Merge tag 'm68k-for-v4.9-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[platform/kernel/linux-exynos.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40
41 #define POWERNV_MAX_PSTATES     256
42 #define PMSR_PSAFE_ENABLE       (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
44 #define PMSR_MAX(x)             ((x >> 32) & 0xFF)
45
46 #define MAX_RAMP_DOWN_TIME                              5120
47 /*
48  * On an idle system we want the global pstate to ramp-down from max value to
49  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
50  * then ramp-down rapidly later on.
51  *
52  * This gives a percentage rampdown for time elapsed in milliseconds.
53  * ramp_down_percentage = ((ms * ms) >> 18)
54  *                      ~= 3.8 * (sec * sec)
55  *
56  * At 0 ms      ramp_down_percent = 0
57  * At 5120 ms   ramp_down_percent = 100
58  */
59 #define ramp_down_percent(time)         ((time * time) >> 18)
60
61 /* Interval after which the timer is queued to bring down global pstate */
62 #define GPSTATE_TIMER_INTERVAL                          2000
63
64 /**
65  * struct global_pstate_info -  Per policy data structure to maintain history of
66  *                              global pstates
67  * @highest_lpstate_idx:        The local pstate index from which we are
68  *                              ramping down
69  * @elapsed_time:               Time in ms spent in ramping down from
70  *                              highest_lpstate_idx
71  * @last_sampled_time:          Time from boot in ms when global pstates were
72  *                              last set
73  * @last_lpstate_idx,           Last set value of local pstate and global
74  * last_gpstate_idx             pstate in terms of cpufreq table index
75  * @timer:                      Is used for ramping down if cpu goes idle for
76  *                              a long time with global pstate held high
77  * @gpstate_lock:               A spinlock to maintain synchronization between
78  *                              routines called by the timer handler and
79  *                              governer's target_index calls
80  */
81 struct global_pstate_info {
82         int highest_lpstate_idx;
83         unsigned int elapsed_time;
84         unsigned int last_sampled_time;
85         int last_lpstate_idx;
86         int last_gpstate_idx;
87         spinlock_t gpstate_lock;
88         struct timer_list timer;
89 };
90
91 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
92 static bool rebooting, throttled, occ_reset;
93
94 static const char * const throttle_reason[] = {
95         "No throttling",
96         "Power Cap",
97         "Processor Over Temperature",
98         "Power Supply Failure",
99         "Over Current",
100         "OCC Reset"
101 };
102
103 enum throttle_reason_type {
104         NO_THROTTLE = 0,
105         POWERCAP,
106         CPU_OVERTEMP,
107         POWER_SUPPLY_FAILURE,
108         OVERCURRENT,
109         OCC_RESET_THROTTLE,
110         OCC_MAX_REASON
111 };
112
113 static struct chip {
114         unsigned int id;
115         bool throttled;
116         bool restore;
117         u8 throttle_reason;
118         cpumask_t mask;
119         struct work_struct throttle;
120         int throttle_turbo;
121         int throttle_sub_turbo;
122         int reason[OCC_MAX_REASON];
123 } *chips;
124
125 static int nr_chips;
126 static DEFINE_PER_CPU(struct chip *, chip_info);
127
128 /*
129  * Note:
130  * The set of pstates consists of contiguous integers.
131  * powernv_pstate_info stores the index of the frequency table for
132  * max, min and nominal frequencies. It also stores number of
133  * available frequencies.
134  *
135  * powernv_pstate_info.nominal indicates the index to the highest
136  * non-turbo frequency.
137  */
138 static struct powernv_pstate_info {
139         unsigned int min;
140         unsigned int max;
141         unsigned int nominal;
142         unsigned int nr_pstates;
143 } powernv_pstate_info;
144
145 /* Use following macros for conversions between pstate_id and index */
146 static inline int idx_to_pstate(unsigned int i)
147 {
148         if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
149                 pr_warn_once("index %u is out of bound\n", i);
150                 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
151         }
152
153         return powernv_freqs[i].driver_data;
154 }
155
156 static inline unsigned int pstate_to_idx(int pstate)
157 {
158         int min = powernv_freqs[powernv_pstate_info.min].driver_data;
159         int max = powernv_freqs[powernv_pstate_info.max].driver_data;
160
161         if (min > 0) {
162                 if (unlikely((pstate < max) || (pstate > min))) {
163                         pr_warn_once("pstate %d is out of bound\n", pstate);
164                         return powernv_pstate_info.nominal;
165                 }
166         } else {
167                 if (unlikely((pstate > max) || (pstate < min))) {
168                         pr_warn_once("pstate %d is out of bound\n", pstate);
169                         return powernv_pstate_info.nominal;
170                 }
171         }
172         /*
173          * abs() is deliberately used so that is works with
174          * both monotonically increasing and decreasing
175          * pstate values
176          */
177         return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
178 }
179
180 static inline void reset_gpstates(struct cpufreq_policy *policy)
181 {
182         struct global_pstate_info *gpstates = policy->driver_data;
183
184         gpstates->highest_lpstate_idx = 0;
185         gpstates->elapsed_time = 0;
186         gpstates->last_sampled_time = 0;
187         gpstates->last_lpstate_idx = 0;
188         gpstates->last_gpstate_idx = 0;
189 }
190
191 /*
192  * Initialize the freq table based on data obtained
193  * from the firmware passed via device-tree
194  */
195 static int init_powernv_pstates(void)
196 {
197         struct device_node *power_mgt;
198         int i, nr_pstates = 0;
199         const __be32 *pstate_ids, *pstate_freqs;
200         u32 len_ids, len_freqs;
201         u32 pstate_min, pstate_max, pstate_nominal;
202
203         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
204         if (!power_mgt) {
205                 pr_warn("power-mgt node not found\n");
206                 return -ENODEV;
207         }
208
209         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
210                 pr_warn("ibm,pstate-min node not found\n");
211                 return -ENODEV;
212         }
213
214         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
215                 pr_warn("ibm,pstate-max node not found\n");
216                 return -ENODEV;
217         }
218
219         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
220                                  &pstate_nominal)) {
221                 pr_warn("ibm,pstate-nominal not found\n");
222                 return -ENODEV;
223         }
224         pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
225                 pstate_nominal, pstate_max);
226
227         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
228         if (!pstate_ids) {
229                 pr_warn("ibm,pstate-ids not found\n");
230                 return -ENODEV;
231         }
232
233         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
234                                       &len_freqs);
235         if (!pstate_freqs) {
236                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
237                 return -ENODEV;
238         }
239
240         if (len_ids != len_freqs) {
241                 pr_warn("Entries in ibm,pstate-ids and "
242                         "ibm,pstate-frequencies-mhz does not match\n");
243         }
244
245         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
246         if (!nr_pstates) {
247                 pr_warn("No PStates found\n");
248                 return -ENODEV;
249         }
250
251         powernv_pstate_info.nr_pstates = nr_pstates;
252         pr_debug("NR PStates %d\n", nr_pstates);
253         for (i = 0; i < nr_pstates; i++) {
254                 u32 id = be32_to_cpu(pstate_ids[i]);
255                 u32 freq = be32_to_cpu(pstate_freqs[i]);
256
257                 pr_debug("PState id %d freq %d MHz\n", id, freq);
258                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
259                 powernv_freqs[i].driver_data = id;
260
261                 if (id == pstate_max)
262                         powernv_pstate_info.max = i;
263                 else if (id == pstate_nominal)
264                         powernv_pstate_info.nominal = i;
265                 else if (id == pstate_min)
266                         powernv_pstate_info.min = i;
267         }
268
269         /* End of list marker entry */
270         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
271         return 0;
272 }
273
274 /* Returns the CPU frequency corresponding to the pstate_id. */
275 static unsigned int pstate_id_to_freq(int pstate_id)
276 {
277         int i;
278
279         i = pstate_to_idx(pstate_id);
280         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
281                 pr_warn("PState id %d outside of PState table, "
282                         "reporting nominal id %d instead\n",
283                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
284                 i = powernv_pstate_info.nominal;
285         }
286
287         return powernv_freqs[i].frequency;
288 }
289
290 /*
291  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
292  * the firmware
293  */
294 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
295                                         char *buf)
296 {
297         return sprintf(buf, "%u\n",
298                 powernv_freqs[powernv_pstate_info.nominal].frequency);
299 }
300
301 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
302         __ATTR_RO(cpuinfo_nominal_freq);
303
304 static struct freq_attr *powernv_cpu_freq_attr[] = {
305         &cpufreq_freq_attr_scaling_available_freqs,
306         &cpufreq_freq_attr_cpuinfo_nominal_freq,
307         NULL,
308 };
309
310 #define throttle_attr(name, member)                                     \
311 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
312 {                                                                       \
313         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
314                                                                         \
315         return sprintf(buf, "%u\n", chip->member);                      \
316 }                                                                       \
317                                                                         \
318 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
319
320 throttle_attr(unthrottle, reason[NO_THROTTLE]);
321 throttle_attr(powercap, reason[POWERCAP]);
322 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
323 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
324 throttle_attr(overcurrent, reason[OVERCURRENT]);
325 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
326 throttle_attr(turbo_stat, throttle_turbo);
327 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
328
329 static struct attribute *throttle_attrs[] = {
330         &throttle_attr_unthrottle.attr,
331         &throttle_attr_powercap.attr,
332         &throttle_attr_overtemp.attr,
333         &throttle_attr_supply_fault.attr,
334         &throttle_attr_overcurrent.attr,
335         &throttle_attr_occ_reset.attr,
336         &throttle_attr_turbo_stat.attr,
337         &throttle_attr_sub_turbo_stat.attr,
338         NULL,
339 };
340
341 static const struct attribute_group throttle_attr_grp = {
342         .name   = "throttle_stats",
343         .attrs  = throttle_attrs,
344 };
345
346 /* Helper routines */
347
348 /* Access helpers to power mgt SPR */
349
350 static inline unsigned long get_pmspr(unsigned long sprn)
351 {
352         switch (sprn) {
353         case SPRN_PMCR:
354                 return mfspr(SPRN_PMCR);
355
356         case SPRN_PMICR:
357                 return mfspr(SPRN_PMICR);
358
359         case SPRN_PMSR:
360                 return mfspr(SPRN_PMSR);
361         }
362         BUG();
363 }
364
365 static inline void set_pmspr(unsigned long sprn, unsigned long val)
366 {
367         switch (sprn) {
368         case SPRN_PMCR:
369                 mtspr(SPRN_PMCR, val);
370                 return;
371
372         case SPRN_PMICR:
373                 mtspr(SPRN_PMICR, val);
374                 return;
375         }
376         BUG();
377 }
378
379 /*
380  * Use objects of this type to query/update
381  * pstates on a remote CPU via smp_call_function.
382  */
383 struct powernv_smp_call_data {
384         unsigned int freq;
385         int pstate_id;
386         int gpstate_id;
387 };
388
389 /*
390  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
391  *
392  * Called via smp_call_function.
393  *
394  * Note: The caller of the smp_call_function should pass an argument of
395  * the type 'struct powernv_smp_call_data *' along with this function.
396  *
397  * The current frequency on this CPU will be returned via
398  * ((struct powernv_smp_call_data *)arg)->freq;
399  */
400 static void powernv_read_cpu_freq(void *arg)
401 {
402         unsigned long pmspr_val;
403         s8 local_pstate_id;
404         struct powernv_smp_call_data *freq_data = arg;
405
406         pmspr_val = get_pmspr(SPRN_PMSR);
407
408         /*
409          * The local pstate id corresponds bits 48..55 in the PMSR.
410          * Note: Watch out for the sign!
411          */
412         local_pstate_id = (pmspr_val >> 48) & 0xFF;
413         freq_data->pstate_id = local_pstate_id;
414         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
415
416         pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
417                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
418                 freq_data->freq);
419 }
420
421 /*
422  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
423  * firmware for CPU 'cpu'. This value is reported through the sysfs
424  * file cpuinfo_cur_freq.
425  */
426 static unsigned int powernv_cpufreq_get(unsigned int cpu)
427 {
428         struct powernv_smp_call_data freq_data;
429
430         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
431                         &freq_data, 1);
432
433         return freq_data.freq;
434 }
435
436 /*
437  * set_pstate: Sets the pstate on this CPU.
438  *
439  * This is called via an smp_call_function.
440  *
441  * The caller must ensure that freq_data is of the type
442  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
443  * on this CPU should be present in freq_data->pstate_id.
444  */
445 static void set_pstate(void *data)
446 {
447         unsigned long val;
448         struct powernv_smp_call_data *freq_data = data;
449         unsigned long pstate_ul = freq_data->pstate_id;
450         unsigned long gpstate_ul = freq_data->gpstate_id;
451
452         val = get_pmspr(SPRN_PMCR);
453         val = val & 0x0000FFFFFFFFFFFFULL;
454
455         pstate_ul = pstate_ul & 0xFF;
456         gpstate_ul = gpstate_ul & 0xFF;
457
458         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
459         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
460
461         pr_debug("Setting cpu %d pmcr to %016lX\n",
462                         raw_smp_processor_id(), val);
463         set_pmspr(SPRN_PMCR, val);
464 }
465
466 /*
467  * get_nominal_index: Returns the index corresponding to the nominal
468  * pstate in the cpufreq table
469  */
470 static inline unsigned int get_nominal_index(void)
471 {
472         return powernv_pstate_info.nominal;
473 }
474
475 static void powernv_cpufreq_throttle_check(void *data)
476 {
477         struct chip *chip;
478         unsigned int cpu = smp_processor_id();
479         unsigned long pmsr;
480         int pmsr_pmax;
481         unsigned int pmsr_pmax_idx;
482
483         pmsr = get_pmspr(SPRN_PMSR);
484         chip = this_cpu_read(chip_info);
485
486         /* Check for Pmax Capping */
487         pmsr_pmax = (s8)PMSR_MAX(pmsr);
488         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
489         if (pmsr_pmax_idx != powernv_pstate_info.max) {
490                 if (chip->throttled)
491                         goto next;
492                 chip->throttled = true;
493                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
494                         pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
495                                      cpu, chip->id, pmsr_pmax,
496                                      idx_to_pstate(powernv_pstate_info.nominal));
497                         chip->throttle_sub_turbo++;
498                 } else {
499                         chip->throttle_turbo++;
500                 }
501                 trace_powernv_throttle(chip->id,
502                                       throttle_reason[chip->throttle_reason],
503                                       pmsr_pmax);
504         } else if (chip->throttled) {
505                 chip->throttled = false;
506                 trace_powernv_throttle(chip->id,
507                                       throttle_reason[chip->throttle_reason],
508                                       pmsr_pmax);
509         }
510
511         /* Check if Psafe_mode_active is set in PMSR. */
512 next:
513         if (pmsr & PMSR_PSAFE_ENABLE) {
514                 throttled = true;
515                 pr_info("Pstate set to safe frequency\n");
516         }
517
518         /* Check if SPR_EM_DISABLE is set in PMSR */
519         if (pmsr & PMSR_SPR_EM_DISABLE) {
520                 throttled = true;
521                 pr_info("Frequency Control disabled from OS\n");
522         }
523
524         if (throttled) {
525                 pr_info("PMSR = %16lx\n", pmsr);
526                 pr_warn("CPU Frequency could be throttled\n");
527         }
528 }
529
530 /**
531  * calc_global_pstate - Calculate global pstate
532  * @elapsed_time:               Elapsed time in milliseconds
533  * @local_pstate_idx:           New local pstate
534  * @highest_lpstate_idx:        pstate from which its ramping down
535  *
536  * Finds the appropriate global pstate based on the pstate from which its
537  * ramping down and the time elapsed in ramping down. It follows a quadratic
538  * equation which ensures that it reaches ramping down to pmin in 5sec.
539  */
540 static inline int calc_global_pstate(unsigned int elapsed_time,
541                                      int highest_lpstate_idx,
542                                      int local_pstate_idx)
543 {
544         int index_diff;
545
546         /*
547          * Using ramp_down_percent we get the percentage of rampdown
548          * that we are expecting to be dropping. Difference between
549          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
550          * number of how many pstates we will drop eventually by the end of
551          * 5 seconds, then just scale it get the number pstates to be dropped.
552          */
553         index_diff =  ((int)ramp_down_percent(elapsed_time) *
554                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
555
556         /* Ensure that global pstate is >= to local pstate */
557         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
558                 return local_pstate_idx;
559         else
560                 return highest_lpstate_idx + index_diff;
561 }
562
563 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
564 {
565         unsigned int timer_interval;
566
567         /*
568          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
569          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
570          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
571          * seconds of ramp down time.
572          */
573         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
574              > MAX_RAMP_DOWN_TIME)
575                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
576         else
577                 timer_interval = GPSTATE_TIMER_INTERVAL;
578
579         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
580 }
581
582 /**
583  * gpstate_timer_handler
584  *
585  * @data: pointer to cpufreq_policy on which timer was queued
586  *
587  * This handler brings down the global pstate closer to the local pstate
588  * according quadratic equation. Queues a new timer if it is still not equal
589  * to local pstate
590  */
591 void gpstate_timer_handler(unsigned long data)
592 {
593         struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
594         struct global_pstate_info *gpstates = policy->driver_data;
595         int gpstate_idx;
596         unsigned int time_diff = jiffies_to_msecs(jiffies)
597                                         - gpstates->last_sampled_time;
598         struct powernv_smp_call_data freq_data;
599
600         if (!spin_trylock(&gpstates->gpstate_lock))
601                 return;
602
603         gpstates->last_sampled_time += time_diff;
604         gpstates->elapsed_time += time_diff;
605         freq_data.pstate_id = idx_to_pstate(gpstates->last_lpstate_idx);
606
607         if ((gpstates->last_gpstate_idx == gpstates->last_lpstate_idx) ||
608             (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
609                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
610                 reset_gpstates(policy);
611                 gpstates->highest_lpstate_idx = gpstate_idx;
612         } else {
613                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
614                                                  gpstates->highest_lpstate_idx,
615                                                  gpstates->last_lpstate_idx);
616         }
617
618         /*
619          * If local pstate is equal to global pstate, rampdown is over
620          * So timer is not required to be queued.
621          */
622         if (gpstate_idx != gpstates->last_lpstate_idx)
623                 queue_gpstate_timer(gpstates);
624
625         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
626         gpstates->last_gpstate_idx = pstate_to_idx(freq_data.gpstate_id);
627         gpstates->last_lpstate_idx = pstate_to_idx(freq_data.pstate_id);
628
629         spin_unlock(&gpstates->gpstate_lock);
630
631         /* Timer may get migrated to a different cpu on cpu hot unplug */
632         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
633 }
634
635 /*
636  * powernv_cpufreq_target_index: Sets the frequency corresponding to
637  * the cpufreq table entry indexed by new_index on the cpus in the
638  * mask policy->cpus
639  */
640 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
641                                         unsigned int new_index)
642 {
643         struct powernv_smp_call_data freq_data;
644         unsigned int cur_msec, gpstate_idx;
645         struct global_pstate_info *gpstates = policy->driver_data;
646
647         if (unlikely(rebooting) && new_index != get_nominal_index())
648                 return 0;
649
650         if (!throttled)
651                 powernv_cpufreq_throttle_check(NULL);
652
653         cur_msec = jiffies_to_msecs(get_jiffies_64());
654
655         spin_lock(&gpstates->gpstate_lock);
656         freq_data.pstate_id = idx_to_pstate(new_index);
657
658         if (!gpstates->last_sampled_time) {
659                 gpstate_idx = new_index;
660                 gpstates->highest_lpstate_idx = new_index;
661                 goto gpstates_done;
662         }
663
664         if (gpstates->last_gpstate_idx < new_index) {
665                 gpstates->elapsed_time += cur_msec -
666                                                  gpstates->last_sampled_time;
667
668                 /*
669                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
670                  * we should be resetting all global pstate related data. Set it
671                  * equal to local pstate to start fresh.
672                  */
673                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
674                         reset_gpstates(policy);
675                         gpstates->highest_lpstate_idx = new_index;
676                         gpstate_idx = new_index;
677                 } else {
678                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
679                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
680                                                          gpstates->highest_lpstate_idx,
681                                                          new_index);
682                 }
683         } else {
684                 reset_gpstates(policy);
685                 gpstates->highest_lpstate_idx = new_index;
686                 gpstate_idx = new_index;
687         }
688
689         /*
690          * If local pstate is equal to global pstate, rampdown is over
691          * So timer is not required to be queued.
692          */
693         if (gpstate_idx != new_index)
694                 queue_gpstate_timer(gpstates);
695         else
696                 del_timer_sync(&gpstates->timer);
697
698 gpstates_done:
699         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
700         gpstates->last_sampled_time = cur_msec;
701         gpstates->last_gpstate_idx = gpstate_idx;
702         gpstates->last_lpstate_idx = new_index;
703
704         spin_unlock(&gpstates->gpstate_lock);
705
706         /*
707          * Use smp_call_function to send IPI and execute the
708          * mtspr on target CPU.  We could do that without IPI
709          * if current CPU is within policy->cpus (core)
710          */
711         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
712         return 0;
713 }
714
715 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
716 {
717         int base, i, ret;
718         struct kernfs_node *kn;
719         struct global_pstate_info *gpstates;
720
721         base = cpu_first_thread_sibling(policy->cpu);
722
723         for (i = 0; i < threads_per_core; i++)
724                 cpumask_set_cpu(base + i, policy->cpus);
725
726         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
727         if (!kn) {
728                 int ret;
729
730                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
731                 if (ret) {
732                         pr_info("Failed to create throttle stats directory for cpu %d\n",
733                                 policy->cpu);
734                         return ret;
735                 }
736         } else {
737                 kernfs_put(kn);
738         }
739
740         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
741         if (!gpstates)
742                 return -ENOMEM;
743
744         policy->driver_data = gpstates;
745
746         /* initialize timer */
747         init_timer_pinned_deferrable(&gpstates->timer);
748         gpstates->timer.data = (unsigned long)policy;
749         gpstates->timer.function = gpstate_timer_handler;
750         gpstates->timer.expires = jiffies +
751                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
752         spin_lock_init(&gpstates->gpstate_lock);
753         ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
754
755         if (ret < 0)
756                 kfree(policy->driver_data);
757
758         return ret;
759 }
760
761 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
762 {
763         /* timer is deleted in cpufreq_cpu_stop() */
764         kfree(policy->driver_data);
765
766         return 0;
767 }
768
769 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
770                                 unsigned long action, void *unused)
771 {
772         int cpu;
773         struct cpufreq_policy cpu_policy;
774
775         rebooting = true;
776         for_each_online_cpu(cpu) {
777                 cpufreq_get_policy(&cpu_policy, cpu);
778                 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
779         }
780
781         return NOTIFY_DONE;
782 }
783
784 static struct notifier_block powernv_cpufreq_reboot_nb = {
785         .notifier_call = powernv_cpufreq_reboot_notifier,
786 };
787
788 void powernv_cpufreq_work_fn(struct work_struct *work)
789 {
790         struct chip *chip = container_of(work, struct chip, throttle);
791         unsigned int cpu;
792         cpumask_t mask;
793
794         get_online_cpus();
795         cpumask_and(&mask, &chip->mask, cpu_online_mask);
796         smp_call_function_any(&mask,
797                               powernv_cpufreq_throttle_check, NULL, 0);
798
799         if (!chip->restore)
800                 goto out;
801
802         chip->restore = false;
803         for_each_cpu(cpu, &mask) {
804                 int index;
805                 struct cpufreq_policy policy;
806
807                 cpufreq_get_policy(&policy, cpu);
808                 index = cpufreq_table_find_index_c(&policy, policy.cur);
809                 powernv_cpufreq_target_index(&policy, index);
810                 cpumask_andnot(&mask, &mask, policy.cpus);
811         }
812 out:
813         put_online_cpus();
814 }
815
816 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
817                                    unsigned long msg_type, void *_msg)
818 {
819         struct opal_msg *msg = _msg;
820         struct opal_occ_msg omsg;
821         int i;
822
823         if (msg_type != OPAL_MSG_OCC)
824                 return 0;
825
826         omsg.type = be64_to_cpu(msg->params[0]);
827
828         switch (omsg.type) {
829         case OCC_RESET:
830                 occ_reset = true;
831                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
832                 /*
833                  * powernv_cpufreq_throttle_check() is called in
834                  * target() callback which can detect the throttle state
835                  * for governors like ondemand.
836                  * But static governors will not call target() often thus
837                  * report throttling here.
838                  */
839                 if (!throttled) {
840                         throttled = true;
841                         pr_warn("CPU frequency is throttled for duration\n");
842                 }
843
844                 break;
845         case OCC_LOAD:
846                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
847                 break;
848         case OCC_THROTTLE:
849                 omsg.chip = be64_to_cpu(msg->params[1]);
850                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
851
852                 if (occ_reset) {
853                         occ_reset = false;
854                         throttled = false;
855                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
856
857                         for (i = 0; i < nr_chips; i++) {
858                                 chips[i].restore = true;
859                                 schedule_work(&chips[i].throttle);
860                         }
861
862                         return 0;
863                 }
864
865                 for (i = 0; i < nr_chips; i++)
866                         if (chips[i].id == omsg.chip)
867                                 break;
868
869                 if (omsg.throttle_status >= 0 &&
870                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
871                         chips[i].throttle_reason = omsg.throttle_status;
872                         chips[i].reason[omsg.throttle_status]++;
873                 }
874
875                 if (!omsg.throttle_status)
876                         chips[i].restore = true;
877
878                 schedule_work(&chips[i].throttle);
879         }
880         return 0;
881 }
882
883 static struct notifier_block powernv_cpufreq_opal_nb = {
884         .notifier_call  = powernv_cpufreq_occ_msg,
885         .next           = NULL,
886         .priority       = 0,
887 };
888
889 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
890 {
891         struct powernv_smp_call_data freq_data;
892         struct global_pstate_info *gpstates = policy->driver_data;
893
894         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
895         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
896         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
897         del_timer_sync(&gpstates->timer);
898 }
899
900 static struct cpufreq_driver powernv_cpufreq_driver = {
901         .name           = "powernv-cpufreq",
902         .flags          = CPUFREQ_CONST_LOOPS,
903         .init           = powernv_cpufreq_cpu_init,
904         .exit           = powernv_cpufreq_cpu_exit,
905         .verify         = cpufreq_generic_frequency_table_verify,
906         .target_index   = powernv_cpufreq_target_index,
907         .get            = powernv_cpufreq_get,
908         .stop_cpu       = powernv_cpufreq_stop_cpu,
909         .attr           = powernv_cpu_freq_attr,
910 };
911
912 static int init_chip_info(void)
913 {
914         unsigned int chip[256];
915         unsigned int cpu, i;
916         unsigned int prev_chip_id = UINT_MAX;
917
918         for_each_possible_cpu(cpu) {
919                 unsigned int id = cpu_to_chip_id(cpu);
920
921                 if (prev_chip_id != id) {
922                         prev_chip_id = id;
923                         chip[nr_chips++] = id;
924                 }
925         }
926
927         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
928         if (!chips)
929                 return -ENOMEM;
930
931         for (i = 0; i < nr_chips; i++) {
932                 chips[i].id = chip[i];
933                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
934                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
935                 for_each_cpu(cpu, &chips[i].mask)
936                         per_cpu(chip_info, cpu) =  &chips[i];
937         }
938
939         return 0;
940 }
941
942 static inline void clean_chip_info(void)
943 {
944         kfree(chips);
945 }
946
947 static inline void unregister_all_notifiers(void)
948 {
949         opal_message_notifier_unregister(OPAL_MSG_OCC,
950                                          &powernv_cpufreq_opal_nb);
951         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
952 }
953
954 static int __init powernv_cpufreq_init(void)
955 {
956         int rc = 0;
957
958         /* Don't probe on pseries (guest) platforms */
959         if (!firmware_has_feature(FW_FEATURE_OPAL))
960                 return -ENODEV;
961
962         /* Discover pstates from device tree and init */
963         rc = init_powernv_pstates();
964         if (rc)
965                 goto out;
966
967         /* Populate chip info */
968         rc = init_chip_info();
969         if (rc)
970                 goto out;
971
972         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
973         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
974
975         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
976         if (!rc)
977                 return 0;
978
979         pr_info("Failed to register the cpufreq driver (%d)\n", rc);
980         unregister_all_notifiers();
981         clean_chip_info();
982 out:
983         pr_info("Platform driver disabled. System does not support PState control\n");
984         return rc;
985 }
986 module_init(powernv_cpufreq_init);
987
988 static void __exit powernv_cpufreq_exit(void)
989 {
990         cpufreq_unregister_driver(&powernv_cpufreq_driver);
991         unregister_all_notifiers();
992         clean_chip_info();
993 }
994 module_exit(powernv_cpufreq_exit);
995
996 MODULE_LICENSE("GPL");
997 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");