Merge tag 'iommu-updates-v3.9' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003-2012 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Maintainer:
8  *  Andreas Herrmann <herrmann.der.user@googlemail.com>
9  *
10  *  Based on the powernow-k7.c module written by Dave Jones.
11  *  (C) 2003 Dave Jones on behalf of SuSE Labs
12  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
13  *  (C) 2004 Pavel Machek <pavel@ucw.cz>
14  *  Licensed under the terms of the GNU GPL License version 2.
15  *  Based upon datasheets & sample CPUs kindly provided by AMD.
16  *
17  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
18  *  Dominik Brodowski, Jacob Shin, and others.
19  *  Originally developed by Paul Devriendt.
20  *
21  *  Processor information obtained from Chapter 9 (Power and Thermal
22  *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23  *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24  *  Power Management" in BKDGs for newer AMD CPU families.
25  *
26  *  Tables for specific CPUs can be inferred from AMD's processor
27  *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28  */
29
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/io.h>
39 #include <linux/delay.h>
40
41 #include <asm/msr.h>
42 #include <asm/cpu_device_id.h>
43
44 #include <linux/acpi.h>
45 #include <linux/mutex.h>
46 #include <acpi/processor.h>
47
48 #define PFX "powernow-k8: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
51
52 /* serialize freq changes  */
53 static DEFINE_MUTEX(fidvid_mutex);
54
55 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
56
57 static struct cpufreq_driver cpufreq_amd64_driver;
58
59 #ifndef CONFIG_SMP
60 static inline const struct cpumask *cpu_core_mask(int cpu)
61 {
62         return cpumask_of(0);
63 }
64 #endif
65
66 /* Return a frequency in MHz, given an input fid */
67 static u32 find_freq_from_fid(u32 fid)
68 {
69         return 800 + (fid * 100);
70 }
71
72 /* Return a frequency in KHz, given an input fid */
73 static u32 find_khz_freq_from_fid(u32 fid)
74 {
75         return 1000 * find_freq_from_fid(fid);
76 }
77
78 /* Return the vco fid for an input fid
79  *
80  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
81  * only from corresponding high fids. This returns "high" fid corresponding to
82  * "low" one.
83  */
84 static u32 convert_fid_to_vco_fid(u32 fid)
85 {
86         if (fid < HI_FID_TABLE_BOTTOM)
87                 return 8 + (2 * fid);
88         else
89                 return fid;
90 }
91
92 /*
93  * Return 1 if the pending bit is set. Unless we just instructed the processor
94  * to transition to a new state, seeing this bit set is really bad news.
95  */
96 static int pending_bit_stuck(void)
97 {
98         u32 lo, hi;
99
100         rdmsr(MSR_FIDVID_STATUS, lo, hi);
101         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
102 }
103
104 /*
105  * Update the global current fid / vid values from the status msr.
106  * Returns 1 on error.
107  */
108 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
109 {
110         u32 lo, hi;
111         u32 i = 0;
112
113         do {
114                 if (i++ > 10000) {
115                         pr_debug("detected change pending stuck\n");
116                         return 1;
117                 }
118                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
119         } while (lo & MSR_S_LO_CHANGE_PENDING);
120
121         data->currvid = hi & MSR_S_HI_CURRENT_VID;
122         data->currfid = lo & MSR_S_LO_CURRENT_FID;
123
124         return 0;
125 }
126
127 /* the isochronous relief time */
128 static void count_off_irt(struct powernow_k8_data *data)
129 {
130         udelay((1 << data->irt) * 10);
131         return;
132 }
133
134 /* the voltage stabilization time */
135 static void count_off_vst(struct powernow_k8_data *data)
136 {
137         udelay(data->vstable * VST_UNITS_20US);
138         return;
139 }
140
141 /* need to init the control msr to a safe value (for each cpu) */
142 static void fidvid_msr_init(void)
143 {
144         u32 lo, hi;
145         u8 fid, vid;
146
147         rdmsr(MSR_FIDVID_STATUS, lo, hi);
148         vid = hi & MSR_S_HI_CURRENT_VID;
149         fid = lo & MSR_S_LO_CURRENT_FID;
150         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
151         hi = MSR_C_HI_STP_GNT_BENIGN;
152         pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
153         wrmsr(MSR_FIDVID_CTL, lo, hi);
154 }
155
156 /* write the new fid value along with the other control fields to the msr */
157 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
158 {
159         u32 lo;
160         u32 savevid = data->currvid;
161         u32 i = 0;
162
163         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
164                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
165                 return 1;
166         }
167
168         lo = fid;
169         lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
170         lo |= MSR_C_LO_INIT_FID_VID;
171
172         pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
173                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
174
175         do {
176                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
177                 if (i++ > 100) {
178                         printk(KERN_ERR PFX
179                                 "Hardware error - pending bit very stuck - "
180                                 "no further pstate changes possible\n");
181                         return 1;
182                 }
183         } while (query_current_values_with_pending_wait(data));
184
185         count_off_irt(data);
186
187         if (savevid != data->currvid) {
188                 printk(KERN_ERR PFX
189                         "vid change on fid trans, old 0x%x, new 0x%x\n",
190                         savevid, data->currvid);
191                 return 1;
192         }
193
194         if (fid != data->currfid) {
195                 printk(KERN_ERR PFX
196                         "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
197                         data->currfid);
198                 return 1;
199         }
200
201         return 0;
202 }
203
204 /* Write a new vid to the hardware */
205 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
206 {
207         u32 lo;
208         u32 savefid = data->currfid;
209         int i = 0;
210
211         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
212                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
213                 return 1;
214         }
215
216         lo = data->currfid;
217         lo |= (vid << MSR_C_LO_VID_SHIFT);
218         lo |= MSR_C_LO_INIT_FID_VID;
219
220         pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
221                 vid, lo, STOP_GRANT_5NS);
222
223         do {
224                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
225                 if (i++ > 100) {
226                         printk(KERN_ERR PFX "internal error - pending bit "
227                                         "very stuck - no further pstate "
228                                         "changes possible\n");
229                         return 1;
230                 }
231         } while (query_current_values_with_pending_wait(data));
232
233         if (savefid != data->currfid) {
234                 printk(KERN_ERR PFX "fid changed on vid trans, old "
235                         "0x%x new 0x%x\n",
236                        savefid, data->currfid);
237                 return 1;
238         }
239
240         if (vid != data->currvid) {
241                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
242                                 "curr 0x%x\n",
243                                 vid, data->currvid);
244                 return 1;
245         }
246
247         return 0;
248 }
249
250 /*
251  * Reduce the vid by the max of step or reqvid.
252  * Decreasing vid codes represent increasing voltages:
253  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
254  */
255 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
256                 u32 reqvid, u32 step)
257 {
258         if ((data->currvid - reqvid) > step)
259                 reqvid = data->currvid - step;
260
261         if (write_new_vid(data, reqvid))
262                 return 1;
263
264         count_off_vst(data);
265
266         return 0;
267 }
268
269 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
270 static int transition_fid_vid(struct powernow_k8_data *data,
271                 u32 reqfid, u32 reqvid)
272 {
273         if (core_voltage_pre_transition(data, reqvid, reqfid))
274                 return 1;
275
276         if (core_frequency_transition(data, reqfid))
277                 return 1;
278
279         if (core_voltage_post_transition(data, reqvid))
280                 return 1;
281
282         if (query_current_values_with_pending_wait(data))
283                 return 1;
284
285         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
286                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
287                                 "curr 0x%x 0x%x\n",
288                                 smp_processor_id(),
289                                 reqfid, reqvid, data->currfid, data->currvid);
290                 return 1;
291         }
292
293         pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
294                 smp_processor_id(), data->currfid, data->currvid);
295
296         return 0;
297 }
298
299 /* Phase 1 - core voltage transition ... setup voltage */
300 static int core_voltage_pre_transition(struct powernow_k8_data *data,
301                 u32 reqvid, u32 reqfid)
302 {
303         u32 rvosteps = data->rvo;
304         u32 savefid = data->currfid;
305         u32 maxvid, lo, rvomult = 1;
306
307         pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
308                 "reqvid 0x%x, rvo 0x%x\n",
309                 smp_processor_id(),
310                 data->currfid, data->currvid, reqvid, data->rvo);
311
312         if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
313                 rvomult = 2;
314         rvosteps *= rvomult;
315         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
316         maxvid = 0x1f & (maxvid >> 16);
317         pr_debug("ph1 maxvid=0x%x\n", maxvid);
318         if (reqvid < maxvid) /* lower numbers are higher voltages */
319                 reqvid = maxvid;
320
321         while (data->currvid > reqvid) {
322                 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
323                         data->currvid, reqvid);
324                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
325                         return 1;
326         }
327
328         while ((rvosteps > 0) &&
329                         ((rvomult * data->rvo + data->currvid) > reqvid)) {
330                 if (data->currvid == maxvid) {
331                         rvosteps = 0;
332                 } else {
333                         pr_debug("ph1: changing vid for rvo, req 0x%x\n",
334                                 data->currvid - 1);
335                         if (decrease_vid_code_by_step(data, data->currvid-1, 1))
336                                 return 1;
337                         rvosteps--;
338                 }
339         }
340
341         if (query_current_values_with_pending_wait(data))
342                 return 1;
343
344         if (savefid != data->currfid) {
345                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
346                                 data->currfid);
347                 return 1;
348         }
349
350         pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
351                 data->currfid, data->currvid);
352
353         return 0;
354 }
355
356 /* Phase 2 - core frequency transition */
357 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
358 {
359         u32 vcoreqfid, vcocurrfid, vcofiddiff;
360         u32 fid_interval, savevid = data->currvid;
361
362         if (data->currfid == reqfid) {
363                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
364                                 data->currfid);
365                 return 0;
366         }
367
368         pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
369                 "reqfid 0x%x\n",
370                 smp_processor_id(),
371                 data->currfid, data->currvid, reqfid);
372
373         vcoreqfid = convert_fid_to_vco_fid(reqfid);
374         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
375         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
376             : vcoreqfid - vcocurrfid;
377
378         if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
379                 vcofiddiff = 0;
380
381         while (vcofiddiff > 2) {
382                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
383
384                 if (reqfid > data->currfid) {
385                         if (data->currfid > LO_FID_TABLE_TOP) {
386                                 if (write_new_fid(data,
387                                                 data->currfid + fid_interval))
388                                         return 1;
389                         } else {
390                                 if (write_new_fid
391                                     (data,
392                                      2 + convert_fid_to_vco_fid(data->currfid)))
393                                         return 1;
394                         }
395                 } else {
396                         if (write_new_fid(data, data->currfid - fid_interval))
397                                 return 1;
398                 }
399
400                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
401                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
402                     : vcoreqfid - vcocurrfid;
403         }
404
405         if (write_new_fid(data, reqfid))
406                 return 1;
407
408         if (query_current_values_with_pending_wait(data))
409                 return 1;
410
411         if (data->currfid != reqfid) {
412                 printk(KERN_ERR PFX
413                         "ph2: mismatch, failed fid transition, "
414                         "curr 0x%x, req 0x%x\n",
415                         data->currfid, reqfid);
416                 return 1;
417         }
418
419         if (savevid != data->currvid) {
420                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
421                         savevid, data->currvid);
422                 return 1;
423         }
424
425         pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
426                 data->currfid, data->currvid);
427
428         return 0;
429 }
430
431 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
432 static int core_voltage_post_transition(struct powernow_k8_data *data,
433                 u32 reqvid)
434 {
435         u32 savefid = data->currfid;
436         u32 savereqvid = reqvid;
437
438         pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
439                 smp_processor_id(),
440                 data->currfid, data->currvid);
441
442         if (reqvid != data->currvid) {
443                 if (write_new_vid(data, reqvid))
444                         return 1;
445
446                 if (savefid != data->currfid) {
447                         printk(KERN_ERR PFX
448                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
449                                savefid, data->currfid);
450                         return 1;
451                 }
452
453                 if (data->currvid != reqvid) {
454                         printk(KERN_ERR PFX
455                                "ph3: failed vid transition\n, "
456                                "req 0x%x, curr 0x%x",
457                                reqvid, data->currvid);
458                         return 1;
459                 }
460         }
461
462         if (query_current_values_with_pending_wait(data))
463                 return 1;
464
465         if (savereqvid != data->currvid) {
466                 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
467                 return 1;
468         }
469
470         if (savefid != data->currfid) {
471                 pr_debug("ph3 failed, currfid changed 0x%x\n",
472                         data->currfid);
473                 return 1;
474         }
475
476         pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
477                 data->currfid, data->currvid);
478
479         return 0;
480 }
481
482 static const struct x86_cpu_id powernow_k8_ids[] = {
483         /* IO based frequency switching */
484         { X86_VENDOR_AMD, 0xf },
485         {}
486 };
487 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
488
489 static void check_supported_cpu(void *_rc)
490 {
491         u32 eax, ebx, ecx, edx;
492         int *rc = _rc;
493
494         *rc = -ENODEV;
495
496         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
497
498         if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
499                 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
500                     ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
501                         printk(KERN_INFO PFX
502                                 "Processor cpuid %x not supported\n", eax);
503                         return;
504                 }
505
506                 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
507                 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
508                         printk(KERN_INFO PFX
509                                "No frequency change capabilities detected\n");
510                         return;
511                 }
512
513                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
514                 if ((edx & P_STATE_TRANSITION_CAPABLE)
515                         != P_STATE_TRANSITION_CAPABLE) {
516                         printk(KERN_INFO PFX
517                                 "Power state transitions not supported\n");
518                         return;
519                 }
520                 *rc = 0;
521         }
522 }
523
524 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
525                 u8 maxvid)
526 {
527         unsigned int j;
528         u8 lastfid = 0xff;
529
530         for (j = 0; j < data->numps; j++) {
531                 if (pst[j].vid > LEAST_VID) {
532                         printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
533                                j, pst[j].vid);
534                         return -EINVAL;
535                 }
536                 if (pst[j].vid < data->rvo) {
537                         /* vid + rvo >= 0 */
538                         printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
539                                " %d\n", j);
540                         return -ENODEV;
541                 }
542                 if (pst[j].vid < maxvid + data->rvo) {
543                         /* vid + rvo >= maxvid */
544                         printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
545                                " %d\n", j);
546                         return -ENODEV;
547                 }
548                 if (pst[j].fid > MAX_FID) {
549                         printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
550                                " %d\n", j);
551                         return -ENODEV;
552                 }
553                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
554                         /* Only first fid is allowed to be in "low" range */
555                         printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
556                                "0x%x\n", j, pst[j].fid);
557                         return -EINVAL;
558                 }
559                 if (pst[j].fid < lastfid)
560                         lastfid = pst[j].fid;
561         }
562         if (lastfid & 1) {
563                 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
564                 return -EINVAL;
565         }
566         if (lastfid > LO_FID_TABLE_TOP)
567                 printk(KERN_INFO FW_BUG PFX
568                         "first fid not from lo freq table\n");
569
570         return 0;
571 }
572
573 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
574                 unsigned int entry)
575 {
576         powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
577 }
578
579 static void print_basics(struct powernow_k8_data *data)
580 {
581         int j;
582         for (j = 0; j < data->numps; j++) {
583                 if (data->powernow_table[j].frequency !=
584                                 CPUFREQ_ENTRY_INVALID) {
585                                 printk(KERN_INFO PFX
586                                         "fid 0x%x (%d MHz), vid 0x%x\n",
587                                         data->powernow_table[j].index & 0xff,
588                                         data->powernow_table[j].frequency/1000,
589                                         data->powernow_table[j].index >> 8);
590                 }
591         }
592         if (data->batps)
593                 printk(KERN_INFO PFX "Only %d pstates on battery\n",
594                                 data->batps);
595 }
596
597 static int fill_powernow_table(struct powernow_k8_data *data,
598                 struct pst_s *pst, u8 maxvid)
599 {
600         struct cpufreq_frequency_table *powernow_table;
601         unsigned int j;
602
603         if (data->batps) {
604                 /* use ACPI support to get full speed on mains power */
605                 printk(KERN_WARNING PFX
606                         "Only %d pstates usable (use ACPI driver for full "
607                         "range\n", data->batps);
608                 data->numps = data->batps;
609         }
610
611         for (j = 1; j < data->numps; j++) {
612                 if (pst[j-1].fid >= pst[j].fid) {
613                         printk(KERN_ERR PFX "PST out of sequence\n");
614                         return -EINVAL;
615                 }
616         }
617
618         if (data->numps < 2) {
619                 printk(KERN_ERR PFX "no p states to transition\n");
620                 return -ENODEV;
621         }
622
623         if (check_pst_table(data, pst, maxvid))
624                 return -EINVAL;
625
626         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
627                 * (data->numps + 1)), GFP_KERNEL);
628         if (!powernow_table) {
629                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
630                 return -ENOMEM;
631         }
632
633         for (j = 0; j < data->numps; j++) {
634                 int freq;
635                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
636                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
637                 freq = find_khz_freq_from_fid(pst[j].fid);
638                 powernow_table[j].frequency = freq;
639         }
640         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
641         powernow_table[data->numps].index = 0;
642
643         if (query_current_values_with_pending_wait(data)) {
644                 kfree(powernow_table);
645                 return -EIO;
646         }
647
648         pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
649         data->powernow_table = powernow_table;
650         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
651                 print_basics(data);
652
653         for (j = 0; j < data->numps; j++)
654                 if ((pst[j].fid == data->currfid) &&
655                     (pst[j].vid == data->currvid))
656                         return 0;
657
658         pr_debug("currfid/vid do not match PST, ignoring\n");
659         return 0;
660 }
661
662 /* Find and validate the PSB/PST table in BIOS. */
663 static int find_psb_table(struct powernow_k8_data *data)
664 {
665         struct psb_s *psb;
666         unsigned int i;
667         u32 mvs;
668         u8 maxvid;
669         u32 cpst = 0;
670         u32 thiscpuid;
671
672         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
673                 /* Scan BIOS looking for the signature. */
674                 /* It can not be at ffff0 - it is too big. */
675
676                 psb = phys_to_virt(i);
677                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
678                         continue;
679
680                 pr_debug("found PSB header at 0x%p\n", psb);
681
682                 pr_debug("table vers: 0x%x\n", psb->tableversion);
683                 if (psb->tableversion != PSB_VERSION_1_4) {
684                         printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
685                         return -ENODEV;
686                 }
687
688                 pr_debug("flags: 0x%x\n", psb->flags1);
689                 if (psb->flags1) {
690                         printk(KERN_ERR FW_BUG PFX "unknown flags\n");
691                         return -ENODEV;
692                 }
693
694                 data->vstable = psb->vstable;
695                 pr_debug("voltage stabilization time: %d(*20us)\n",
696                                 data->vstable);
697
698                 pr_debug("flags2: 0x%x\n", psb->flags2);
699                 data->rvo = psb->flags2 & 3;
700                 data->irt = ((psb->flags2) >> 2) & 3;
701                 mvs = ((psb->flags2) >> 4) & 3;
702                 data->vidmvs = 1 << mvs;
703                 data->batps = ((psb->flags2) >> 6) & 3;
704
705                 pr_debug("ramp voltage offset: %d\n", data->rvo);
706                 pr_debug("isochronous relief time: %d\n", data->irt);
707                 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
708
709                 pr_debug("numpst: 0x%x\n", psb->num_tables);
710                 cpst = psb->num_tables;
711                 if ((psb->cpuid == 0x00000fc0) ||
712                     (psb->cpuid == 0x00000fe0)) {
713                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
714                         if ((thiscpuid == 0x00000fc0) ||
715                             (thiscpuid == 0x00000fe0))
716                                 cpst = 1;
717                 }
718                 if (cpst != 1) {
719                         printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
720                         return -ENODEV;
721                 }
722
723                 data->plllock = psb->plllocktime;
724                 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
725                 pr_debug("maxfid: 0x%x\n", psb->maxfid);
726                 pr_debug("maxvid: 0x%x\n", psb->maxvid);
727                 maxvid = psb->maxvid;
728
729                 data->numps = psb->numps;
730                 pr_debug("numpstates: 0x%x\n", data->numps);
731                 return fill_powernow_table(data,
732                                 (struct pst_s *)(psb+1), maxvid);
733         }
734         /*
735          * If you see this message, complain to BIOS manufacturer. If
736          * he tells you "we do not support Linux" or some similar
737          * nonsense, remember that Windows 2000 uses the same legacy
738          * mechanism that the old Linux PSB driver uses. Tell them it
739          * is broken with Windows 2000.
740          *
741          * The reference to the AMD documentation is chapter 9 in the
742          * BIOS and Kernel Developer's Guide, which is available on
743          * www.amd.com
744          */
745         printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
746         printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
747                 " and Cool'N'Quiet support is enabled in BIOS setup\n");
748         return -ENODEV;
749 }
750
751 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
752                 unsigned int index)
753 {
754         u64 control;
755
756         if (!data->acpi_data.state_count)
757                 return;
758
759         control = data->acpi_data.states[index].control;
760         data->irt = (control >> IRT_SHIFT) & IRT_MASK;
761         data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
762         data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
763         data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
764         data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
765         data->vstable = (control >> VST_SHIFT) & VST_MASK;
766 }
767
768 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
769 {
770         struct cpufreq_frequency_table *powernow_table;
771         int ret_val = -ENODEV;
772         u64 control, status;
773
774         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
775                 pr_debug("register performance failed: bad ACPI data\n");
776                 return -EIO;
777         }
778
779         /* verify the data contained in the ACPI structures */
780         if (data->acpi_data.state_count <= 1) {
781                 pr_debug("No ACPI P-States\n");
782                 goto err_out;
783         }
784
785         control = data->acpi_data.control_register.space_id;
786         status = data->acpi_data.status_register.space_id;
787
788         if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
789             (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
790                 pr_debug("Invalid control/status registers (%llx - %llx)\n",
791                         control, status);
792                 goto err_out;
793         }
794
795         /* fill in data->powernow_table */
796         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
797                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
798         if (!powernow_table) {
799                 pr_debug("powernow_table memory alloc failure\n");
800                 goto err_out;
801         }
802
803         /* fill in data */
804         data->numps = data->acpi_data.state_count;
805         powernow_k8_acpi_pst_values(data, 0);
806
807         ret_val = fill_powernow_table_fidvid(data, powernow_table);
808         if (ret_val)
809                 goto err_out_mem;
810
811         powernow_table[data->acpi_data.state_count].frequency =
812                 CPUFREQ_TABLE_END;
813         powernow_table[data->acpi_data.state_count].index = 0;
814         data->powernow_table = powernow_table;
815
816         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
817                 print_basics(data);
818
819         /* notify BIOS that we exist */
820         acpi_processor_notify_smm(THIS_MODULE);
821
822         if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
823                 printk(KERN_ERR PFX
824                                 "unable to alloc powernow_k8_data cpumask\n");
825                 ret_val = -ENOMEM;
826                 goto err_out_mem;
827         }
828
829         return 0;
830
831 err_out_mem:
832         kfree(powernow_table);
833
834 err_out:
835         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
836
837         /* data->acpi_data.state_count informs us at ->exit()
838          * whether ACPI was used */
839         data->acpi_data.state_count = 0;
840
841         return ret_val;
842 }
843
844 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
845                 struct cpufreq_frequency_table *powernow_table)
846 {
847         int i;
848
849         for (i = 0; i < data->acpi_data.state_count; i++) {
850                 u32 fid;
851                 u32 vid;
852                 u32 freq, index;
853                 u64 status, control;
854
855                 if (data->exttype) {
856                         status =  data->acpi_data.states[i].status;
857                         fid = status & EXT_FID_MASK;
858                         vid = (status >> VID_SHIFT) & EXT_VID_MASK;
859                 } else {
860                         control =  data->acpi_data.states[i].control;
861                         fid = control & FID_MASK;
862                         vid = (control >> VID_SHIFT) & VID_MASK;
863                 }
864
865                 pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
866
867                 index = fid | (vid<<8);
868                 powernow_table[i].index = index;
869
870                 freq = find_khz_freq_from_fid(fid);
871                 powernow_table[i].frequency = freq;
872
873                 /* verify frequency is OK */
874                 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
875                         pr_debug("invalid freq %u kHz, ignoring\n", freq);
876                         invalidate_entry(powernow_table, i);
877                         continue;
878                 }
879
880                 /* verify voltage is OK -
881                  * BIOSs are using "off" to indicate invalid */
882                 if (vid == VID_OFF) {
883                         pr_debug("invalid vid %u, ignoring\n", vid);
884                         invalidate_entry(powernow_table, i);
885                         continue;
886                 }
887
888                 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
889                         printk(KERN_INFO PFX "invalid freq entries "
890                                 "%u kHz vs. %u kHz\n", freq,
891                                 (unsigned int)
892                                 (data->acpi_data.states[i].core_frequency
893                                  * 1000));
894                         invalidate_entry(powernow_table, i);
895                         continue;
896                 }
897         }
898         return 0;
899 }
900
901 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
902 {
903         if (data->acpi_data.state_count)
904                 acpi_processor_unregister_performance(&data->acpi_data,
905                                 data->cpu);
906         free_cpumask_var(data->acpi_data.shared_cpu_map);
907 }
908
909 static int get_transition_latency(struct powernow_k8_data *data)
910 {
911         int max_latency = 0;
912         int i;
913         for (i = 0; i < data->acpi_data.state_count; i++) {
914                 int cur_latency = data->acpi_data.states[i].transition_latency
915                         + data->acpi_data.states[i].bus_master_latency;
916                 if (cur_latency > max_latency)
917                         max_latency = cur_latency;
918         }
919         if (max_latency == 0) {
920                 pr_err(FW_WARN PFX "Invalid zero transition latency\n");
921                 max_latency = 1;
922         }
923         /* value in usecs, needs to be in nanoseconds */
924         return 1000 * max_latency;
925 }
926
927 /* Take a frequency, and issue the fid/vid transition command */
928 static int transition_frequency_fidvid(struct powernow_k8_data *data,
929                 unsigned int index)
930 {
931         u32 fid = 0;
932         u32 vid = 0;
933         int res, i;
934         struct cpufreq_freqs freqs;
935
936         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
937
938         /* fid/vid correctness check for k8 */
939         /* fid are the lower 8 bits of the index we stored into
940          * the cpufreq frequency table in find_psb_table, vid
941          * are the upper 8 bits.
942          */
943         fid = data->powernow_table[index].index & 0xFF;
944         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
945
946         pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
947
948         if (query_current_values_with_pending_wait(data))
949                 return 1;
950
951         if ((data->currvid == vid) && (data->currfid == fid)) {
952                 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
953                         fid, vid);
954                 return 0;
955         }
956
957         pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
958                 smp_processor_id(), fid, vid);
959         freqs.old = find_khz_freq_from_fid(data->currfid);
960         freqs.new = find_khz_freq_from_fid(fid);
961
962         for_each_cpu(i, data->available_cores) {
963                 freqs.cpu = i;
964                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
965         }
966
967         res = transition_fid_vid(data, fid, vid);
968         if (res)
969                 return res;
970
971         freqs.new = find_khz_freq_from_fid(data->currfid);
972
973         for_each_cpu(i, data->available_cores) {
974                 freqs.cpu = i;
975                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
976         }
977         return res;
978 }
979
980 struct powernowk8_target_arg {
981         struct cpufreq_policy           *pol;
982         unsigned                        targfreq;
983         unsigned                        relation;
984 };
985
986 static long powernowk8_target_fn(void *arg)
987 {
988         struct powernowk8_target_arg *pta = arg;
989         struct cpufreq_policy *pol = pta->pol;
990         unsigned targfreq = pta->targfreq;
991         unsigned relation = pta->relation;
992         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
993         u32 checkfid;
994         u32 checkvid;
995         unsigned int newstate;
996         int ret;
997
998         if (!data)
999                 return -EINVAL;
1000
1001         checkfid = data->currfid;
1002         checkvid = data->currvid;
1003
1004         if (pending_bit_stuck()) {
1005                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1006                 return -EIO;
1007         }
1008
1009         pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1010                 pol->cpu, targfreq, pol->min, pol->max, relation);
1011
1012         if (query_current_values_with_pending_wait(data))
1013                 return -EIO;
1014
1015         pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1016                  data->currfid, data->currvid);
1017
1018         if ((checkvid != data->currvid) ||
1019             (checkfid != data->currfid)) {
1020                 pr_info(PFX
1021                        "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1022                        checkfid, data->currfid,
1023                        checkvid, data->currvid);
1024         }
1025
1026         if (cpufreq_frequency_table_target(pol, data->powernow_table,
1027                                 targfreq, relation, &newstate))
1028                 return -EIO;
1029
1030         mutex_lock(&fidvid_mutex);
1031
1032         powernow_k8_acpi_pst_values(data, newstate);
1033
1034         ret = transition_frequency_fidvid(data, newstate);
1035
1036         if (ret) {
1037                 printk(KERN_ERR PFX "transition frequency failed\n");
1038                 mutex_unlock(&fidvid_mutex);
1039                 return 1;
1040         }
1041         mutex_unlock(&fidvid_mutex);
1042
1043         pol->cur = find_khz_freq_from_fid(data->currfid);
1044
1045         return 0;
1046 }
1047
1048 /* Driver entry point to switch to the target frequency */
1049 static int powernowk8_target(struct cpufreq_policy *pol,
1050                 unsigned targfreq, unsigned relation)
1051 {
1052         struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
1053                                              .relation = relation };
1054
1055         return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1056 }
1057
1058 /* Driver entry point to verify the policy and range of frequencies */
1059 static int powernowk8_verify(struct cpufreq_policy *pol)
1060 {
1061         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1062
1063         if (!data)
1064                 return -EINVAL;
1065
1066         return cpufreq_frequency_table_verify(pol, data->powernow_table);
1067 }
1068
1069 struct init_on_cpu {
1070         struct powernow_k8_data *data;
1071         int rc;
1072 };
1073
1074 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1075 {
1076         struct init_on_cpu *init_on_cpu = _init_on_cpu;
1077
1078         if (pending_bit_stuck()) {
1079                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1080                 init_on_cpu->rc = -ENODEV;
1081                 return;
1082         }
1083
1084         if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1085                 init_on_cpu->rc = -ENODEV;
1086                 return;
1087         }
1088
1089         fidvid_msr_init();
1090
1091         init_on_cpu->rc = 0;
1092 }
1093
1094 static const char missing_pss_msg[] =
1095         KERN_ERR
1096         FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1097         FW_BUG PFX "First, make sure Cool'N'Quiet is enabled in the BIOS.\n"
1098         FW_BUG PFX "If that doesn't help, try upgrading your BIOS.\n";
1099
1100 /* per CPU init entry point to the driver */
1101 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1102 {
1103         struct powernow_k8_data *data;
1104         struct init_on_cpu init_on_cpu;
1105         int rc;
1106
1107         if (!cpu_online(pol->cpu))
1108                 return -ENODEV;
1109
1110         smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1111         if (rc)
1112                 return -ENODEV;
1113
1114         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1115         if (!data) {
1116                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1117                 return -ENOMEM;
1118         }
1119
1120         data->cpu = pol->cpu;
1121
1122         if (powernow_k8_cpu_init_acpi(data)) {
1123                 /*
1124                  * Use the PSB BIOS structure. This is only available on
1125                  * an UP version, and is deprecated by AMD.
1126                  */
1127                 if (num_online_cpus() != 1) {
1128                         printk_once(missing_pss_msg);
1129                         goto err_out;
1130                 }
1131                 if (pol->cpu != 0) {
1132                         printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1133                                "CPU other than CPU0. Complain to your BIOS "
1134                                "vendor.\n");
1135                         goto err_out;
1136                 }
1137                 rc = find_psb_table(data);
1138                 if (rc)
1139                         goto err_out;
1140
1141                 /* Take a crude guess here.
1142                  * That guess was in microseconds, so multiply with 1000 */
1143                 pol->cpuinfo.transition_latency = (
1144                          ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1145                          ((1 << data->irt) * 30)) * 1000;
1146         } else /* ACPI _PSS objects available */
1147                 pol->cpuinfo.transition_latency = get_transition_latency(data);
1148
1149         /* only run on specific CPU from here on */
1150         init_on_cpu.data = data;
1151         smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1152                                  &init_on_cpu, 1);
1153         rc = init_on_cpu.rc;
1154         if (rc != 0)
1155                 goto err_out_exit_acpi;
1156
1157         cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1158         data->available_cores = pol->cpus;
1159
1160         pol->cur = find_khz_freq_from_fid(data->currfid);
1161         pr_debug("policy current frequency %d kHz\n", pol->cur);
1162
1163         /* min/max the cpu is capable of */
1164         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1165                 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1166                 powernow_k8_cpu_exit_acpi(data);
1167                 kfree(data->powernow_table);
1168                 kfree(data);
1169                 return -EINVAL;
1170         }
1171
1172         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1173
1174         pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1175                  data->currfid, data->currvid);
1176
1177         per_cpu(powernow_data, pol->cpu) = data;
1178
1179         return 0;
1180
1181 err_out_exit_acpi:
1182         powernow_k8_cpu_exit_acpi(data);
1183
1184 err_out:
1185         kfree(data);
1186         return -ENODEV;
1187 }
1188
1189 static int powernowk8_cpu_exit(struct cpufreq_policy *pol)
1190 {
1191         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1192
1193         if (!data)
1194                 return -EINVAL;
1195
1196         powernow_k8_cpu_exit_acpi(data);
1197
1198         cpufreq_frequency_table_put_attr(pol->cpu);
1199
1200         kfree(data->powernow_table);
1201         kfree(data);
1202         per_cpu(powernow_data, pol->cpu) = NULL;
1203
1204         return 0;
1205 }
1206
1207 static void query_values_on_cpu(void *_err)
1208 {
1209         int *err = _err;
1210         struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1211
1212         *err = query_current_values_with_pending_wait(data);
1213 }
1214
1215 static unsigned int powernowk8_get(unsigned int cpu)
1216 {
1217         struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1218         unsigned int khz = 0;
1219         int err;
1220
1221         if (!data)
1222                 return 0;
1223
1224         smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1225         if (err)
1226                 goto out;
1227
1228         khz = find_khz_freq_from_fid(data->currfid);
1229
1230
1231 out:
1232         return khz;
1233 }
1234
1235 static struct freq_attr *powernow_k8_attr[] = {
1236         &cpufreq_freq_attr_scaling_available_freqs,
1237         NULL,
1238 };
1239
1240 static struct cpufreq_driver cpufreq_amd64_driver = {
1241         .verify         = powernowk8_verify,
1242         .target         = powernowk8_target,
1243         .bios_limit     = acpi_processor_get_bios_limit,
1244         .init           = powernowk8_cpu_init,
1245         .exit           = powernowk8_cpu_exit,
1246         .get            = powernowk8_get,
1247         .name           = "powernow-k8",
1248         .owner          = THIS_MODULE,
1249         .attr           = powernow_k8_attr,
1250 };
1251
1252 static void __request_acpi_cpufreq(void)
1253 {
1254         const char *cur_drv, *drv = "acpi-cpufreq";
1255
1256         cur_drv = cpufreq_get_current_driver();
1257         if (!cur_drv)
1258                 goto request;
1259
1260         if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv))))
1261                 pr_warn(PFX "WTF driver: %s\n", cur_drv);
1262
1263         return;
1264
1265  request:
1266         pr_warn(PFX "This CPU is not supported anymore, using acpi-cpufreq instead.\n");
1267         request_module(drv);
1268 }
1269
1270 /* driver entry point for init */
1271 static int __cpuinit powernowk8_init(void)
1272 {
1273         unsigned int i, supported_cpus = 0;
1274         int ret;
1275
1276         if (static_cpu_has(X86_FEATURE_HW_PSTATE)) {
1277                 __request_acpi_cpufreq();
1278                 return -ENODEV;
1279         }
1280
1281         if (!x86_match_cpu(powernow_k8_ids))
1282                 return -ENODEV;
1283
1284         get_online_cpus();
1285         for_each_online_cpu(i) {
1286                 smp_call_function_single(i, check_supported_cpu, &ret, 1);
1287                 if (!ret)
1288                         supported_cpus++;
1289         }
1290
1291         if (supported_cpus != num_online_cpus()) {
1292                 put_online_cpus();
1293                 return -ENODEV;
1294         }
1295         put_online_cpus();
1296
1297         ret = cpufreq_register_driver(&cpufreq_amd64_driver);
1298         if (ret)
1299                 return ret;
1300
1301         pr_info(PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1302                 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1303
1304         return ret;
1305 }
1306
1307 /* driver entry point for term */
1308 static void __exit powernowk8_exit(void)
1309 {
1310         pr_debug("exit\n");
1311
1312         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1313 }
1314
1315 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1316                 "Mark Langsdorf <mark.langsdorf@amd.com>");
1317 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1318 MODULE_LICENSE("GPL");
1319
1320 late_initcall(powernowk8_init);
1321 module_exit(powernowk8_exit);