deepest
53 * (lowest power, highest exit latency). The requested_state
54 * variable is not locked. It is only written from the cpu that
55 * it stores (or by the on/offlining cpu if that cpu is offline),
56 * and only read after all the cpus are ready for the coupled idle
57 * state are are no longer updating it.
59 * Three atomic counters are used. alive_count tracks the number
60 * of cpus in the coupled set that are currently or soon will be
61 * online. waiting_count tracks the number of cpus that are in
62 * the waiting loop, in the ready loop, or in the coupled idle state.
63 * ready_count tracks the number of cpus that are in the ready loop
64 * or in the coupled idle state.
66 * To use coupled cpuidle states, a cpuidle driver must:
68 * Set struct cpuidle_device.coupled_cpus to the mask of all
69 * coupled cpus, usually the same as cpu_possible_mask if all cpus
70 * are part of the same cluster. The coupled_cpus mask must be
71 * set in the struct cpuidle_device for each cpu.
73 * Set struct cpuidle_device.safe_state to a state that is not a
74 * coupled state. This is usually WFI.
76 * Set CPUIDLE_FLAG_COUPLED in struct cpuidle_state.flags for each
77 * state that affects multiple cpus.
79 * Provide a struct cpuidle_state.enter function for each state
80 * that affects multiple cpus. This function is guaranteed to be
81 * called on all cpus at approximately the same time. The driver
82 * should ensure that the cpus all abort together if any cpu tries
83 * to abort once the function is called. The function should return
84 * with interrupts still disabled.
88 * struct cpuidle_coupled - data for set of cpus that share a coupled idle state
89 * @coupled_cpus: mask of cpus that are part of the coupled set
90 * @requested_state: array of requested states for cpus in the coupled set
91 * @ready_waiting_counts: combined count of cpus in ready or waiting loops
92 * @abort_barrier: synchronisation point for abort cases
93 * @online_count: count of cpus that are online
94 * @refcnt: reference count of cpuidle devices that are using this struct
95 * @prevent: flag to prevent coupled idle while a cpu is hotplugging
97 struct cpuidle_coupled {
98 cpumask_t coupled_cpus;
99 int requested_state[NR_CPUS];
100 atomic_t ready_waiting_counts;
101 atomic_t abort_barrier;
107 #define WAITING_BITS 16
108 #define MAX_WAITING_CPUS (1 << WAITING_BITS)
109 #define WAITING_MASK (MAX_WAITING_CPUS - 1)
110 #define READY_MASK (~WAITING_MASK)
112 #define CPUIDLE_COUPLED_NOT_IDLE (-1)
114 static DEFINE_PER_CPU(call_single_data_t, cpuidle_coupled_poke_cb);
117 * The cpuidle_coupled_poke_pending mask is used to avoid calling
118 * __smp_call_function_single with the per cpu call_single_data_t struct already
119 * in use. This prevents a deadlock where two cpus are waiting for each others
120 * call_single_data_t struct to be available
122 static cpumask_t cpuidle_coupled_poke_pending;
125 * The cpuidle_coupled_poked mask is used to ensure that each cpu has been poked
126 * once to minimize entering the ready loop with a poke pending, which would
127 * require aborting and retrying.
129 static cpumask_t cpuidle_coupled_poked;
132 * cpuidle_coupled_parallel_barrier - synchronize all online coupled cpus
133 * @dev: cpuidle_device of the calling cpu
134 * @a: atomic variable to hold the barrier
136 * No caller to this function will return from this function until all online
137 * cpus in the same coupled group have called this function. Once any caller
138 * has returned from this function, the barrier is immediately available for
141 * The atomic variable must be initialized to 0 before any cpu calls
142 * this function, will be reset to 0 before any cpu returns from this function.
144 * Must only be called from within a coupled idle state handler
145 * (state.enter when state.flags has CPUIDLE_FLAG_COUPLED set).
147 * Provides full smp barrier semantics before and after calling.
149 void cpuidle_coupled_parallel_barrier(struct cpuidle_device *dev, atomic_t *a)
151 int n = dev->coupled->online_count;
153 smp_mb__before_atomic();
156 while (atomic_read(a) < n)
159 if (atomic_inc_return(a) == n * 2) {
164 while (atomic_read(a) > n)
169 * cpuidle_state_is_coupled - check if a state is part of a coupled set
170 * @drv: struct cpuidle_driver for the platform
171 * @state: index of the target state in drv->states
173 * Returns true if the target state is coupled with cpus besides this one
175 bool cpuidle_state_is_coupled(struct cpuidle_driver *drv, int state)
177 return drv->states[state].flags & CPUIDLE_FLAG_COUPLED;
181 * cpuidle_coupled_state_verify - check if the coupled states are correctly set.
182 * @drv: struct cpuidle_driver for the platform
184 * Returns 0 for valid state values, a negative error code otherwise:
185 * * -EINVAL if any coupled state(safe_state_index) is wrongly set.
187 int cpuidle_coupled_state_verify(struct cpuidle_driver *drv)
191 for (i = drv->state_count - 1; i >= 0; i--) {
192 if (cpuidle_state_is_coupled(drv, i) &&
193 (drv->safe_state_index == i ||
194 drv->safe_state_index < 0 ||
195 drv->safe_state_index >= drv->state_count))
203 * cpuidle_coupled_set_ready - mark a cpu as ready
204 * @coupled: the struct coupled that contains the current cpu
206 static inline void cpuidle_coupled_set_ready(struct cpuidle_coupled *coupled)
208 atomic_add(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
212 * cpuidle_coupled_set_not_ready - mark a cpu as not ready
213 * @coupled: the struct coupled that contains the current cpu
215 * Decrements the ready counter, unless the ready (and thus the waiting) counter
216 * is equal to the number of online cpus. Prevents a race where one cpu
217 * decrements the waiting counter and then re-increments it just before another
218 * cpu has decremented its ready counter, leading to the ready counter going
219 * down from the number of online cpus without going through the coupled idle
222 * Returns 0 if the counter was decremented successfully, -EINVAL if the ready
223 * counter was equal to the number of online cpus.
226 inline int cpuidle_coupled_set_not_ready(struct cpuidle_coupled *coupled)
231 all = coupled->online_count | (coupled->online_count << WAITING_BITS);
232 ret = atomic_add_unless(&coupled->ready_waiting_counts,
233 -MAX_WAITING_CPUS, all);
235 return ret ? 0 : -EINVAL;
239 * cpuidle_coupled_no_cpus_ready - check if no cpus in a coupled set are ready
240 * @coupled: the struct coupled that contains the current cpu
242 * Returns true if all of the cpus in a coupled set are out of the ready loop.
244 static inline int cpuidle_coupled_no_cpus_ready(struct cpuidle_coupled *coupled)
246 int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
251 * cpuidle_coupled_cpus_ready - check if all cpus in a coupled set are ready
252 * @coupled: the struct coupled that contains the current cpu
254 * Returns true if all cpus coupled to this target state are in the ready loop
256 static inline bool cpuidle_coupled_cpus_ready(struct cpuidle_coupled *coupled)
258 int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
259 return r == coupled->online_count;
263 * cpuidle_coupled_cpus_waiting - check if all cpus in a coupled set are waiting
264 * @coupled: the struct coupled that contains the current cpu
266 * Returns true if all cpus coupled to this target state are in the wait loop
268 static inline bool cpuidle_coupled_cpus_waiting(struct cpuidle_coupled *coupled)
270 int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
271 return w == coupled->online_count;
275 * cpuidle_coupled_no_cpus_waiting - check if no cpus in coupled set are waiting
276 * @coupled: the struct coupled that contains the current cpu
278 * Returns true if all of the cpus in a coupled set are out of the waiting loop.
280 static inline int cpuidle_coupled_no_cpus_waiting(struct cpuidle_coupled *coupled)
282 int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
287 * cpuidle_coupled_get_state - determine the deepest idle state
288 * @dev: struct cpuidle_device for this cpu
289 * @coupled: the struct coupled that contains the current cpu
291 * Returns the deepest idle state that all coupled cpus can enter
293 static inline int cpuidle_coupled_get_state(struct cpuidle_device *dev,
294 struct cpuidle_coupled *coupled)
300 * Read barrier ensures that read of requested_state is ordered after
301 * reads of ready_count. Matches the write barriers
302 * cpuidle_set_state_waiting.
306 for_each_cpu(i, &coupled->coupled_cpus)
307 if (cpu_online(i) && coupled->requested_state[i] < state)
308 state = coupled->requested_state[i];
313 static void cpuidle_coupled_handle_poke(void *info)
315 int cpu = (unsigned long)info;
316 cpumask_set_cpu(cpu, &cpuidle_coupled_poked);
317 cpumask_clear_cpu(cpu, &cpuidle_coupled_poke_pending);
321 * cpuidle_coupled_poke - wake up a cpu that may be waiting
324 * Ensures that the target cpu exits it's waiting idle state (if it is in it)
325 * and will see updates to waiting_count before it re-enters it's waiting idle
328 * If cpuidle_coupled_poked_mask is already set for the target cpu, that cpu
329 * either has or will soon have a pending IPI that will wake it out of idle,
330 * or it is currently processing the IPI and is not in idle.
332 static void cpuidle_coupled_poke(int cpu)
334 call_single_data_t *csd = &per_cpu(cpuidle_coupled_poke_cb, cpu);
336 if (!cpumask_test_and_set_cpu(cpu, &cpuidle_coupled_poke_pending))
337 smp_call_function_single_async(cpu, csd);
341 * cpuidle_coupled_poke_others - wake up all other cpus that may be waiting
342 * @this_cpu: target cpu
343 * @coupled: the struct coupled that contains the current cpu
345 * Calls cpuidle_coupled_poke on all other online cpus.
347 static void cpuidle_coupled_poke_others(int this_cpu,
348 struct cpuidle_coupled *coupled)
352 for_each_cpu(cpu, &coupled->coupled_cpus)
353 if (cpu != this_cpu && cpu_online(cpu))
354 cpuidle_coupled_poke(cpu);
358 * cpuidle_coupled_set_waiting - mark this cpu as in the wait loop
360 * @coupled: the struct coupled that contains the current cpu
361 * @next_state: the index in drv->states of the requested state for this cpu
363 * Updates the requested idle state for the specified cpuidle device.
364 * Returns the number of waiting cpus.
366 static int cpuidle_coupled_set_waiting(int cpu,
367 struct cpuidle_coupled *coupled, int next_state)
369 coupled->requested_state[cpu] = next_state;
372 * The atomic_inc_return provides a write barrier to order the write
373 * to requested_state with the later write that increments ready_count.
375 return atomic_inc_return(&coupled->ready_waiting_counts) & WAITING_MASK;
379 * cpuidle_coupled_set_not_waiting - mark this cpu as leaving the wait loop
381 * @coupled: the struct coupled that contains the current cpu
383 * Removes the requested idle state for the specified cpuidle device.
385 static void cpuidle_coupled_set_not_waiting(int cpu,
386 struct cpuidle_coupled *coupled)
389 * Decrementing waiting count can race with incrementing it in
390 * cpuidle_coupled_set_waiting, but that's OK. Worst case, some
391 * cpus will increment ready_count and then spin until they
392 * notice that this cpu has cleared it's requested_state.
394 atomic_dec(&coupled->ready_waiting_counts);
396 coupled->requested_state[cpu] = CPUIDLE_COUPLED_NOT_IDLE;
400 * cpuidle_coupled_set_done - mark this cpu as leaving the ready loop
401 * @cpu: the current cpu
402 * @coupled: the struct coupled that contains the current cpu
404 * Marks this cpu as no longer in the ready and waiting loops. Decrements
405 * the waiting count first to prevent another cpu looping back in and seeing
406 * this cpu as waiting just before it exits idle.
408 static void cpuidle_coupled_set_done(int cpu, struct cpuidle_coupled *coupled)
410 cpuidle_coupled_set_not_waiting(cpu, coupled);
411 atomic_sub(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
415 * cpuidle_coupled_clear_pokes - spin until the poke interrupt is processed
418 * Turns on interrupts and spins until any outstanding poke interrupts have
419 * been processed and the poke bit has been cleared.
421 * Other interrupts may also be processed while interrupts are enabled, so
422 * need_resched() must be tested after this function returns to make sure
423 * the interrupt didn't schedule work that should take the cpu out of idle.
425 * Returns 0 if no poke was pending, 1 if a poke was cleared.
427 static int cpuidle_coupled_clear_pokes(int cpu)
429 if (!cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending))
433 while (cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending))
440 static bool cpuidle_coupled_any_pokes_pending(struct cpuidle_coupled *coupled)
445 cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus);
446 ret = cpumask_and(&cpus, &cpuidle_coupled_poke_pending, &cpus);
452 * cpuidle_enter_state_coupled - attempt to enter a state with coupled cpus
453 * @dev: struct cpuidle_device for the current cpu
454 * @drv: struct cpuidle_driver for the platform
455 * @next_state: index of the requested state in drv->states
457 * Coordinate with coupled cpus to enter the target state. This is a two
458 * stage process. In the first stage, the cpus are operating independently,
459 * and may call into cpuidle_enter_state_coupled at completely different times.
460 * To save as much power as possible, the first cpus to call this function will
461 * go to an intermediate state (the cpuidle_device's safe state), and wait for
462 * all the other cpus to call this function. Once all coupled cpus are idle,
463 * the second stage will start. Each coupled cpu will spin until all cpus have
464 * guaranteed that they will call the target_state.
466 * This function must be called with interrupts disabled. It may enable
467 * interrupts while preparing for idle, and it will always return with
468 * interrupts enabled.
470 int cpuidle_enter_state_coupled(struct cpuidle_device *dev,
471 struct cpuidle_driver *drv, int next_state)
473 int entered_state = -1;
474 struct cpuidle_coupled *coupled = dev->coupled;
480 while (coupled->prevent) {
481 cpuidle_coupled_clear_pokes(dev->cpu);
482 if (need_resched()) {
484 return entered_state;
486 entered_state = cpuidle_enter_state(dev, drv,
487 drv->safe_state_index);
491 /* Read barrier ensures online_count is read after prevent is cleared */
495 cpumask_clear_cpu(dev->cpu, &cpuidle_coupled_poked);
497 w = cpuidle_coupled_set_waiting(dev->cpu, coupled, next_state);
499 * If this is the last cpu to enter the waiting state, poke
500 * all the other cpus out of their waiting state so they can
501 * enter a deeper state. This can race with one of the cpus
502 * exiting the waiting state due to an interrupt and
503 * decrementing waiting_count, see comment below.
505 if (w == coupled->online_count) {
506 cpumask_set_cpu(dev->cpu, &cpuidle_coupled_poked);
507 cpuidle_coupled_poke_others(dev->cpu, coupled);
512 * Wait for all coupled cpus to be idle, using the deepest state
513 * allowed for a single cpu. If this was not the poking cpu, wait
514 * for at least one poke before leaving to avoid a race where
515 * two cpus could arrive at the waiting loop at the same time,
516 * but the first of the two to arrive could skip the loop without
517 * processing the pokes from the last to arrive.
519 while (!cpuidle_coupled_cpus_waiting(coupled) ||
520 !cpumask_test_cpu(dev->cpu, &cpuidle_coupled_poked)) {
521 if (cpuidle_coupled_clear_pokes(dev->cpu))
524 if (need_resched()) {
525 cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
529 if (coupled->prevent) {
530 cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
534 entered_state = cpuidle_enter_state(dev, drv,
535 drv->safe_state_index);
539 cpuidle_coupled_clear_pokes(dev->cpu);
540 if (need_resched()) {
541 cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
546 * Make sure final poke status for this cpu is visible before setting
552 * All coupled cpus are probably idle. There is a small chance that
553 * one of the other cpus just became active. Increment the ready count,
554 * and spin until all coupled cpus have incremented the counter. Once a
555 * cpu has incremented the ready counter, it cannot abort idle and must
556 * spin until either all cpus have incremented the ready counter, or
557 * another cpu leaves idle and decrements the waiting counter.
560 cpuidle_coupled_set_ready(coupled);
561 while (!cpuidle_coupled_cpus_ready(coupled)) {
562 /* Check if any other cpus bailed out of idle. */
563 if (!cpuidle_coupled_cpus_waiting(coupled))
564 if (!cpuidle_coupled_set_not_ready(coupled))
571 * Make sure read of all cpus ready is done before reading pending pokes
576 * There is a small chance that a cpu left and reentered idle after this
577 * cpu saw that all cpus were waiting. The cpu that reentered idle will
578 * have sent this cpu a poke, which will still be pending after the
579 * ready loop. The pending interrupt may be lost by the interrupt
580 * controller when entering the deep idle state. It's not possible to
581 * clear a pending interrupt without turning interrupts on and handling
582 * it, and it's too late to turn on interrupts here, so reset the
583 * coupled idle state of all cpus and retry.
585 if (cpuidle_coupled_any_pokes_pending(coupled)) {
586 cpuidle_coupled_set_done(dev->cpu, coupled);
587 /* Wait for all cpus to see the pending pokes */
588 cpuidle_coupled_parallel_barrier(dev, &coupled->abort_barrier);
592 /* all cpus have acked the coupled state */
593 next_state = cpuidle_coupled_get_state(dev, coupled);
595 entered_state = cpuidle_enter_state(dev, drv, next_state);
597 cpuidle_coupled_set_done(dev->cpu, coupled);
601 * Normal cpuidle states are expected to return with irqs enabled.
602 * That leads to an inefficiency where a cpu receiving an interrupt
603 * that brings it out of idle will process that interrupt before
604 * exiting the idle enter function and decrementing ready_count. All
605 * other cpus will need to spin waiting for the cpu that is processing
606 * the interrupt. If the driver returns with interrupts disabled,
607 * all other cpus will loop back into the safe idle state instead of
608 * spinning, saving power.
610 * Calling local_irq_enable here allows coupled states to return with
611 * interrupts disabled, but won't cause problems for drivers that
612 * exit with interrupts enabled.
617 * Wait until all coupled cpus have exited idle. There is no risk that
618 * a cpu exits and re-enters the ready state because this cpu has
619 * already decremented its waiting_count.
621 while (!cpuidle_coupled_no_cpus_ready(coupled))
624 return entered_state;
627 static void cpuidle_coupled_update_online_cpus(struct cpuidle_coupled *coupled)
630 cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus);
631 coupled->online_count = cpumask_weight(&cpus);
635 * cpuidle_coupled_register_device - register a coupled cpuidle device
636 * @dev: struct cpuidle_device for the current cpu
638 * Called from cpuidle_register_device to handle coupled idle init. Finds the
639 * cpuidle_coupled struct for this set of coupled cpus, or creates one if none
642 int cpuidle_coupled_register_device(struct cpuidle_device *dev)
645 struct cpuidle_device *other_dev;
646 call_single_data_t *csd;
647 struct cpuidle_coupled *coupled;
649 if (cpumask_empty(&dev->coupled_cpus))
652 for_each_cpu(cpu, &dev->coupled_cpus) {
653 other_dev = per_cpu(cpuidle_devices, cpu);
654 if (other_dev && other_dev->coupled) {
655 coupled = other_dev->coupled;
660 /* No existing coupled info found, create a new one */
661 coupled = kzalloc(sizeof(struct cpuidle_coupled), GFP_KERNEL);
665 coupled->coupled_cpus = dev->coupled_cpus;
668 dev->coupled = coupled;
669 if (WARN_ON(!cpumask_equal(&dev->coupled_cpus, &coupled->coupled_cpus)))
672 cpuidle_coupled_update_online_cpus(coupled);
676 csd = &per_cpu(cpuidle_coupled_poke_cb, dev->cpu);
677 INIT_CSD(csd, cpuidle_coupled_handle_poke, (void *)(unsigned long)dev->cpu);
683 * cpuidle_coupled_unregister_device - unregister a coupled cpuidle device
684 * @dev: struct cpuidle_device for the current cpu
686 * Called from cpuidle_unregister_device to tear down coupled idle. Removes the
687 * cpu from the coupled idle set, and frees the cpuidle_coupled_info struct if
688 * this was the last cpu in the set.
690 void cpuidle_coupled_unregister_device(struct cpuidle_device *dev)
692 struct cpuidle_coupled *coupled = dev->coupled;
694 if (cpumask_empty(&dev->coupled_cpus))
697 if (--coupled->refcnt)
703 * cpuidle_coupled_prevent_idle - prevent cpus from entering a coupled state
704 * @coupled: the struct coupled that contains the cpu that is changing state
706 * Disables coupled cpuidle on a coupled set of cpus. Used to ensure that
707 * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
709 static void cpuidle_coupled_prevent_idle(struct cpuidle_coupled *coupled)
713 /* Force all cpus out of the waiting loop. */
715 cpuidle_coupled_poke_others(cpu, coupled);
717 while (!cpuidle_coupled_no_cpus_waiting(coupled))
722 * cpuidle_coupled_allow_idle - allows cpus to enter a coupled state
723 * @coupled: the struct coupled that contains the cpu that is changing state
725 * Enables coupled cpuidle on a coupled set of cpus. Used to ensure that
726 * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
728 static void cpuidle_coupled_allow_idle(struct cpuidle_coupled *coupled)
733 * Write barrier ensures readers see the new online_count when they
738 /* Force cpus out of the prevent loop. */
739 cpuidle_coupled_poke_others(cpu, coupled);
743 static int coupled_cpu_online(unsigned int cpu)
745 struct cpuidle_device *dev;
747 mutex_lock(&cpuidle_lock);
749 dev = per_cpu(cpuidle_devices, cpu);
750 if (dev && dev->coupled) {
751 cpuidle_coupled_update_online_cpus(dev->coupled);
752 cpuidle_coupled_allow_idle(dev->coupled);
755 mutex_unlock(&cpuidle_lock);
759 static int coupled_cpu_up_prepare(unsigned int cpu)
761 struct cpuidle_device *dev;
763 mutex_lock(&cpuidle_lock);
765 dev = per_cpu(cpuidle_devices, cpu);
766 if (dev && dev->coupled)
767 cpuidle_coupled_prevent_idle(dev->coupled);
769 mutex_unlock(&cpuidle_lock);
773 static int __init cpuidle_coupled_init(void)
777 ret = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE,
778 "cpuidle/coupled:prepare",
779 coupled_cpu_up_prepare,
783 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
784 "cpuidle/coupled:online",
786 coupled_cpu_up_prepare);
788 cpuhp_remove_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE);
791 core_initcall(cpuidle_coupled_init);