Merge tag 'csky-for-linus-6.5' of https://github.com/c-sky/csky-linux
[platform/kernel/linux-starfive.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37
38 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67         return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72         int mask, ret;
73
74         ret = fp_toint(x);
75         mask = (1 << FRAC_BITS) - 1;
76         if (x & mask)
77                 ret += 1;
78         return ret;
79 }
80
81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83         return (x * y) >> EXT_FRAC_BITS;
84 }
85
86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88         return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90
91 /**
92  * struct sample -      Store performance sample
93  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
94  *                      performance during last sample period
95  * @busy_scaled:        Scaled busy value which is used to calculate next
96  *                      P state. This can be different than core_avg_perf
97  *                      to account for cpu idle period
98  * @aperf:              Difference of actual performance frequency clock count
99  *                      read from APERF MSR between last and current sample
100  * @mperf:              Difference of maximum performance frequency clock count
101  *                      read from MPERF MSR between last and current sample
102  * @tsc:                Difference of time stamp counter between last and
103  *                      current sample
104  * @time:               Current time from scheduler
105  *
106  * This structure is used in the cpudata structure to store performance sample
107  * data for choosing next P State.
108  */
109 struct sample {
110         int32_t core_avg_perf;
111         int32_t busy_scaled;
112         u64 aperf;
113         u64 mperf;
114         u64 tsc;
115         u64 time;
116 };
117
118 /**
119  * struct pstate_data - Store P state data
120  * @current_pstate:     Current requested P state
121  * @min_pstate:         Min P state possible for this platform
122  * @max_pstate:         Max P state possible for this platform
123  * @max_pstate_physical:This is physical Max P state for a processor
124  *                      This can be higher than the max_pstate which can
125  *                      be limited by platform thermal design power limits
126  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
127  * @scaling:            Scaling factor between performance and frequency
128  * @turbo_pstate:       Max Turbo P state possible for this platform
129  * @min_freq:           @min_pstate frequency in cpufreq units
130  * @max_freq:           @max_pstate frequency in cpufreq units
131  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136         int     current_pstate;
137         int     min_pstate;
138         int     max_pstate;
139         int     max_pstate_physical;
140         int     perf_ctl_scaling;
141         int     scaling;
142         int     turbo_pstate;
143         unsigned int min_freq;
144         unsigned int max_freq;
145         unsigned int turbo_freq;
146 };
147
148 /**
149  * struct vid_data -    Stores voltage information data
150  * @min:                VID data for this platform corresponding to
151  *                      the lowest P state
152  * @max:                VID data corresponding to the highest P State.
153  * @turbo:              VID data for turbo P state
154  * @ratio:              Ratio of (vid max - vid min) /
155  *                      (max P state - Min P State)
156  *
157  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158  * This data is used in Atom platforms, where in addition to target P state,
159  * the voltage data needs to be specified to select next P State.
160  */
161 struct vid_data {
162         int min;
163         int max;
164         int turbo;
165         int32_t ratio;
166 };
167
168 /**
169  * struct global_params - Global parameters, mostly tunable via sysfs.
170  * @no_turbo:           Whether or not to use turbo P-states.
171  * @turbo_disabled:     Whether or not turbo P-states are available at all,
172  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
173  *                      not the maximum reported turbo P-state is different from
174  *                      the maximum reported non-turbo one.
175  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
176  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
177  *                      P-state capacity.
178  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
179  *                      P-state capacity.
180  */
181 struct global_params {
182         bool no_turbo;
183         bool turbo_disabled;
184         bool turbo_disabled_mf;
185         int max_perf_pct;
186         int min_perf_pct;
187 };
188
189 /**
190  * struct cpudata -     Per CPU instance data storage
191  * @cpu:                CPU number for this instance data
192  * @policy:             CPUFreq policy value
193  * @update_util:        CPUFreq utility callback information
194  * @update_util_set:    CPUFreq utility callback is set
195  * @iowait_boost:       iowait-related boost fraction
196  * @last_update:        Time of the last update.
197  * @pstate:             Stores P state limits for this CPU
198  * @vid:                Stores VID limits for this CPU
199  * @last_sample_time:   Last Sample time
200  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
201  * @prev_aperf:         Last APERF value read from APERF MSR
202  * @prev_mperf:         Last MPERF value read from MPERF MSR
203  * @prev_tsc:           Last timestamp counter (TSC) value
204  * @prev_cummulative_iowait: IO Wait time difference from last and
205  *                      current sample
206  * @sample:             Storage for storing last Sample data
207  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
208  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
209  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
210  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
211  * @epp_powersave:      Last saved HWP energy performance preference
212  *                      (EPP) or energy performance bias (EPB),
213  *                      when policy switched to performance
214  * @epp_policy:         Last saved policy used to set EPP/EPB
215  * @epp_default:        Power on default HWP energy performance
216  *                      preference/bias
217  * @epp_cached          Cached HWP energy-performance preference value
218  * @hwp_req_cached:     Cached value of the last HWP Request MSR
219  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
220  * @last_io_update:     Last time when IO wake flag was set
221  * @sched_flags:        Store scheduler flags for possible cross CPU update
222  * @hwp_boost_min:      Last HWP boosted min performance
223  * @suspended:          Whether or not the driver has been suspended.
224  * @hwp_notify_work:    workqueue for HWP notifications.
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229         int cpu;
230
231         unsigned int policy;
232         struct update_util_data update_util;
233         bool   update_util_set;
234
235         struct pstate_data pstate;
236         struct vid_data vid;
237
238         u64     last_update;
239         u64     last_sample_time;
240         u64     aperf_mperf_shift;
241         u64     prev_aperf;
242         u64     prev_mperf;
243         u64     prev_tsc;
244         u64     prev_cummulative_iowait;
245         struct sample sample;
246         int32_t min_perf_ratio;
247         int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249         struct acpi_processor_performance acpi_perf_data;
250         bool valid_pss_table;
251 #endif
252         unsigned int iowait_boost;
253         s16 epp_powersave;
254         s16 epp_policy;
255         s16 epp_default;
256         s16 epp_cached;
257         u64 hwp_req_cached;
258         u64 hwp_cap_cached;
259         u64 last_io_update;
260         unsigned int sched_flags;
261         u32 hwp_boost_min;
262         bool suspended;
263         struct delayed_work hwp_notify_work;
264 };
265
266 static struct cpudata **all_cpu_data;
267
268 /**
269  * struct pstate_funcs - Per CPU model specific callbacks
270  * @get_max:            Callback to get maximum non turbo effective P state
271  * @get_max_physical:   Callback to get maximum non turbo physical P state
272  * @get_min:            Callback to get minimum P state
273  * @get_turbo:          Callback to get turbo P state
274  * @get_scaling:        Callback to get frequency scaling factor
275  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
276  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(int cpu);
285         int (*get_max_physical)(int cpu);
286         int (*get_min)(int cpu);
287         int (*get_turbo)(int cpu);
288         int (*get_scaling)(void);
289         int (*get_cpu_scaling)(int cpu);
290         int (*get_aperf_mperf_shift)(void);
291         u64 (*get_val)(struct cpudata*, int pstate);
292         void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #ifdef CONFIG_ACPI
306 static bool acpi_ppc;
307 #endif
308
309 static struct global_params global;
310
311 static DEFINE_MUTEX(intel_pstate_driver_lock);
312 static DEFINE_MUTEX(intel_pstate_limits_lock);
313
314 #ifdef CONFIG_ACPI
315
316 static bool intel_pstate_acpi_pm_profile_server(void)
317 {
318         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320                 return true;
321
322         return false;
323 }
324
325 static bool intel_pstate_get_ppc_enable_status(void)
326 {
327         if (intel_pstate_acpi_pm_profile_server())
328                 return true;
329
330         return acpi_ppc;
331 }
332
333 #ifdef CONFIG_ACPI_CPPC_LIB
334
335 /* The work item is needed to avoid CPU hotplug locking issues */
336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337 {
338         sched_set_itmt_support();
339 }
340
341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342
343 #define CPPC_MAX_PERF   U8_MAX
344
345 static void intel_pstate_set_itmt_prio(int cpu)
346 {
347         struct cppc_perf_caps cppc_perf;
348         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
349         int ret;
350
351         ret = cppc_get_perf_caps(cpu, &cppc_perf);
352         if (ret)
353                 return;
354
355         /*
356          * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
357          * In this case we can't use CPPC.highest_perf to enable ITMT.
358          * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
359          */
360         if (cppc_perf.highest_perf == CPPC_MAX_PERF)
361                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
362
363         /*
364          * The priorities can be set regardless of whether or not
365          * sched_set_itmt_support(true) has been called and it is valid to
366          * update them at any time after it has been called.
367          */
368         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
369
370         if (max_highest_perf <= min_highest_perf) {
371                 if (cppc_perf.highest_perf > max_highest_perf)
372                         max_highest_perf = cppc_perf.highest_perf;
373
374                 if (cppc_perf.highest_perf < min_highest_perf)
375                         min_highest_perf = cppc_perf.highest_perf;
376
377                 if (max_highest_perf > min_highest_perf) {
378                         /*
379                          * This code can be run during CPU online under the
380                          * CPU hotplug locks, so sched_set_itmt_support()
381                          * cannot be called from here.  Queue up a work item
382                          * to invoke it.
383                          */
384                         schedule_work(&sched_itmt_work);
385                 }
386         }
387 }
388
389 static int intel_pstate_get_cppc_guaranteed(int cpu)
390 {
391         struct cppc_perf_caps cppc_perf;
392         int ret;
393
394         ret = cppc_get_perf_caps(cpu, &cppc_perf);
395         if (ret)
396                 return ret;
397
398         if (cppc_perf.guaranteed_perf)
399                 return cppc_perf.guaranteed_perf;
400
401         return cppc_perf.nominal_perf;
402 }
403 #else /* CONFIG_ACPI_CPPC_LIB */
404 static inline void intel_pstate_set_itmt_prio(int cpu)
405 {
406 }
407 #endif /* CONFIG_ACPI_CPPC_LIB */
408
409 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
410 {
411         struct cpudata *cpu;
412         int ret;
413         int i;
414
415         if (hwp_active) {
416                 intel_pstate_set_itmt_prio(policy->cpu);
417                 return;
418         }
419
420         if (!intel_pstate_get_ppc_enable_status())
421                 return;
422
423         cpu = all_cpu_data[policy->cpu];
424
425         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
426                                                   policy->cpu);
427         if (ret)
428                 return;
429
430         /*
431          * Check if the control value in _PSS is for PERF_CTL MSR, which should
432          * guarantee that the states returned by it map to the states in our
433          * list directly.
434          */
435         if (cpu->acpi_perf_data.control_register.space_id !=
436                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
437                 goto err;
438
439         /*
440          * If there is only one entry _PSS, simply ignore _PSS and continue as
441          * usual without taking _PSS into account
442          */
443         if (cpu->acpi_perf_data.state_count < 2)
444                 goto err;
445
446         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
447         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
448                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
449                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
450                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
451                          (u32) cpu->acpi_perf_data.states[i].power,
452                          (u32) cpu->acpi_perf_data.states[i].control);
453         }
454
455         cpu->valid_pss_table = true;
456         pr_debug("_PPC limits will be enforced\n");
457
458         return;
459
460  err:
461         cpu->valid_pss_table = false;
462         acpi_processor_unregister_performance(policy->cpu);
463 }
464
465 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
466 {
467         struct cpudata *cpu;
468
469         cpu = all_cpu_data[policy->cpu];
470         if (!cpu->valid_pss_table)
471                 return;
472
473         acpi_processor_unregister_performance(policy->cpu);
474 }
475 #else /* CONFIG_ACPI */
476 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
477 {
478 }
479
480 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483
484 static inline bool intel_pstate_acpi_pm_profile_server(void)
485 {
486         return false;
487 }
488 #endif /* CONFIG_ACPI */
489
490 #ifndef CONFIG_ACPI_CPPC_LIB
491 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
492 {
493         return -ENOTSUPP;
494 }
495 #endif /* CONFIG_ACPI_CPPC_LIB */
496
497 /**
498  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
499  * @cpu: Target CPU.
500  *
501  * On hybrid processors, HWP may expose more performance levels than there are
502  * P-states accessible through the PERF_CTL interface.  If that happens, the
503  * scaling factor between HWP performance levels and CPU frequency will be less
504  * than the scaling factor between P-state values and CPU frequency.
505  *
506  * In that case, adjust the CPU parameters used in computations accordingly.
507  */
508 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
509 {
510         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
511         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
512         int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
513         int scaling = cpu->pstate.scaling;
514
515         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
516         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
517         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
518         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
519         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
520         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
521
522         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
523                                            perf_ctl_scaling);
524         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
525                                          perf_ctl_scaling);
526
527         cpu->pstate.max_pstate_physical =
528                         DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
529                                      scaling);
530
531         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
532         /*
533          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
534          * the effective range of HWP performance levels.
535          */
536         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
537 }
538
539 static inline void update_turbo_state(void)
540 {
541         u64 misc_en;
542         struct cpudata *cpu;
543
544         cpu = all_cpu_data[0];
545         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
546         global.turbo_disabled =
547                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
548                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
549 }
550
551 static int min_perf_pct_min(void)
552 {
553         struct cpudata *cpu = all_cpu_data[0];
554         int turbo_pstate = cpu->pstate.turbo_pstate;
555
556         return turbo_pstate ?
557                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
558 }
559
560 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
561 {
562         u64 epb;
563         int ret;
564
565         if (!boot_cpu_has(X86_FEATURE_EPB))
566                 return -ENXIO;
567
568         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
569         if (ret)
570                 return (s16)ret;
571
572         return (s16)(epb & 0x0f);
573 }
574
575 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
576 {
577         s16 epp;
578
579         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
580                 /*
581                  * When hwp_req_data is 0, means that caller didn't read
582                  * MSR_HWP_REQUEST, so need to read and get EPP.
583                  */
584                 if (!hwp_req_data) {
585                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
586                                             &hwp_req_data);
587                         if (epp)
588                                 return epp;
589                 }
590                 epp = (hwp_req_data >> 24) & 0xff;
591         } else {
592                 /* When there is no EPP present, HWP uses EPB settings */
593                 epp = intel_pstate_get_epb(cpu_data);
594         }
595
596         return epp;
597 }
598
599 static int intel_pstate_set_epb(int cpu, s16 pref)
600 {
601         u64 epb;
602         int ret;
603
604         if (!boot_cpu_has(X86_FEATURE_EPB))
605                 return -ENXIO;
606
607         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608         if (ret)
609                 return ret;
610
611         epb = (epb & ~0x0f) | pref;
612         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
613
614         return 0;
615 }
616
617 /*
618  * EPP/EPB display strings corresponding to EPP index in the
619  * energy_perf_strings[]
620  *      index           String
621  *-------------------------------------
622  *      0               default
623  *      1               performance
624  *      2               balance_performance
625  *      3               balance_power
626  *      4               power
627  */
628
629 enum energy_perf_value_index {
630         EPP_INDEX_DEFAULT = 0,
631         EPP_INDEX_PERFORMANCE,
632         EPP_INDEX_BALANCE_PERFORMANCE,
633         EPP_INDEX_BALANCE_POWERSAVE,
634         EPP_INDEX_POWERSAVE,
635 };
636
637 static const char * const energy_perf_strings[] = {
638         [EPP_INDEX_DEFAULT] = "default",
639         [EPP_INDEX_PERFORMANCE] = "performance",
640         [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
641         [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
642         [EPP_INDEX_POWERSAVE] = "power",
643         NULL
644 };
645 static unsigned int epp_values[] = {
646         [EPP_INDEX_DEFAULT] = 0, /* Unused index */
647         [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
648         [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
649         [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
650         [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
651 };
652
653 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
654 {
655         s16 epp;
656         int index = -EINVAL;
657
658         *raw_epp = 0;
659         epp = intel_pstate_get_epp(cpu_data, 0);
660         if (epp < 0)
661                 return epp;
662
663         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
664                 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
665                         return EPP_INDEX_PERFORMANCE;
666                 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
667                         return EPP_INDEX_BALANCE_PERFORMANCE;
668                 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
669                         return EPP_INDEX_BALANCE_POWERSAVE;
670                 if (epp == epp_values[EPP_INDEX_POWERSAVE])
671                         return EPP_INDEX_POWERSAVE;
672                 *raw_epp = epp;
673                 return 0;
674         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
675                 /*
676                  * Range:
677                  *      0x00-0x03       :       Performance
678                  *      0x04-0x07       :       Balance performance
679                  *      0x08-0x0B       :       Balance power
680                  *      0x0C-0x0F       :       Power
681                  * The EPB is a 4 bit value, but our ranges restrict the
682                  * value which can be set. Here only using top two bits
683                  * effectively.
684                  */
685                 index = (epp >> 2) + 1;
686         }
687
688         return index;
689 }
690
691 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
692 {
693         int ret;
694
695         /*
696          * Use the cached HWP Request MSR value, because in the active mode the
697          * register itself may be updated by intel_pstate_hwp_boost_up() or
698          * intel_pstate_hwp_boost_down() at any time.
699          */
700         u64 value = READ_ONCE(cpu->hwp_req_cached);
701
702         value &= ~GENMASK_ULL(31, 24);
703         value |= (u64)epp << 24;
704         /*
705          * The only other updater of hwp_req_cached in the active mode,
706          * intel_pstate_hwp_set(), is called under the same lock as this
707          * function, so it cannot run in parallel with the update below.
708          */
709         WRITE_ONCE(cpu->hwp_req_cached, value);
710         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
711         if (!ret)
712                 cpu->epp_cached = epp;
713
714         return ret;
715 }
716
717 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
718                                               int pref_index, bool use_raw,
719                                               u32 raw_epp)
720 {
721         int epp = -EINVAL;
722         int ret;
723
724         if (!pref_index)
725                 epp = cpu_data->epp_default;
726
727         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
728                 if (use_raw)
729                         epp = raw_epp;
730                 else if (epp == -EINVAL)
731                         epp = epp_values[pref_index];
732
733                 /*
734                  * To avoid confusion, refuse to set EPP to any values different
735                  * from 0 (performance) if the current policy is "performance",
736                  * because those values would be overridden.
737                  */
738                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
739                         return -EBUSY;
740
741                 ret = intel_pstate_set_epp(cpu_data, epp);
742         } else {
743                 if (epp == -EINVAL)
744                         epp = (pref_index - 1) << 2;
745                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
746         }
747
748         return ret;
749 }
750
751 static ssize_t show_energy_performance_available_preferences(
752                                 struct cpufreq_policy *policy, char *buf)
753 {
754         int i = 0;
755         int ret = 0;
756
757         while (energy_perf_strings[i] != NULL)
758                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
759
760         ret += sprintf(&buf[ret], "\n");
761
762         return ret;
763 }
764
765 cpufreq_freq_attr_ro(energy_performance_available_preferences);
766
767 static struct cpufreq_driver intel_pstate;
768
769 static ssize_t store_energy_performance_preference(
770                 struct cpufreq_policy *policy, const char *buf, size_t count)
771 {
772         struct cpudata *cpu = all_cpu_data[policy->cpu];
773         char str_preference[21];
774         bool raw = false;
775         ssize_t ret;
776         u32 epp = 0;
777
778         ret = sscanf(buf, "%20s", str_preference);
779         if (ret != 1)
780                 return -EINVAL;
781
782         ret = match_string(energy_perf_strings, -1, str_preference);
783         if (ret < 0) {
784                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
785                         return ret;
786
787                 ret = kstrtouint(buf, 10, &epp);
788                 if (ret)
789                         return ret;
790
791                 if (epp > 255)
792                         return -EINVAL;
793
794                 raw = true;
795         }
796
797         /*
798          * This function runs with the policy R/W semaphore held, which
799          * guarantees that the driver pointer will not change while it is
800          * running.
801          */
802         if (!intel_pstate_driver)
803                 return -EAGAIN;
804
805         mutex_lock(&intel_pstate_limits_lock);
806
807         if (intel_pstate_driver == &intel_pstate) {
808                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
809         } else {
810                 /*
811                  * In the passive mode the governor needs to be stopped on the
812                  * target CPU before the EPP update and restarted after it,
813                  * which is super-heavy-weight, so make sure it is worth doing
814                  * upfront.
815                  */
816                 if (!raw)
817                         epp = ret ? epp_values[ret] : cpu->epp_default;
818
819                 if (cpu->epp_cached != epp) {
820                         int err;
821
822                         cpufreq_stop_governor(policy);
823                         ret = intel_pstate_set_epp(cpu, epp);
824                         err = cpufreq_start_governor(policy);
825                         if (!ret)
826                                 ret = err;
827                 } else {
828                         ret = 0;
829                 }
830         }
831
832         mutex_unlock(&intel_pstate_limits_lock);
833
834         return ret ?: count;
835 }
836
837 static ssize_t show_energy_performance_preference(
838                                 struct cpufreq_policy *policy, char *buf)
839 {
840         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
841         int preference, raw_epp;
842
843         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
844         if (preference < 0)
845                 return preference;
846
847         if (raw_epp)
848                 return  sprintf(buf, "%d\n", raw_epp);
849         else
850                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
851 }
852
853 cpufreq_freq_attr_rw(energy_performance_preference);
854
855 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
856 {
857         struct cpudata *cpu = all_cpu_data[policy->cpu];
858         int ratio, freq;
859
860         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
861         if (ratio <= 0) {
862                 u64 cap;
863
864                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
865                 ratio = HWP_GUARANTEED_PERF(cap);
866         }
867
868         freq = ratio * cpu->pstate.scaling;
869         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
870                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
871
872         return sprintf(buf, "%d\n", freq);
873 }
874
875 cpufreq_freq_attr_ro(base_frequency);
876
877 static struct freq_attr *hwp_cpufreq_attrs[] = {
878         &energy_performance_preference,
879         &energy_performance_available_preferences,
880         &base_frequency,
881         NULL,
882 };
883
884 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
885 {
886         u64 cap;
887
888         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
889         WRITE_ONCE(cpu->hwp_cap_cached, cap);
890         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
891         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
892 }
893
894 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
895 {
896         int scaling = cpu->pstate.scaling;
897
898         __intel_pstate_get_hwp_cap(cpu);
899
900         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
901         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
902         if (scaling != cpu->pstate.perf_ctl_scaling) {
903                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
904
905                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
906                                                  perf_ctl_scaling);
907                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
908                                                    perf_ctl_scaling);
909         }
910 }
911
912 static void intel_pstate_hwp_set(unsigned int cpu)
913 {
914         struct cpudata *cpu_data = all_cpu_data[cpu];
915         int max, min;
916         u64 value;
917         s16 epp;
918
919         max = cpu_data->max_perf_ratio;
920         min = cpu_data->min_perf_ratio;
921
922         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
923                 min = max;
924
925         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
926
927         value &= ~HWP_MIN_PERF(~0L);
928         value |= HWP_MIN_PERF(min);
929
930         value &= ~HWP_MAX_PERF(~0L);
931         value |= HWP_MAX_PERF(max);
932
933         if (cpu_data->epp_policy == cpu_data->policy)
934                 goto skip_epp;
935
936         cpu_data->epp_policy = cpu_data->policy;
937
938         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
939                 epp = intel_pstate_get_epp(cpu_data, value);
940                 cpu_data->epp_powersave = epp;
941                 /* If EPP read was failed, then don't try to write */
942                 if (epp < 0)
943                         goto skip_epp;
944
945                 epp = 0;
946         } else {
947                 /* skip setting EPP, when saved value is invalid */
948                 if (cpu_data->epp_powersave < 0)
949                         goto skip_epp;
950
951                 /*
952                  * No need to restore EPP when it is not zero. This
953                  * means:
954                  *  - Policy is not changed
955                  *  - user has manually changed
956                  *  - Error reading EPB
957                  */
958                 epp = intel_pstate_get_epp(cpu_data, value);
959                 if (epp)
960                         goto skip_epp;
961
962                 epp = cpu_data->epp_powersave;
963         }
964         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
965                 value &= ~GENMASK_ULL(31, 24);
966                 value |= (u64)epp << 24;
967         } else {
968                 intel_pstate_set_epb(cpu, epp);
969         }
970 skip_epp:
971         WRITE_ONCE(cpu_data->hwp_req_cached, value);
972         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
973 }
974
975 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
976
977 static void intel_pstate_hwp_offline(struct cpudata *cpu)
978 {
979         u64 value = READ_ONCE(cpu->hwp_req_cached);
980         int min_perf;
981
982         intel_pstate_disable_hwp_interrupt(cpu);
983
984         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
985                 /*
986                  * In case the EPP has been set to "performance" by the
987                  * active mode "performance" scaling algorithm, replace that
988                  * temporary value with the cached EPP one.
989                  */
990                 value &= ~GENMASK_ULL(31, 24);
991                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
992                 /*
993                  * However, make sure that EPP will be set to "performance" when
994                  * the CPU is brought back online again and the "performance"
995                  * scaling algorithm is still in effect.
996                  */
997                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
998         }
999
1000         /*
1001          * Clear the desired perf field in the cached HWP request value to
1002          * prevent nonzero desired values from being leaked into the active
1003          * mode.
1004          */
1005         value &= ~HWP_DESIRED_PERF(~0L);
1006         WRITE_ONCE(cpu->hwp_req_cached, value);
1007
1008         value &= ~GENMASK_ULL(31, 0);
1009         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1010
1011         /* Set hwp_max = hwp_min */
1012         value |= HWP_MAX_PERF(min_perf);
1013         value |= HWP_MIN_PERF(min_perf);
1014
1015         /* Set EPP to min */
1016         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1017                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1018
1019         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1020 }
1021
1022 #define POWER_CTL_EE_ENABLE     1
1023 #define POWER_CTL_EE_DISABLE    2
1024
1025 static int power_ctl_ee_state;
1026
1027 static void set_power_ctl_ee_state(bool input)
1028 {
1029         u64 power_ctl;
1030
1031         mutex_lock(&intel_pstate_driver_lock);
1032         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1033         if (input) {
1034                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1035                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1036         } else {
1037                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1038                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1039         }
1040         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1041         mutex_unlock(&intel_pstate_driver_lock);
1042 }
1043
1044 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1045
1046 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1047 {
1048         intel_pstate_hwp_enable(cpu);
1049         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1050 }
1051
1052 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1053 {
1054         struct cpudata *cpu = all_cpu_data[policy->cpu];
1055
1056         pr_debug("CPU %d suspending\n", cpu->cpu);
1057
1058         cpu->suspended = true;
1059
1060         /* disable HWP interrupt and cancel any pending work */
1061         intel_pstate_disable_hwp_interrupt(cpu);
1062
1063         return 0;
1064 }
1065
1066 static int intel_pstate_resume(struct cpufreq_policy *policy)
1067 {
1068         struct cpudata *cpu = all_cpu_data[policy->cpu];
1069
1070         pr_debug("CPU %d resuming\n", cpu->cpu);
1071
1072         /* Only restore if the system default is changed */
1073         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1074                 set_power_ctl_ee_state(true);
1075         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1076                 set_power_ctl_ee_state(false);
1077
1078         if (cpu->suspended && hwp_active) {
1079                 mutex_lock(&intel_pstate_limits_lock);
1080
1081                 /* Re-enable HWP, because "online" has not done that. */
1082                 intel_pstate_hwp_reenable(cpu);
1083
1084                 mutex_unlock(&intel_pstate_limits_lock);
1085         }
1086
1087         cpu->suspended = false;
1088
1089         return 0;
1090 }
1091
1092 static void intel_pstate_update_policies(void)
1093 {
1094         int cpu;
1095
1096         for_each_possible_cpu(cpu)
1097                 cpufreq_update_policy(cpu);
1098 }
1099
1100 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1101                                            struct cpufreq_policy *policy)
1102 {
1103         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1104                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1105         refresh_frequency_limits(policy);
1106 }
1107
1108 static void intel_pstate_update_max_freq(unsigned int cpu)
1109 {
1110         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1111
1112         if (!policy)
1113                 return;
1114
1115         __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1116
1117         cpufreq_cpu_release(policy);
1118 }
1119
1120 static void intel_pstate_update_limits(unsigned int cpu)
1121 {
1122         mutex_lock(&intel_pstate_driver_lock);
1123
1124         update_turbo_state();
1125         /*
1126          * If turbo has been turned on or off globally, policy limits for
1127          * all CPUs need to be updated to reflect that.
1128          */
1129         if (global.turbo_disabled_mf != global.turbo_disabled) {
1130                 global.turbo_disabled_mf = global.turbo_disabled;
1131                 arch_set_max_freq_ratio(global.turbo_disabled);
1132                 for_each_possible_cpu(cpu)
1133                         intel_pstate_update_max_freq(cpu);
1134         } else {
1135                 cpufreq_update_policy(cpu);
1136         }
1137
1138         mutex_unlock(&intel_pstate_driver_lock);
1139 }
1140
1141 /************************** sysfs begin ************************/
1142 #define show_one(file_name, object)                                     \
1143         static ssize_t show_##file_name                                 \
1144         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1145         {                                                               \
1146                 return sprintf(buf, "%u\n", global.object);             \
1147         }
1148
1149 static ssize_t intel_pstate_show_status(char *buf);
1150 static int intel_pstate_update_status(const char *buf, size_t size);
1151
1152 static ssize_t show_status(struct kobject *kobj,
1153                            struct kobj_attribute *attr, char *buf)
1154 {
1155         ssize_t ret;
1156
1157         mutex_lock(&intel_pstate_driver_lock);
1158         ret = intel_pstate_show_status(buf);
1159         mutex_unlock(&intel_pstate_driver_lock);
1160
1161         return ret;
1162 }
1163
1164 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1165                             const char *buf, size_t count)
1166 {
1167         char *p = memchr(buf, '\n', count);
1168         int ret;
1169
1170         mutex_lock(&intel_pstate_driver_lock);
1171         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1172         mutex_unlock(&intel_pstate_driver_lock);
1173
1174         return ret < 0 ? ret : count;
1175 }
1176
1177 static ssize_t show_turbo_pct(struct kobject *kobj,
1178                                 struct kobj_attribute *attr, char *buf)
1179 {
1180         struct cpudata *cpu;
1181         int total, no_turbo, turbo_pct;
1182         uint32_t turbo_fp;
1183
1184         mutex_lock(&intel_pstate_driver_lock);
1185
1186         if (!intel_pstate_driver) {
1187                 mutex_unlock(&intel_pstate_driver_lock);
1188                 return -EAGAIN;
1189         }
1190
1191         cpu = all_cpu_data[0];
1192
1193         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1194         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1195         turbo_fp = div_fp(no_turbo, total);
1196         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1197
1198         mutex_unlock(&intel_pstate_driver_lock);
1199
1200         return sprintf(buf, "%u\n", turbo_pct);
1201 }
1202
1203 static ssize_t show_num_pstates(struct kobject *kobj,
1204                                 struct kobj_attribute *attr, char *buf)
1205 {
1206         struct cpudata *cpu;
1207         int total;
1208
1209         mutex_lock(&intel_pstate_driver_lock);
1210
1211         if (!intel_pstate_driver) {
1212                 mutex_unlock(&intel_pstate_driver_lock);
1213                 return -EAGAIN;
1214         }
1215
1216         cpu = all_cpu_data[0];
1217         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1218
1219         mutex_unlock(&intel_pstate_driver_lock);
1220
1221         return sprintf(buf, "%u\n", total);
1222 }
1223
1224 static ssize_t show_no_turbo(struct kobject *kobj,
1225                              struct kobj_attribute *attr, char *buf)
1226 {
1227         ssize_t ret;
1228
1229         mutex_lock(&intel_pstate_driver_lock);
1230
1231         if (!intel_pstate_driver) {
1232                 mutex_unlock(&intel_pstate_driver_lock);
1233                 return -EAGAIN;
1234         }
1235
1236         update_turbo_state();
1237         if (global.turbo_disabled)
1238                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1239         else
1240                 ret = sprintf(buf, "%u\n", global.no_turbo);
1241
1242         mutex_unlock(&intel_pstate_driver_lock);
1243
1244         return ret;
1245 }
1246
1247 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1248                               const char *buf, size_t count)
1249 {
1250         unsigned int input;
1251         int ret;
1252
1253         ret = sscanf(buf, "%u", &input);
1254         if (ret != 1)
1255                 return -EINVAL;
1256
1257         mutex_lock(&intel_pstate_driver_lock);
1258
1259         if (!intel_pstate_driver) {
1260                 mutex_unlock(&intel_pstate_driver_lock);
1261                 return -EAGAIN;
1262         }
1263
1264         mutex_lock(&intel_pstate_limits_lock);
1265
1266         update_turbo_state();
1267         if (global.turbo_disabled) {
1268                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1269                 mutex_unlock(&intel_pstate_limits_lock);
1270                 mutex_unlock(&intel_pstate_driver_lock);
1271                 return -EPERM;
1272         }
1273
1274         global.no_turbo = clamp_t(int, input, 0, 1);
1275
1276         if (global.no_turbo) {
1277                 struct cpudata *cpu = all_cpu_data[0];
1278                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1279
1280                 /* Squash the global minimum into the permitted range. */
1281                 if (global.min_perf_pct > pct)
1282                         global.min_perf_pct = pct;
1283         }
1284
1285         mutex_unlock(&intel_pstate_limits_lock);
1286
1287         intel_pstate_update_policies();
1288         arch_set_max_freq_ratio(global.no_turbo);
1289
1290         mutex_unlock(&intel_pstate_driver_lock);
1291
1292         return count;
1293 }
1294
1295 static void update_qos_request(enum freq_qos_req_type type)
1296 {
1297         struct freq_qos_request *req;
1298         struct cpufreq_policy *policy;
1299         int i;
1300
1301         for_each_possible_cpu(i) {
1302                 struct cpudata *cpu = all_cpu_data[i];
1303                 unsigned int freq, perf_pct;
1304
1305                 policy = cpufreq_cpu_get(i);
1306                 if (!policy)
1307                         continue;
1308
1309                 req = policy->driver_data;
1310                 cpufreq_cpu_put(policy);
1311
1312                 if (!req)
1313                         continue;
1314
1315                 if (hwp_active)
1316                         intel_pstate_get_hwp_cap(cpu);
1317
1318                 if (type == FREQ_QOS_MIN) {
1319                         perf_pct = global.min_perf_pct;
1320                 } else {
1321                         req++;
1322                         perf_pct = global.max_perf_pct;
1323                 }
1324
1325                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1326
1327                 if (freq_qos_update_request(req, freq) < 0)
1328                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1329         }
1330 }
1331
1332 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1333                                   const char *buf, size_t count)
1334 {
1335         unsigned int input;
1336         int ret;
1337
1338         ret = sscanf(buf, "%u", &input);
1339         if (ret != 1)
1340                 return -EINVAL;
1341
1342         mutex_lock(&intel_pstate_driver_lock);
1343
1344         if (!intel_pstate_driver) {
1345                 mutex_unlock(&intel_pstate_driver_lock);
1346                 return -EAGAIN;
1347         }
1348
1349         mutex_lock(&intel_pstate_limits_lock);
1350
1351         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1352
1353         mutex_unlock(&intel_pstate_limits_lock);
1354
1355         if (intel_pstate_driver == &intel_pstate)
1356                 intel_pstate_update_policies();
1357         else
1358                 update_qos_request(FREQ_QOS_MAX);
1359
1360         mutex_unlock(&intel_pstate_driver_lock);
1361
1362         return count;
1363 }
1364
1365 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1366                                   const char *buf, size_t count)
1367 {
1368         unsigned int input;
1369         int ret;
1370
1371         ret = sscanf(buf, "%u", &input);
1372         if (ret != 1)
1373                 return -EINVAL;
1374
1375         mutex_lock(&intel_pstate_driver_lock);
1376
1377         if (!intel_pstate_driver) {
1378                 mutex_unlock(&intel_pstate_driver_lock);
1379                 return -EAGAIN;
1380         }
1381
1382         mutex_lock(&intel_pstate_limits_lock);
1383
1384         global.min_perf_pct = clamp_t(int, input,
1385                                       min_perf_pct_min(), global.max_perf_pct);
1386
1387         mutex_unlock(&intel_pstate_limits_lock);
1388
1389         if (intel_pstate_driver == &intel_pstate)
1390                 intel_pstate_update_policies();
1391         else
1392                 update_qos_request(FREQ_QOS_MIN);
1393
1394         mutex_unlock(&intel_pstate_driver_lock);
1395
1396         return count;
1397 }
1398
1399 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1400                                 struct kobj_attribute *attr, char *buf)
1401 {
1402         return sprintf(buf, "%u\n", hwp_boost);
1403 }
1404
1405 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1406                                        struct kobj_attribute *b,
1407                                        const char *buf, size_t count)
1408 {
1409         unsigned int input;
1410         int ret;
1411
1412         ret = kstrtouint(buf, 10, &input);
1413         if (ret)
1414                 return ret;
1415
1416         mutex_lock(&intel_pstate_driver_lock);
1417         hwp_boost = !!input;
1418         intel_pstate_update_policies();
1419         mutex_unlock(&intel_pstate_driver_lock);
1420
1421         return count;
1422 }
1423
1424 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1425                                       char *buf)
1426 {
1427         u64 power_ctl;
1428         int enable;
1429
1430         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1431         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1432         return sprintf(buf, "%d\n", !enable);
1433 }
1434
1435 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1436                                        const char *buf, size_t count)
1437 {
1438         bool input;
1439         int ret;
1440
1441         ret = kstrtobool(buf, &input);
1442         if (ret)
1443                 return ret;
1444
1445         set_power_ctl_ee_state(input);
1446
1447         return count;
1448 }
1449
1450 show_one(max_perf_pct, max_perf_pct);
1451 show_one(min_perf_pct, min_perf_pct);
1452
1453 define_one_global_rw(status);
1454 define_one_global_rw(no_turbo);
1455 define_one_global_rw(max_perf_pct);
1456 define_one_global_rw(min_perf_pct);
1457 define_one_global_ro(turbo_pct);
1458 define_one_global_ro(num_pstates);
1459 define_one_global_rw(hwp_dynamic_boost);
1460 define_one_global_rw(energy_efficiency);
1461
1462 static struct attribute *intel_pstate_attributes[] = {
1463         &status.attr,
1464         &no_turbo.attr,
1465         NULL
1466 };
1467
1468 static const struct attribute_group intel_pstate_attr_group = {
1469         .attrs = intel_pstate_attributes,
1470 };
1471
1472 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1473
1474 static struct kobject *intel_pstate_kobject;
1475
1476 static void __init intel_pstate_sysfs_expose_params(void)
1477 {
1478         struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1479         int rc;
1480
1481         if (dev_root) {
1482                 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1483                 put_device(dev_root);
1484         }
1485         if (WARN_ON(!intel_pstate_kobject))
1486                 return;
1487
1488         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1489         if (WARN_ON(rc))
1490                 return;
1491
1492         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1493                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1494                 WARN_ON(rc);
1495
1496                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1497                 WARN_ON(rc);
1498         }
1499
1500         /*
1501          * If per cpu limits are enforced there are no global limits, so
1502          * return without creating max/min_perf_pct attributes
1503          */
1504         if (per_cpu_limits)
1505                 return;
1506
1507         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1508         WARN_ON(rc);
1509
1510         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1511         WARN_ON(rc);
1512
1513         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1514                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1515                 WARN_ON(rc);
1516         }
1517 }
1518
1519 static void __init intel_pstate_sysfs_remove(void)
1520 {
1521         if (!intel_pstate_kobject)
1522                 return;
1523
1524         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1525
1526         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1527                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1528                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1529         }
1530
1531         if (!per_cpu_limits) {
1532                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1533                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1534
1535                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1536                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1537         }
1538
1539         kobject_put(intel_pstate_kobject);
1540 }
1541
1542 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1543 {
1544         int rc;
1545
1546         if (!hwp_active)
1547                 return;
1548
1549         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1550         WARN_ON_ONCE(rc);
1551 }
1552
1553 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1554 {
1555         if (!hwp_active)
1556                 return;
1557
1558         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1559 }
1560
1561 /************************** sysfs end ************************/
1562
1563 static void intel_pstate_notify_work(struct work_struct *work)
1564 {
1565         struct cpudata *cpudata =
1566                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1567         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1568
1569         if (policy) {
1570                 intel_pstate_get_hwp_cap(cpudata);
1571                 __intel_pstate_update_max_freq(cpudata, policy);
1572
1573                 cpufreq_cpu_release(policy);
1574         }
1575
1576         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1577 }
1578
1579 static DEFINE_SPINLOCK(hwp_notify_lock);
1580 static cpumask_t hwp_intr_enable_mask;
1581
1582 void notify_hwp_interrupt(void)
1583 {
1584         unsigned int this_cpu = smp_processor_id();
1585         struct cpudata *cpudata;
1586         unsigned long flags;
1587         u64 value;
1588
1589         if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1590                 return;
1591
1592         rdmsrl_safe(MSR_HWP_STATUS, &value);
1593         if (!(value & 0x01))
1594                 return;
1595
1596         spin_lock_irqsave(&hwp_notify_lock, flags);
1597
1598         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1599                 goto ack_intr;
1600
1601         /*
1602          * Currently we never free all_cpu_data. And we can't reach here
1603          * without this allocated. But for safety for future changes, added
1604          * check.
1605          */
1606         if (unlikely(!READ_ONCE(all_cpu_data)))
1607                 goto ack_intr;
1608
1609         /*
1610          * The free is done during cleanup, when cpufreq registry is failed.
1611          * We wouldn't be here if it fails on init or switch status. But for
1612          * future changes, added check.
1613          */
1614         cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1615         if (unlikely(!cpudata))
1616                 goto ack_intr;
1617
1618         schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1619
1620         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1621
1622         return;
1623
1624 ack_intr:
1625         wrmsrl_safe(MSR_HWP_STATUS, 0);
1626         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1627 }
1628
1629 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1630 {
1631         unsigned long flags;
1632
1633         if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1634                 return;
1635
1636         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1637         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1638
1639         spin_lock_irqsave(&hwp_notify_lock, flags);
1640         if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1641                 cancel_delayed_work(&cpudata->hwp_notify_work);
1642         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1643 }
1644
1645 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1646 {
1647         /* Enable HWP notification interrupt for guaranteed performance change */
1648         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1649                 unsigned long flags;
1650
1651                 spin_lock_irqsave(&hwp_notify_lock, flags);
1652                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1653                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1654                 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1655
1656                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1657                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1658                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1659         }
1660 }
1661
1662 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1663 {
1664         cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1665
1666         /*
1667          * If this CPU gen doesn't call for change in balance_perf
1668          * EPP return.
1669          */
1670         if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1671                 return;
1672
1673         /*
1674          * If the EPP is set by firmware, which means that firmware enabled HWP
1675          * - Is equal or less than 0x80 (default balance_perf EPP)
1676          * - But less performance oriented than performance EPP
1677          *   then use this as new balance_perf EPP.
1678          */
1679         if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1680             cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1681                 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1682                 return;
1683         }
1684
1685         /*
1686          * Use hard coded value per gen to update the balance_perf
1687          * and default EPP.
1688          */
1689         cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1690         intel_pstate_set_epp(cpudata, cpudata->epp_default);
1691 }
1692
1693 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1694 {
1695         /* First disable HWP notification interrupt till we activate again */
1696         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1697                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1698
1699         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1700
1701         intel_pstate_enable_hwp_interrupt(cpudata);
1702
1703         if (cpudata->epp_default >= 0)
1704                 return;
1705
1706         intel_pstate_update_epp_defaults(cpudata);
1707 }
1708
1709 static int atom_get_min_pstate(int not_used)
1710 {
1711         u64 value;
1712
1713         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1714         return (value >> 8) & 0x7F;
1715 }
1716
1717 static int atom_get_max_pstate(int not_used)
1718 {
1719         u64 value;
1720
1721         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1722         return (value >> 16) & 0x7F;
1723 }
1724
1725 static int atom_get_turbo_pstate(int not_used)
1726 {
1727         u64 value;
1728
1729         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1730         return value & 0x7F;
1731 }
1732
1733 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1734 {
1735         u64 val;
1736         int32_t vid_fp;
1737         u32 vid;
1738
1739         val = (u64)pstate << 8;
1740         if (global.no_turbo && !global.turbo_disabled)
1741                 val |= (u64)1 << 32;
1742
1743         vid_fp = cpudata->vid.min + mul_fp(
1744                 int_tofp(pstate - cpudata->pstate.min_pstate),
1745                 cpudata->vid.ratio);
1746
1747         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1748         vid = ceiling_fp(vid_fp);
1749
1750         if (pstate > cpudata->pstate.max_pstate)
1751                 vid = cpudata->vid.turbo;
1752
1753         return val | vid;
1754 }
1755
1756 static int silvermont_get_scaling(void)
1757 {
1758         u64 value;
1759         int i;
1760         /* Defined in Table 35-6 from SDM (Sept 2015) */
1761         static int silvermont_freq_table[] = {
1762                 83300, 100000, 133300, 116700, 80000};
1763
1764         rdmsrl(MSR_FSB_FREQ, value);
1765         i = value & 0x7;
1766         WARN_ON(i > 4);
1767
1768         return silvermont_freq_table[i];
1769 }
1770
1771 static int airmont_get_scaling(void)
1772 {
1773         u64 value;
1774         int i;
1775         /* Defined in Table 35-10 from SDM (Sept 2015) */
1776         static int airmont_freq_table[] = {
1777                 83300, 100000, 133300, 116700, 80000,
1778                 93300, 90000, 88900, 87500};
1779
1780         rdmsrl(MSR_FSB_FREQ, value);
1781         i = value & 0xF;
1782         WARN_ON(i > 8);
1783
1784         return airmont_freq_table[i];
1785 }
1786
1787 static void atom_get_vid(struct cpudata *cpudata)
1788 {
1789         u64 value;
1790
1791         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1792         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1793         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1794         cpudata->vid.ratio = div_fp(
1795                 cpudata->vid.max - cpudata->vid.min,
1796                 int_tofp(cpudata->pstate.max_pstate -
1797                         cpudata->pstate.min_pstate));
1798
1799         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1800         cpudata->vid.turbo = value & 0x7f;
1801 }
1802
1803 static int core_get_min_pstate(int cpu)
1804 {
1805         u64 value;
1806
1807         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1808         return (value >> 40) & 0xFF;
1809 }
1810
1811 static int core_get_max_pstate_physical(int cpu)
1812 {
1813         u64 value;
1814
1815         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1816         return (value >> 8) & 0xFF;
1817 }
1818
1819 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1820 {
1821         /* Check how many TDP levels present */
1822         if (plat_info & 0x600000000) {
1823                 u64 tdp_ctrl;
1824                 u64 tdp_ratio;
1825                 int tdp_msr;
1826                 int err;
1827
1828                 /* Get the TDP level (0, 1, 2) to get ratios */
1829                 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1830                 if (err)
1831                         return err;
1832
1833                 /* TDP MSR are continuous starting at 0x648 */
1834                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1835                 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1836                 if (err)
1837                         return err;
1838
1839                 /* For level 1 and 2, bits[23:16] contain the ratio */
1840                 if (tdp_ctrl & 0x03)
1841                         tdp_ratio >>= 16;
1842
1843                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1844                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1845
1846                 return (int)tdp_ratio;
1847         }
1848
1849         return -ENXIO;
1850 }
1851
1852 static int core_get_max_pstate(int cpu)
1853 {
1854         u64 tar;
1855         u64 plat_info;
1856         int max_pstate;
1857         int tdp_ratio;
1858         int err;
1859
1860         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1861         max_pstate = (plat_info >> 8) & 0xFF;
1862
1863         tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1864         if (tdp_ratio <= 0)
1865                 return max_pstate;
1866
1867         if (hwp_active) {
1868                 /* Turbo activation ratio is not used on HWP platforms */
1869                 return tdp_ratio;
1870         }
1871
1872         err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1873         if (!err) {
1874                 int tar_levels;
1875
1876                 /* Do some sanity checking for safety */
1877                 tar_levels = tar & 0xff;
1878                 if (tdp_ratio - 1 == tar_levels) {
1879                         max_pstate = tar_levels;
1880                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1881                 }
1882         }
1883
1884         return max_pstate;
1885 }
1886
1887 static int core_get_turbo_pstate(int cpu)
1888 {
1889         u64 value;
1890         int nont, ret;
1891
1892         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1893         nont = core_get_max_pstate(cpu);
1894         ret = (value) & 255;
1895         if (ret <= nont)
1896                 ret = nont;
1897         return ret;
1898 }
1899
1900 static inline int core_get_scaling(void)
1901 {
1902         return 100000;
1903 }
1904
1905 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1906 {
1907         u64 val;
1908
1909         val = (u64)pstate << 8;
1910         if (global.no_turbo && !global.turbo_disabled)
1911                 val |= (u64)1 << 32;
1912
1913         return val;
1914 }
1915
1916 static int knl_get_aperf_mperf_shift(void)
1917 {
1918         return 10;
1919 }
1920
1921 static int knl_get_turbo_pstate(int cpu)
1922 {
1923         u64 value;
1924         int nont, ret;
1925
1926         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1927         nont = core_get_max_pstate(cpu);
1928         ret = (((value) >> 8) & 0xFF);
1929         if (ret <= nont)
1930                 ret = nont;
1931         return ret;
1932 }
1933
1934 static void hybrid_get_type(void *data)
1935 {
1936         u8 *cpu_type = data;
1937
1938         *cpu_type = get_this_hybrid_cpu_type();
1939 }
1940
1941 static int hybrid_get_cpu_scaling(int cpu)
1942 {
1943         u8 cpu_type = 0;
1944
1945         smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1946         /* P-cores have a smaller perf level-to-freqency scaling factor. */
1947         if (cpu_type == 0x40)
1948                 return 78741;
1949
1950         return core_get_scaling();
1951 }
1952
1953 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1954 {
1955         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1956         cpu->pstate.current_pstate = pstate;
1957         /*
1958          * Generally, there is no guarantee that this code will always run on
1959          * the CPU being updated, so force the register update to run on the
1960          * right CPU.
1961          */
1962         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1963                       pstate_funcs.get_val(cpu, pstate));
1964 }
1965
1966 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1967 {
1968         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1969 }
1970
1971 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1972 {
1973         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1974
1975         update_turbo_state();
1976         intel_pstate_set_pstate(cpu, pstate);
1977 }
1978
1979 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1980 {
1981         int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
1982         int perf_ctl_scaling = pstate_funcs.get_scaling();
1983
1984         cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
1985         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1986         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1987
1988         if (hwp_active && !hwp_mode_bdw) {
1989                 __intel_pstate_get_hwp_cap(cpu);
1990
1991                 if (pstate_funcs.get_cpu_scaling) {
1992                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1993                         if (cpu->pstate.scaling != perf_ctl_scaling)
1994                                 intel_pstate_hybrid_hwp_adjust(cpu);
1995                 } else {
1996                         cpu->pstate.scaling = perf_ctl_scaling;
1997                 }
1998         } else {
1999                 cpu->pstate.scaling = perf_ctl_scaling;
2000                 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2001                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2002         }
2003
2004         if (cpu->pstate.scaling == perf_ctl_scaling) {
2005                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2006                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2007                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2008         }
2009
2010         if (pstate_funcs.get_aperf_mperf_shift)
2011                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2012
2013         if (pstate_funcs.get_vid)
2014                 pstate_funcs.get_vid(cpu);
2015
2016         intel_pstate_set_min_pstate(cpu);
2017 }
2018
2019 /*
2020  * Long hold time will keep high perf limits for long time,
2021  * which negatively impacts perf/watt for some workloads,
2022  * like specpower. 3ms is based on experiements on some
2023  * workoads.
2024  */
2025 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2026
2027 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2028 {
2029         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2030         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2031         u32 max_limit = (hwp_req & 0xff00) >> 8;
2032         u32 min_limit = (hwp_req & 0xff);
2033         u32 boost_level1;
2034
2035         /*
2036          * Cases to consider (User changes via sysfs or boot time):
2037          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2038          *      No boost, return.
2039          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2040          *     Should result in one level boost only for P0.
2041          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2042          *     Should result in two level boost:
2043          *         (min + p1)/2 and P1.
2044          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2045          *     Should result in three level boost:
2046          *        (min + p1)/2, P1 and P0.
2047          */
2048
2049         /* If max and min are equal or already at max, nothing to boost */
2050         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2051                 return;
2052
2053         if (!cpu->hwp_boost_min)
2054                 cpu->hwp_boost_min = min_limit;
2055
2056         /* level at half way mark between min and guranteed */
2057         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2058
2059         if (cpu->hwp_boost_min < boost_level1)
2060                 cpu->hwp_boost_min = boost_level1;
2061         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2062                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2063         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2064                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2065                 cpu->hwp_boost_min = max_limit;
2066         else
2067                 return;
2068
2069         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2070         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2071         cpu->last_update = cpu->sample.time;
2072 }
2073
2074 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2075 {
2076         if (cpu->hwp_boost_min) {
2077                 bool expired;
2078
2079                 /* Check if we are idle for hold time to boost down */
2080                 expired = time_after64(cpu->sample.time, cpu->last_update +
2081                                        hwp_boost_hold_time_ns);
2082                 if (expired) {
2083                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2084                         cpu->hwp_boost_min = 0;
2085                 }
2086         }
2087         cpu->last_update = cpu->sample.time;
2088 }
2089
2090 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2091                                                       u64 time)
2092 {
2093         cpu->sample.time = time;
2094
2095         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2096                 bool do_io = false;
2097
2098                 cpu->sched_flags = 0;
2099                 /*
2100                  * Set iowait_boost flag and update time. Since IO WAIT flag
2101                  * is set all the time, we can't just conclude that there is
2102                  * some IO bound activity is scheduled on this CPU with just
2103                  * one occurrence. If we receive at least two in two
2104                  * consecutive ticks, then we treat as boost candidate.
2105                  */
2106                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2107                         do_io = true;
2108
2109                 cpu->last_io_update = time;
2110
2111                 if (do_io)
2112                         intel_pstate_hwp_boost_up(cpu);
2113
2114         } else {
2115                 intel_pstate_hwp_boost_down(cpu);
2116         }
2117 }
2118
2119 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2120                                                 u64 time, unsigned int flags)
2121 {
2122         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2123
2124         cpu->sched_flags |= flags;
2125
2126         if (smp_processor_id() == cpu->cpu)
2127                 intel_pstate_update_util_hwp_local(cpu, time);
2128 }
2129
2130 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2131 {
2132         struct sample *sample = &cpu->sample;
2133
2134         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2135 }
2136
2137 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2138 {
2139         u64 aperf, mperf;
2140         unsigned long flags;
2141         u64 tsc;
2142
2143         local_irq_save(flags);
2144         rdmsrl(MSR_IA32_APERF, aperf);
2145         rdmsrl(MSR_IA32_MPERF, mperf);
2146         tsc = rdtsc();
2147         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2148                 local_irq_restore(flags);
2149                 return false;
2150         }
2151         local_irq_restore(flags);
2152
2153         cpu->last_sample_time = cpu->sample.time;
2154         cpu->sample.time = time;
2155         cpu->sample.aperf = aperf;
2156         cpu->sample.mperf = mperf;
2157         cpu->sample.tsc =  tsc;
2158         cpu->sample.aperf -= cpu->prev_aperf;
2159         cpu->sample.mperf -= cpu->prev_mperf;
2160         cpu->sample.tsc -= cpu->prev_tsc;
2161
2162         cpu->prev_aperf = aperf;
2163         cpu->prev_mperf = mperf;
2164         cpu->prev_tsc = tsc;
2165         /*
2166          * First time this function is invoked in a given cycle, all of the
2167          * previous sample data fields are equal to zero or stale and they must
2168          * be populated with meaningful numbers for things to work, so assume
2169          * that sample.time will always be reset before setting the utilization
2170          * update hook and make the caller skip the sample then.
2171          */
2172         if (cpu->last_sample_time) {
2173                 intel_pstate_calc_avg_perf(cpu);
2174                 return true;
2175         }
2176         return false;
2177 }
2178
2179 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2180 {
2181         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2182 }
2183
2184 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2185 {
2186         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2187                           cpu->sample.core_avg_perf);
2188 }
2189
2190 static inline int32_t get_target_pstate(struct cpudata *cpu)
2191 {
2192         struct sample *sample = &cpu->sample;
2193         int32_t busy_frac;
2194         int target, avg_pstate;
2195
2196         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2197                            sample->tsc);
2198
2199         if (busy_frac < cpu->iowait_boost)
2200                 busy_frac = cpu->iowait_boost;
2201
2202         sample->busy_scaled = busy_frac * 100;
2203
2204         target = global.no_turbo || global.turbo_disabled ?
2205                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2206         target += target >> 2;
2207         target = mul_fp(target, busy_frac);
2208         if (target < cpu->pstate.min_pstate)
2209                 target = cpu->pstate.min_pstate;
2210
2211         /*
2212          * If the average P-state during the previous cycle was higher than the
2213          * current target, add 50% of the difference to the target to reduce
2214          * possible performance oscillations and offset possible performance
2215          * loss related to moving the workload from one CPU to another within
2216          * a package/module.
2217          */
2218         avg_pstate = get_avg_pstate(cpu);
2219         if (avg_pstate > target)
2220                 target += (avg_pstate - target) >> 1;
2221
2222         return target;
2223 }
2224
2225 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2226 {
2227         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2228         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2229
2230         return clamp_t(int, pstate, min_pstate, max_pstate);
2231 }
2232
2233 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2234 {
2235         if (pstate == cpu->pstate.current_pstate)
2236                 return;
2237
2238         cpu->pstate.current_pstate = pstate;
2239         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2240 }
2241
2242 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2243 {
2244         int from = cpu->pstate.current_pstate;
2245         struct sample *sample;
2246         int target_pstate;
2247
2248         update_turbo_state();
2249
2250         target_pstate = get_target_pstate(cpu);
2251         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2252         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2253         intel_pstate_update_pstate(cpu, target_pstate);
2254
2255         sample = &cpu->sample;
2256         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2257                 fp_toint(sample->busy_scaled),
2258                 from,
2259                 cpu->pstate.current_pstate,
2260                 sample->mperf,
2261                 sample->aperf,
2262                 sample->tsc,
2263                 get_avg_frequency(cpu),
2264                 fp_toint(cpu->iowait_boost * 100));
2265 }
2266
2267 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2268                                      unsigned int flags)
2269 {
2270         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2271         u64 delta_ns;
2272
2273         /* Don't allow remote callbacks */
2274         if (smp_processor_id() != cpu->cpu)
2275                 return;
2276
2277         delta_ns = time - cpu->last_update;
2278         if (flags & SCHED_CPUFREQ_IOWAIT) {
2279                 /* Start over if the CPU may have been idle. */
2280                 if (delta_ns > TICK_NSEC) {
2281                         cpu->iowait_boost = ONE_EIGHTH_FP;
2282                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2283                         cpu->iowait_boost <<= 1;
2284                         if (cpu->iowait_boost > int_tofp(1))
2285                                 cpu->iowait_boost = int_tofp(1);
2286                 } else {
2287                         cpu->iowait_boost = ONE_EIGHTH_FP;
2288                 }
2289         } else if (cpu->iowait_boost) {
2290                 /* Clear iowait_boost if the CPU may have been idle. */
2291                 if (delta_ns > TICK_NSEC)
2292                         cpu->iowait_boost = 0;
2293                 else
2294                         cpu->iowait_boost >>= 1;
2295         }
2296         cpu->last_update = time;
2297         delta_ns = time - cpu->sample.time;
2298         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2299                 return;
2300
2301         if (intel_pstate_sample(cpu, time))
2302                 intel_pstate_adjust_pstate(cpu);
2303 }
2304
2305 static struct pstate_funcs core_funcs = {
2306         .get_max = core_get_max_pstate,
2307         .get_max_physical = core_get_max_pstate_physical,
2308         .get_min = core_get_min_pstate,
2309         .get_turbo = core_get_turbo_pstate,
2310         .get_scaling = core_get_scaling,
2311         .get_val = core_get_val,
2312 };
2313
2314 static const struct pstate_funcs silvermont_funcs = {
2315         .get_max = atom_get_max_pstate,
2316         .get_max_physical = atom_get_max_pstate,
2317         .get_min = atom_get_min_pstate,
2318         .get_turbo = atom_get_turbo_pstate,
2319         .get_val = atom_get_val,
2320         .get_scaling = silvermont_get_scaling,
2321         .get_vid = atom_get_vid,
2322 };
2323
2324 static const struct pstate_funcs airmont_funcs = {
2325         .get_max = atom_get_max_pstate,
2326         .get_max_physical = atom_get_max_pstate,
2327         .get_min = atom_get_min_pstate,
2328         .get_turbo = atom_get_turbo_pstate,
2329         .get_val = atom_get_val,
2330         .get_scaling = airmont_get_scaling,
2331         .get_vid = atom_get_vid,
2332 };
2333
2334 static const struct pstate_funcs knl_funcs = {
2335         .get_max = core_get_max_pstate,
2336         .get_max_physical = core_get_max_pstate_physical,
2337         .get_min = core_get_min_pstate,
2338         .get_turbo = knl_get_turbo_pstate,
2339         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2340         .get_scaling = core_get_scaling,
2341         .get_val = core_get_val,
2342 };
2343
2344 #define X86_MATCH(model, policy)                                         \
2345         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2346                                            X86_FEATURE_APERFMPERF, &policy)
2347
2348 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2349         X86_MATCH(SANDYBRIDGE,          core_funcs),
2350         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2351         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2352         X86_MATCH(IVYBRIDGE,            core_funcs),
2353         X86_MATCH(HASWELL,              core_funcs),
2354         X86_MATCH(BROADWELL,            core_funcs),
2355         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2356         X86_MATCH(HASWELL_X,            core_funcs),
2357         X86_MATCH(HASWELL_L,            core_funcs),
2358         X86_MATCH(HASWELL_G,            core_funcs),
2359         X86_MATCH(BROADWELL_G,          core_funcs),
2360         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2361         X86_MATCH(SKYLAKE_L,            core_funcs),
2362         X86_MATCH(BROADWELL_X,          core_funcs),
2363         X86_MATCH(SKYLAKE,              core_funcs),
2364         X86_MATCH(BROADWELL_D,          core_funcs),
2365         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2366         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2367         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2368         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2369         X86_MATCH(SKYLAKE_X,            core_funcs),
2370         X86_MATCH(COMETLAKE,            core_funcs),
2371         X86_MATCH(ICELAKE_X,            core_funcs),
2372         X86_MATCH(TIGERLAKE,            core_funcs),
2373         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2374         {}
2375 };
2376 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2377
2378 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2379         X86_MATCH(BROADWELL_D,          core_funcs),
2380         X86_MATCH(BROADWELL_X,          core_funcs),
2381         X86_MATCH(SKYLAKE_X,            core_funcs),
2382         X86_MATCH(ICELAKE_X,            core_funcs),
2383         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2384         {}
2385 };
2386
2387 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2388         X86_MATCH(KABYLAKE,             core_funcs),
2389         {}
2390 };
2391
2392 static int intel_pstate_init_cpu(unsigned int cpunum)
2393 {
2394         struct cpudata *cpu;
2395
2396         cpu = all_cpu_data[cpunum];
2397
2398         if (!cpu) {
2399                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2400                 if (!cpu)
2401                         return -ENOMEM;
2402
2403                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2404
2405                 cpu->cpu = cpunum;
2406
2407                 cpu->epp_default = -EINVAL;
2408
2409                 if (hwp_active) {
2410                         intel_pstate_hwp_enable(cpu);
2411
2412                         if (intel_pstate_acpi_pm_profile_server())
2413                                 hwp_boost = true;
2414                 }
2415         } else if (hwp_active) {
2416                 /*
2417                  * Re-enable HWP in case this happens after a resume from ACPI
2418                  * S3 if the CPU was offline during the whole system/resume
2419                  * cycle.
2420                  */
2421                 intel_pstate_hwp_reenable(cpu);
2422         }
2423
2424         cpu->epp_powersave = -EINVAL;
2425         cpu->epp_policy = 0;
2426
2427         intel_pstate_get_cpu_pstates(cpu);
2428
2429         pr_debug("controlling: cpu %d\n", cpunum);
2430
2431         return 0;
2432 }
2433
2434 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2435 {
2436         struct cpudata *cpu = all_cpu_data[cpu_num];
2437
2438         if (hwp_active && !hwp_boost)
2439                 return;
2440
2441         if (cpu->update_util_set)
2442                 return;
2443
2444         /* Prevent intel_pstate_update_util() from using stale data. */
2445         cpu->sample.time = 0;
2446         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2447                                      (hwp_active ?
2448                                       intel_pstate_update_util_hwp :
2449                                       intel_pstate_update_util));
2450         cpu->update_util_set = true;
2451 }
2452
2453 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2454 {
2455         struct cpudata *cpu_data = all_cpu_data[cpu];
2456
2457         if (!cpu_data->update_util_set)
2458                 return;
2459
2460         cpufreq_remove_update_util_hook(cpu);
2461         cpu_data->update_util_set = false;
2462         synchronize_rcu();
2463 }
2464
2465 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2466 {
2467         return global.turbo_disabled || global.no_turbo ?
2468                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2469 }
2470
2471 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2472                                             unsigned int policy_min,
2473                                             unsigned int policy_max)
2474 {
2475         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2476         int32_t max_policy_perf, min_policy_perf;
2477
2478         max_policy_perf = policy_max / perf_ctl_scaling;
2479         if (policy_max == policy_min) {
2480                 min_policy_perf = max_policy_perf;
2481         } else {
2482                 min_policy_perf = policy_min / perf_ctl_scaling;
2483                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2484                                           0, max_policy_perf);
2485         }
2486
2487         /*
2488          * HWP needs some special consideration, because HWP_REQUEST uses
2489          * abstract values to represent performance rather than pure ratios.
2490          */
2491         if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2492                 int scaling = cpu->pstate.scaling;
2493                 int freq;
2494
2495                 freq = max_policy_perf * perf_ctl_scaling;
2496                 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2497                 freq = min_policy_perf * perf_ctl_scaling;
2498                 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2499         }
2500
2501         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2502                  cpu->cpu, min_policy_perf, max_policy_perf);
2503
2504         /* Normalize user input to [min_perf, max_perf] */
2505         if (per_cpu_limits) {
2506                 cpu->min_perf_ratio = min_policy_perf;
2507                 cpu->max_perf_ratio = max_policy_perf;
2508         } else {
2509                 int turbo_max = cpu->pstate.turbo_pstate;
2510                 int32_t global_min, global_max;
2511
2512                 /* Global limits are in percent of the maximum turbo P-state. */
2513                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2514                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2515                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2516
2517                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2518                          global_min, global_max);
2519
2520                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2521                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2522                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2523                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2524
2525                 /* Make sure min_perf <= max_perf */
2526                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2527                                           cpu->max_perf_ratio);
2528
2529         }
2530         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2531                  cpu->max_perf_ratio,
2532                  cpu->min_perf_ratio);
2533 }
2534
2535 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2536 {
2537         struct cpudata *cpu;
2538
2539         if (!policy->cpuinfo.max_freq)
2540                 return -ENODEV;
2541
2542         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2543                  policy->cpuinfo.max_freq, policy->max);
2544
2545         cpu = all_cpu_data[policy->cpu];
2546         cpu->policy = policy->policy;
2547
2548         mutex_lock(&intel_pstate_limits_lock);
2549
2550         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2551
2552         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2553                 /*
2554                  * NOHZ_FULL CPUs need this as the governor callback may not
2555                  * be invoked on them.
2556                  */
2557                 intel_pstate_clear_update_util_hook(policy->cpu);
2558                 intel_pstate_max_within_limits(cpu);
2559         } else {
2560                 intel_pstate_set_update_util_hook(policy->cpu);
2561         }
2562
2563         if (hwp_active) {
2564                 /*
2565                  * When hwp_boost was active before and dynamically it
2566                  * was turned off, in that case we need to clear the
2567                  * update util hook.
2568                  */
2569                 if (!hwp_boost)
2570                         intel_pstate_clear_update_util_hook(policy->cpu);
2571                 intel_pstate_hwp_set(policy->cpu);
2572         }
2573
2574         mutex_unlock(&intel_pstate_limits_lock);
2575
2576         return 0;
2577 }
2578
2579 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2580                                            struct cpufreq_policy_data *policy)
2581 {
2582         if (!hwp_active &&
2583             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2584             policy->max < policy->cpuinfo.max_freq &&
2585             policy->max > cpu->pstate.max_freq) {
2586                 pr_debug("policy->max > max non turbo frequency\n");
2587                 policy->max = policy->cpuinfo.max_freq;
2588         }
2589 }
2590
2591 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2592                                            struct cpufreq_policy_data *policy)
2593 {
2594         int max_freq;
2595
2596         update_turbo_state();
2597         if (hwp_active) {
2598                 intel_pstate_get_hwp_cap(cpu);
2599                 max_freq = global.no_turbo || global.turbo_disabled ?
2600                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2601         } else {
2602                 max_freq = intel_pstate_get_max_freq(cpu);
2603         }
2604         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2605
2606         intel_pstate_adjust_policy_max(cpu, policy);
2607 }
2608
2609 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2610 {
2611         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2612
2613         return 0;
2614 }
2615
2616 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2617 {
2618         struct cpudata *cpu = all_cpu_data[policy->cpu];
2619
2620         pr_debug("CPU %d going offline\n", cpu->cpu);
2621
2622         if (cpu->suspended)
2623                 return 0;
2624
2625         /*
2626          * If the CPU is an SMT thread and it goes offline with the performance
2627          * settings different from the minimum, it will prevent its sibling
2628          * from getting to lower performance levels, so force the minimum
2629          * performance on CPU offline to prevent that from happening.
2630          */
2631         if (hwp_active)
2632                 intel_pstate_hwp_offline(cpu);
2633         else
2634                 intel_pstate_set_min_pstate(cpu);
2635
2636         intel_pstate_exit_perf_limits(policy);
2637
2638         return 0;
2639 }
2640
2641 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2642 {
2643         struct cpudata *cpu = all_cpu_data[policy->cpu];
2644
2645         pr_debug("CPU %d going online\n", cpu->cpu);
2646
2647         intel_pstate_init_acpi_perf_limits(policy);
2648
2649         if (hwp_active) {
2650                 /*
2651                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2652                  * know that it need not do that.
2653                  */
2654                 intel_pstate_hwp_reenable(cpu);
2655                 cpu->suspended = false;
2656         }
2657
2658         return 0;
2659 }
2660
2661 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2662 {
2663         intel_pstate_clear_update_util_hook(policy->cpu);
2664
2665         return intel_cpufreq_cpu_offline(policy);
2666 }
2667
2668 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2669 {
2670         pr_debug("CPU %d exiting\n", policy->cpu);
2671
2672         policy->fast_switch_possible = false;
2673
2674         return 0;
2675 }
2676
2677 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2678 {
2679         struct cpudata *cpu;
2680         int rc;
2681
2682         rc = intel_pstate_init_cpu(policy->cpu);
2683         if (rc)
2684                 return rc;
2685
2686         cpu = all_cpu_data[policy->cpu];
2687
2688         cpu->max_perf_ratio = 0xFF;
2689         cpu->min_perf_ratio = 0;
2690
2691         /* cpuinfo and default policy values */
2692         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2693         update_turbo_state();
2694         global.turbo_disabled_mf = global.turbo_disabled;
2695         policy->cpuinfo.max_freq = global.turbo_disabled ?
2696                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2697
2698         policy->min = policy->cpuinfo.min_freq;
2699         policy->max = policy->cpuinfo.max_freq;
2700
2701         intel_pstate_init_acpi_perf_limits(policy);
2702
2703         policy->fast_switch_possible = true;
2704
2705         return 0;
2706 }
2707
2708 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2709 {
2710         int ret = __intel_pstate_cpu_init(policy);
2711
2712         if (ret)
2713                 return ret;
2714
2715         /*
2716          * Set the policy to powersave to provide a valid fallback value in case
2717          * the default cpufreq governor is neither powersave nor performance.
2718          */
2719         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2720
2721         if (hwp_active) {
2722                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2723
2724                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2725         }
2726
2727         return 0;
2728 }
2729
2730 static struct cpufreq_driver intel_pstate = {
2731         .flags          = CPUFREQ_CONST_LOOPS,
2732         .verify         = intel_pstate_verify_policy,
2733         .setpolicy      = intel_pstate_set_policy,
2734         .suspend        = intel_pstate_suspend,
2735         .resume         = intel_pstate_resume,
2736         .init           = intel_pstate_cpu_init,
2737         .exit           = intel_pstate_cpu_exit,
2738         .offline        = intel_pstate_cpu_offline,
2739         .online         = intel_pstate_cpu_online,
2740         .update_limits  = intel_pstate_update_limits,
2741         .name           = "intel_pstate",
2742 };
2743
2744 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2745 {
2746         struct cpudata *cpu = all_cpu_data[policy->cpu];
2747
2748         intel_pstate_verify_cpu_policy(cpu, policy);
2749         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2750
2751         return 0;
2752 }
2753
2754 /* Use of trace in passive mode:
2755  *
2756  * In passive mode the trace core_busy field (also known as the
2757  * performance field, and lablelled as such on the graphs; also known as
2758  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2759  * driver call was via the normal or fast switch path. Various graphs
2760  * output from the intel_pstate_tracer.py utility that include core_busy
2761  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2762  * so we use 10 to indicate the normal path through the driver, and
2763  * 90 to indicate the fast switch path through the driver.
2764  * The scaled_busy field is not used, and is set to 0.
2765  */
2766
2767 #define INTEL_PSTATE_TRACE_TARGET 10
2768 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2769
2770 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2771 {
2772         struct sample *sample;
2773
2774         if (!trace_pstate_sample_enabled())
2775                 return;
2776
2777         if (!intel_pstate_sample(cpu, ktime_get()))
2778                 return;
2779
2780         sample = &cpu->sample;
2781         trace_pstate_sample(trace_type,
2782                 0,
2783                 old_pstate,
2784                 cpu->pstate.current_pstate,
2785                 sample->mperf,
2786                 sample->aperf,
2787                 sample->tsc,
2788                 get_avg_frequency(cpu),
2789                 fp_toint(cpu->iowait_boost * 100));
2790 }
2791
2792 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2793                                      u32 desired, bool fast_switch)
2794 {
2795         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2796
2797         value &= ~HWP_MIN_PERF(~0L);
2798         value |= HWP_MIN_PERF(min);
2799
2800         value &= ~HWP_MAX_PERF(~0L);
2801         value |= HWP_MAX_PERF(max);
2802
2803         value &= ~HWP_DESIRED_PERF(~0L);
2804         value |= HWP_DESIRED_PERF(desired);
2805
2806         if (value == prev)
2807                 return;
2808
2809         WRITE_ONCE(cpu->hwp_req_cached, value);
2810         if (fast_switch)
2811                 wrmsrl(MSR_HWP_REQUEST, value);
2812         else
2813                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2814 }
2815
2816 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2817                                           u32 target_pstate, bool fast_switch)
2818 {
2819         if (fast_switch)
2820                 wrmsrl(MSR_IA32_PERF_CTL,
2821                        pstate_funcs.get_val(cpu, target_pstate));
2822         else
2823                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2824                               pstate_funcs.get_val(cpu, target_pstate));
2825 }
2826
2827 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2828                                        int target_pstate, bool fast_switch)
2829 {
2830         struct cpudata *cpu = all_cpu_data[policy->cpu];
2831         int old_pstate = cpu->pstate.current_pstate;
2832
2833         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2834         if (hwp_active) {
2835                 int max_pstate = policy->strict_target ?
2836                                         target_pstate : cpu->max_perf_ratio;
2837
2838                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2839                                          fast_switch);
2840         } else if (target_pstate != old_pstate) {
2841                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2842         }
2843
2844         cpu->pstate.current_pstate = target_pstate;
2845
2846         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2847                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2848
2849         return target_pstate;
2850 }
2851
2852 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2853                                 unsigned int target_freq,
2854                                 unsigned int relation)
2855 {
2856         struct cpudata *cpu = all_cpu_data[policy->cpu];
2857         struct cpufreq_freqs freqs;
2858         int target_pstate;
2859
2860         update_turbo_state();
2861
2862         freqs.old = policy->cur;
2863         freqs.new = target_freq;
2864
2865         cpufreq_freq_transition_begin(policy, &freqs);
2866
2867         switch (relation) {
2868         case CPUFREQ_RELATION_L:
2869                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2870                 break;
2871         case CPUFREQ_RELATION_H:
2872                 target_pstate = freqs.new / cpu->pstate.scaling;
2873                 break;
2874         default:
2875                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2876                 break;
2877         }
2878
2879         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2880
2881         freqs.new = target_pstate * cpu->pstate.scaling;
2882
2883         cpufreq_freq_transition_end(policy, &freqs, false);
2884
2885         return 0;
2886 }
2887
2888 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2889                                               unsigned int target_freq)
2890 {
2891         struct cpudata *cpu = all_cpu_data[policy->cpu];
2892         int target_pstate;
2893
2894         update_turbo_state();
2895
2896         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2897
2898         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2899
2900         return target_pstate * cpu->pstate.scaling;
2901 }
2902
2903 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2904                                       unsigned long min_perf,
2905                                       unsigned long target_perf,
2906                                       unsigned long capacity)
2907 {
2908         struct cpudata *cpu = all_cpu_data[cpunum];
2909         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2910         int old_pstate = cpu->pstate.current_pstate;
2911         int cap_pstate, min_pstate, max_pstate, target_pstate;
2912
2913         update_turbo_state();
2914         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2915                                              HWP_HIGHEST_PERF(hwp_cap);
2916
2917         /* Optimization: Avoid unnecessary divisions. */
2918
2919         target_pstate = cap_pstate;
2920         if (target_perf < capacity)
2921                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2922
2923         min_pstate = cap_pstate;
2924         if (min_perf < capacity)
2925                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2926
2927         if (min_pstate < cpu->pstate.min_pstate)
2928                 min_pstate = cpu->pstate.min_pstate;
2929
2930         if (min_pstate < cpu->min_perf_ratio)
2931                 min_pstate = cpu->min_perf_ratio;
2932
2933         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2934         if (max_pstate < min_pstate)
2935                 max_pstate = min_pstate;
2936
2937         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2938
2939         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2940
2941         cpu->pstate.current_pstate = target_pstate;
2942         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2943 }
2944
2945 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2946 {
2947         struct freq_qos_request *req;
2948         struct cpudata *cpu;
2949         struct device *dev;
2950         int ret, freq;
2951
2952         dev = get_cpu_device(policy->cpu);
2953         if (!dev)
2954                 return -ENODEV;
2955
2956         ret = __intel_pstate_cpu_init(policy);
2957         if (ret)
2958                 return ret;
2959
2960         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2961         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2962         policy->cur = policy->cpuinfo.min_freq;
2963
2964         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2965         if (!req) {
2966                 ret = -ENOMEM;
2967                 goto pstate_exit;
2968         }
2969
2970         cpu = all_cpu_data[policy->cpu];
2971
2972         if (hwp_active) {
2973                 u64 value;
2974
2975                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2976
2977                 intel_pstate_get_hwp_cap(cpu);
2978
2979                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2980                 WRITE_ONCE(cpu->hwp_req_cached, value);
2981
2982                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2983         } else {
2984                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2985         }
2986
2987         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2988
2989         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2990                                    freq);
2991         if (ret < 0) {
2992                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2993                 goto free_req;
2994         }
2995
2996         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2997
2998         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2999                                    freq);
3000         if (ret < 0) {
3001                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3002                 goto remove_min_req;
3003         }
3004
3005         policy->driver_data = req;
3006
3007         return 0;
3008
3009 remove_min_req:
3010         freq_qos_remove_request(req);
3011 free_req:
3012         kfree(req);
3013 pstate_exit:
3014         intel_pstate_exit_perf_limits(policy);
3015
3016         return ret;
3017 }
3018
3019 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3020 {
3021         struct freq_qos_request *req;
3022
3023         req = policy->driver_data;
3024
3025         freq_qos_remove_request(req + 1);
3026         freq_qos_remove_request(req);
3027         kfree(req);
3028
3029         return intel_pstate_cpu_exit(policy);
3030 }
3031
3032 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3033 {
3034         intel_pstate_suspend(policy);
3035
3036         if (hwp_active) {
3037                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3038                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3039
3040                 /*
3041                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3042                  * intel_cpufreq_adjust_perf() is in use and the last value
3043                  * written by it may not be suitable.
3044                  */
3045                 value &= ~HWP_DESIRED_PERF(~0L);
3046                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3047                 WRITE_ONCE(cpu->hwp_req_cached, value);
3048         }
3049
3050         return 0;
3051 }
3052
3053 static struct cpufreq_driver intel_cpufreq = {
3054         .flags          = CPUFREQ_CONST_LOOPS,
3055         .verify         = intel_cpufreq_verify_policy,
3056         .target         = intel_cpufreq_target,
3057         .fast_switch    = intel_cpufreq_fast_switch,
3058         .init           = intel_cpufreq_cpu_init,
3059         .exit           = intel_cpufreq_cpu_exit,
3060         .offline        = intel_cpufreq_cpu_offline,
3061         .online         = intel_pstate_cpu_online,
3062         .suspend        = intel_cpufreq_suspend,
3063         .resume         = intel_pstate_resume,
3064         .update_limits  = intel_pstate_update_limits,
3065         .name           = "intel_cpufreq",
3066 };
3067
3068 static struct cpufreq_driver *default_driver;
3069
3070 static void intel_pstate_driver_cleanup(void)
3071 {
3072         unsigned int cpu;
3073
3074         cpus_read_lock();
3075         for_each_online_cpu(cpu) {
3076                 if (all_cpu_data[cpu]) {
3077                         if (intel_pstate_driver == &intel_pstate)
3078                                 intel_pstate_clear_update_util_hook(cpu);
3079
3080                         spin_lock(&hwp_notify_lock);
3081                         kfree(all_cpu_data[cpu]);
3082                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3083                         spin_unlock(&hwp_notify_lock);
3084                 }
3085         }
3086         cpus_read_unlock();
3087
3088         intel_pstate_driver = NULL;
3089 }
3090
3091 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3092 {
3093         int ret;
3094
3095         if (driver == &intel_pstate)
3096                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3097
3098         memset(&global, 0, sizeof(global));
3099         global.max_perf_pct = 100;
3100
3101         intel_pstate_driver = driver;
3102         ret = cpufreq_register_driver(intel_pstate_driver);
3103         if (ret) {
3104                 intel_pstate_driver_cleanup();
3105                 return ret;
3106         }
3107
3108         global.min_perf_pct = min_perf_pct_min();
3109
3110         return 0;
3111 }
3112
3113 static ssize_t intel_pstate_show_status(char *buf)
3114 {
3115         if (!intel_pstate_driver)
3116                 return sprintf(buf, "off\n");
3117
3118         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3119                                         "active" : "passive");
3120 }
3121
3122 static int intel_pstate_update_status(const char *buf, size_t size)
3123 {
3124         if (size == 3 && !strncmp(buf, "off", size)) {
3125                 if (!intel_pstate_driver)
3126                         return -EINVAL;
3127
3128                 if (hwp_active)
3129                         return -EBUSY;
3130
3131                 cpufreq_unregister_driver(intel_pstate_driver);
3132                 intel_pstate_driver_cleanup();
3133                 return 0;
3134         }
3135
3136         if (size == 6 && !strncmp(buf, "active", size)) {
3137                 if (intel_pstate_driver) {
3138                         if (intel_pstate_driver == &intel_pstate)
3139                                 return 0;
3140
3141                         cpufreq_unregister_driver(intel_pstate_driver);
3142                 }
3143
3144                 return intel_pstate_register_driver(&intel_pstate);
3145         }
3146
3147         if (size == 7 && !strncmp(buf, "passive", size)) {
3148                 if (intel_pstate_driver) {
3149                         if (intel_pstate_driver == &intel_cpufreq)
3150                                 return 0;
3151
3152                         cpufreq_unregister_driver(intel_pstate_driver);
3153                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3154                 }
3155
3156                 return intel_pstate_register_driver(&intel_cpufreq);
3157         }
3158
3159         return -EINVAL;
3160 }
3161
3162 static int no_load __initdata;
3163 static int no_hwp __initdata;
3164 static int hwp_only __initdata;
3165 static unsigned int force_load __initdata;
3166
3167 static int __init intel_pstate_msrs_not_valid(void)
3168 {
3169         if (!pstate_funcs.get_max(0) ||
3170             !pstate_funcs.get_min(0) ||
3171             !pstate_funcs.get_turbo(0))
3172                 return -ENODEV;
3173
3174         return 0;
3175 }
3176
3177 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3178 {
3179         pstate_funcs.get_max   = funcs->get_max;
3180         pstate_funcs.get_max_physical = funcs->get_max_physical;
3181         pstate_funcs.get_min   = funcs->get_min;
3182         pstate_funcs.get_turbo = funcs->get_turbo;
3183         pstate_funcs.get_scaling = funcs->get_scaling;
3184         pstate_funcs.get_val   = funcs->get_val;
3185         pstate_funcs.get_vid   = funcs->get_vid;
3186         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3187 }
3188
3189 #ifdef CONFIG_ACPI
3190
3191 static bool __init intel_pstate_no_acpi_pss(void)
3192 {
3193         int i;
3194
3195         for_each_possible_cpu(i) {
3196                 acpi_status status;
3197                 union acpi_object *pss;
3198                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3199                 struct acpi_processor *pr = per_cpu(processors, i);
3200
3201                 if (!pr)
3202                         continue;
3203
3204                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3205                 if (ACPI_FAILURE(status))
3206                         continue;
3207
3208                 pss = buffer.pointer;
3209                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3210                         kfree(pss);
3211                         return false;
3212                 }
3213
3214                 kfree(pss);
3215         }
3216
3217         pr_debug("ACPI _PSS not found\n");
3218         return true;
3219 }
3220
3221 static bool __init intel_pstate_no_acpi_pcch(void)
3222 {
3223         acpi_status status;
3224         acpi_handle handle;
3225
3226         status = acpi_get_handle(NULL, "\\_SB", &handle);
3227         if (ACPI_FAILURE(status))
3228                 goto not_found;
3229
3230         if (acpi_has_method(handle, "PCCH"))
3231                 return false;
3232
3233 not_found:
3234         pr_debug("ACPI PCCH not found\n");
3235         return true;
3236 }
3237
3238 static bool __init intel_pstate_has_acpi_ppc(void)
3239 {
3240         int i;
3241
3242         for_each_possible_cpu(i) {
3243                 struct acpi_processor *pr = per_cpu(processors, i);
3244
3245                 if (!pr)
3246                         continue;
3247                 if (acpi_has_method(pr->handle, "_PPC"))
3248                         return true;
3249         }
3250         pr_debug("ACPI _PPC not found\n");
3251         return false;
3252 }
3253
3254 enum {
3255         PSS,
3256         PPC,
3257 };
3258
3259 /* Hardware vendor-specific info that has its own power management modes */
3260 static struct acpi_platform_list plat_info[] __initdata = {
3261         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3262         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3263         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3264         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3265         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3266         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3267         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3268         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3269         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3270         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3271         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3272         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3273         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3274         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3275         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3276         { } /* End */
3277 };
3278
3279 #define BITMASK_OOB     (BIT(8) | BIT(18))
3280
3281 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3282 {
3283         const struct x86_cpu_id *id;
3284         u64 misc_pwr;
3285         int idx;
3286
3287         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3288         if (id) {
3289                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3290                 if (misc_pwr & BITMASK_OOB) {
3291                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3292                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3293                         return true;
3294                 }
3295         }
3296
3297         idx = acpi_match_platform_list(plat_info);
3298         if (idx < 0)
3299                 return false;
3300
3301         switch (plat_info[idx].data) {
3302         case PSS:
3303                 if (!intel_pstate_no_acpi_pss())
3304                         return false;
3305
3306                 return intel_pstate_no_acpi_pcch();
3307         case PPC:
3308                 return intel_pstate_has_acpi_ppc() && !force_load;
3309         }
3310
3311         return false;
3312 }
3313
3314 static void intel_pstate_request_control_from_smm(void)
3315 {
3316         /*
3317          * It may be unsafe to request P-states control from SMM if _PPC support
3318          * has not been enabled.
3319          */
3320         if (acpi_ppc)
3321                 acpi_processor_pstate_control();
3322 }
3323 #else /* CONFIG_ACPI not enabled */
3324 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3325 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3326 static inline void intel_pstate_request_control_from_smm(void) {}
3327 #endif /* CONFIG_ACPI */
3328
3329 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3330
3331 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3332         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3333                                            X86_FEATURE_HWP, hwp_mode)
3334
3335 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3336         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3337         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3338         X86_MATCH_HWP(ANY,              0),
3339         {}
3340 };
3341
3342 static bool intel_pstate_hwp_is_enabled(void)
3343 {
3344         u64 value;
3345
3346         rdmsrl(MSR_PM_ENABLE, value);
3347         return !!(value & 0x1);
3348 }
3349
3350 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3351         /*
3352          * Set EPP value as 102, this is the max suggested EPP
3353          * which can result in one core turbo frequency for
3354          * AlderLake Mobile CPUs.
3355          */
3356         X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3357         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3358         {}
3359 };
3360
3361 static int __init intel_pstate_init(void)
3362 {
3363         static struct cpudata **_all_cpu_data;
3364         const struct x86_cpu_id *id;
3365         int rc;
3366
3367         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3368                 return -ENODEV;
3369
3370         id = x86_match_cpu(hwp_support_ids);
3371         if (id) {
3372                 hwp_forced = intel_pstate_hwp_is_enabled();
3373
3374                 if (hwp_forced)
3375                         pr_info("HWP enabled by BIOS\n");
3376                 else if (no_load)
3377                         return -ENODEV;
3378
3379                 copy_cpu_funcs(&core_funcs);
3380                 /*
3381                  * Avoid enabling HWP for processors without EPP support,
3382                  * because that means incomplete HWP implementation which is a
3383                  * corner case and supporting it is generally problematic.
3384                  *
3385                  * If HWP is enabled already, though, there is no choice but to
3386                  * deal with it.
3387                  */
3388                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3389                         WRITE_ONCE(hwp_active, 1);
3390                         hwp_mode_bdw = id->driver_data;
3391                         intel_pstate.attr = hwp_cpufreq_attrs;
3392                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3393                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3394                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3395                         if (!default_driver)
3396                                 default_driver = &intel_pstate;
3397
3398                         if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3399                                 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
3400
3401                         goto hwp_cpu_matched;
3402                 }
3403                 pr_info("HWP not enabled\n");
3404         } else {
3405                 if (no_load)
3406                         return -ENODEV;
3407
3408                 id = x86_match_cpu(intel_pstate_cpu_ids);
3409                 if (!id) {
3410                         pr_info("CPU model not supported\n");
3411                         return -ENODEV;
3412                 }
3413
3414                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3415         }
3416
3417         if (intel_pstate_msrs_not_valid()) {
3418                 pr_info("Invalid MSRs\n");
3419                 return -ENODEV;
3420         }
3421         /* Without HWP start in the passive mode. */
3422         if (!default_driver)
3423                 default_driver = &intel_cpufreq;
3424
3425 hwp_cpu_matched:
3426         /*
3427          * The Intel pstate driver will be ignored if the platform
3428          * firmware has its own power management modes.
3429          */
3430         if (intel_pstate_platform_pwr_mgmt_exists()) {
3431                 pr_info("P-states controlled by the platform\n");
3432                 return -ENODEV;
3433         }
3434
3435         if (!hwp_active && hwp_only)
3436                 return -ENOTSUPP;
3437
3438         pr_info("Intel P-state driver initializing\n");
3439
3440         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3441         if (!_all_cpu_data)
3442                 return -ENOMEM;
3443
3444         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3445
3446         intel_pstate_request_control_from_smm();
3447
3448         intel_pstate_sysfs_expose_params();
3449
3450         if (hwp_active) {
3451                 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3452
3453                 if (id)
3454                         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3455         }
3456
3457         mutex_lock(&intel_pstate_driver_lock);
3458         rc = intel_pstate_register_driver(default_driver);
3459         mutex_unlock(&intel_pstate_driver_lock);
3460         if (rc) {
3461                 intel_pstate_sysfs_remove();
3462                 return rc;
3463         }
3464
3465         if (hwp_active) {
3466                 const struct x86_cpu_id *id;
3467
3468                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3469                 if (id) {
3470                         set_power_ctl_ee_state(false);
3471                         pr_info("Disabling energy efficiency optimization\n");
3472                 }
3473
3474                 pr_info("HWP enabled\n");
3475         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3476                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3477         }
3478
3479         return 0;
3480 }
3481 device_initcall(intel_pstate_init);
3482
3483 static int __init intel_pstate_setup(char *str)
3484 {
3485         if (!str)
3486                 return -EINVAL;
3487
3488         if (!strcmp(str, "disable"))
3489                 no_load = 1;
3490         else if (!strcmp(str, "active"))
3491                 default_driver = &intel_pstate;
3492         else if (!strcmp(str, "passive"))
3493                 default_driver = &intel_cpufreq;
3494
3495         if (!strcmp(str, "no_hwp"))
3496                 no_hwp = 1;
3497
3498         if (!strcmp(str, "force"))
3499                 force_load = 1;
3500         if (!strcmp(str, "hwp_only"))
3501                 hwp_only = 1;
3502         if (!strcmp(str, "per_cpu_perf_limits"))
3503                 per_cpu_limits = true;
3504
3505 #ifdef CONFIG_ACPI
3506         if (!strcmp(str, "support_acpi_ppc"))
3507                 acpi_ppc = true;
3508 #endif
3509
3510         return 0;
3511 }
3512 early_param("intel_pstate", intel_pstate_setup);
3513
3514 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3515 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");