dmaengine: at_hdmac: Do not call the complete callback on device_terminate_all
[platform/kernel/linux-rpi.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36
37 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
38
39 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
42
43 #ifdef CONFIG_ACPI
44 #include <acpi/processor.h>
45 #include <acpi/cppc_acpi.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66         return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68
69 static inline int ceiling_fp(int32_t x)
70 {
71         int mask, ret;
72
73         ret = fp_toint(x);
74         mask = (1 << FRAC_BITS) - 1;
75         if (x & mask)
76                 ret += 1;
77         return ret;
78 }
79
80 static inline u64 mul_ext_fp(u64 x, u64 y)
81 {
82         return (x * y) >> EXT_FRAC_BITS;
83 }
84
85 static inline u64 div_ext_fp(u64 x, u64 y)
86 {
87         return div64_u64(x << EXT_FRAC_BITS, y);
88 }
89
90 /**
91  * struct sample -      Store performance sample
92  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
93  *                      performance during last sample period
94  * @busy_scaled:        Scaled busy value which is used to calculate next
95  *                      P state. This can be different than core_avg_perf
96  *                      to account for cpu idle period
97  * @aperf:              Difference of actual performance frequency clock count
98  *                      read from APERF MSR between last and current sample
99  * @mperf:              Difference of maximum performance frequency clock count
100  *                      read from MPERF MSR between last and current sample
101  * @tsc:                Difference of time stamp counter between last and
102  *                      current sample
103  * @time:               Current time from scheduler
104  *
105  * This structure is used in the cpudata structure to store performance sample
106  * data for choosing next P State.
107  */
108 struct sample {
109         int32_t core_avg_perf;
110         int32_t busy_scaled;
111         u64 aperf;
112         u64 mperf;
113         u64 tsc;
114         u64 time;
115 };
116
117 /**
118  * struct pstate_data - Store P state data
119  * @current_pstate:     Current requested P state
120  * @min_pstate:         Min P state possible for this platform
121  * @max_pstate:         Max P state possible for this platform
122  * @max_pstate_physical:This is physical Max P state for a processor
123  *                      This can be higher than the max_pstate which can
124  *                      be limited by platform thermal design power limits
125  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
126  * @scaling:            Scaling factor between performance and frequency
127  * @turbo_pstate:       Max Turbo P state possible for this platform
128  * @min_freq:           @min_pstate frequency in cpufreq units
129  * @max_freq:           @max_pstate frequency in cpufreq units
130  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
131  *
132  * Stores the per cpu model P state limits and current P state.
133  */
134 struct pstate_data {
135         int     current_pstate;
136         int     min_pstate;
137         int     max_pstate;
138         int     max_pstate_physical;
139         int     perf_ctl_scaling;
140         int     scaling;
141         int     turbo_pstate;
142         unsigned int min_freq;
143         unsigned int max_freq;
144         unsigned int turbo_freq;
145 };
146
147 /**
148  * struct vid_data -    Stores voltage information data
149  * @min:                VID data for this platform corresponding to
150  *                      the lowest P state
151  * @max:                VID data corresponding to the highest P State.
152  * @turbo:              VID data for turbo P state
153  * @ratio:              Ratio of (vid max - vid min) /
154  *                      (max P state - Min P State)
155  *
156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
157  * This data is used in Atom platforms, where in addition to target P state,
158  * the voltage data needs to be specified to select next P State.
159  */
160 struct vid_data {
161         int min;
162         int max;
163         int turbo;
164         int32_t ratio;
165 };
166
167 /**
168  * struct global_params - Global parameters, mostly tunable via sysfs.
169  * @no_turbo:           Whether or not to use turbo P-states.
170  * @turbo_disabled:     Whether or not turbo P-states are available at all,
171  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
172  *                      not the maximum reported turbo P-state is different from
173  *                      the maximum reported non-turbo one.
174  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
175  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
176  *                      P-state capacity.
177  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
178  *                      P-state capacity.
179  */
180 struct global_params {
181         bool no_turbo;
182         bool turbo_disabled;
183         bool turbo_disabled_mf;
184         int max_perf_pct;
185         int min_perf_pct;
186 };
187
188 /**
189  * struct cpudata -     Per CPU instance data storage
190  * @cpu:                CPU number for this instance data
191  * @policy:             CPUFreq policy value
192  * @update_util:        CPUFreq utility callback information
193  * @update_util_set:    CPUFreq utility callback is set
194  * @iowait_boost:       iowait-related boost fraction
195  * @last_update:        Time of the last update.
196  * @pstate:             Stores P state limits for this CPU
197  * @vid:                Stores VID limits for this CPU
198  * @last_sample_time:   Last Sample time
199  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
200  * @prev_aperf:         Last APERF value read from APERF MSR
201  * @prev_mperf:         Last MPERF value read from MPERF MSR
202  * @prev_tsc:           Last timestamp counter (TSC) value
203  * @prev_cummulative_iowait: IO Wait time difference from last and
204  *                      current sample
205  * @sample:             Storage for storing last Sample data
206  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
209  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:      Last saved HWP energy performance preference
211  *                      (EPP) or energy performance bias (EPB),
212  *                      when policy switched to performance
213  * @epp_policy:         Last saved policy used to set EPP/EPB
214  * @epp_default:        Power on default HWP energy performance
215  *                      preference/bias
216  * @epp_cached          Cached HWP energy-performance preference value
217  * @hwp_req_cached:     Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
219  * @last_io_update:     Last time when IO wake flag was set
220  * @sched_flags:        Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:      Last HWP boosted min performance
222  * @suspended:          Whether or not the driver has been suspended.
223  *
224  * This structure stores per CPU instance data for all CPUs.
225  */
226 struct cpudata {
227         int cpu;
228
229         unsigned int policy;
230         struct update_util_data update_util;
231         bool   update_util_set;
232
233         struct pstate_data pstate;
234         struct vid_data vid;
235
236         u64     last_update;
237         u64     last_sample_time;
238         u64     aperf_mperf_shift;
239         u64     prev_aperf;
240         u64     prev_mperf;
241         u64     prev_tsc;
242         u64     prev_cummulative_iowait;
243         struct sample sample;
244         int32_t min_perf_ratio;
245         int32_t max_perf_ratio;
246 #ifdef CONFIG_ACPI
247         struct acpi_processor_performance acpi_perf_data;
248         bool valid_pss_table;
249 #endif
250         unsigned int iowait_boost;
251         s16 epp_powersave;
252         s16 epp_policy;
253         s16 epp_default;
254         s16 epp_cached;
255         u64 hwp_req_cached;
256         u64 hwp_cap_cached;
257         u64 last_io_update;
258         unsigned int sched_flags;
259         u32 hwp_boost_min;
260         bool suspended;
261 };
262
263 static struct cpudata **all_cpu_data;
264
265 /**
266  * struct pstate_funcs - Per CPU model specific callbacks
267  * @get_max:            Callback to get maximum non turbo effective P state
268  * @get_max_physical:   Callback to get maximum non turbo physical P state
269  * @get_min:            Callback to get minimum P state
270  * @get_turbo:          Callback to get turbo P state
271  * @get_scaling:        Callback to get frequency scaling factor
272  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
273  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
274  * @get_val:            Callback to convert P state to actual MSR write value
275  * @get_vid:            Callback to get VID data for Atom platforms
276  *
277  * Core and Atom CPU models have different way to get P State limits. This
278  * structure is used to store those callbacks.
279  */
280 struct pstate_funcs {
281         int (*get_max)(int cpu);
282         int (*get_max_physical)(int cpu);
283         int (*get_min)(int cpu);
284         int (*get_turbo)(int cpu);
285         int (*get_scaling)(void);
286         int (*get_cpu_scaling)(int cpu);
287         int (*get_aperf_mperf_shift)(void);
288         u64 (*get_val)(struct cpudata*, int pstate);
289         void (*get_vid)(struct cpudata *);
290 };
291
292 static struct pstate_funcs pstate_funcs __read_mostly;
293
294 static int hwp_active __read_mostly;
295 static int hwp_mode_bdw __read_mostly;
296 static bool per_cpu_limits __read_mostly;
297 static bool hwp_boost __read_mostly;
298
299 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
300
301 #ifdef CONFIG_ACPI
302 static bool acpi_ppc;
303 #endif
304
305 static struct global_params global;
306
307 static DEFINE_MUTEX(intel_pstate_driver_lock);
308 static DEFINE_MUTEX(intel_pstate_limits_lock);
309
310 #ifdef CONFIG_ACPI
311
312 static bool intel_pstate_acpi_pm_profile_server(void)
313 {
314         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
315             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
316                 return true;
317
318         return false;
319 }
320
321 static bool intel_pstate_get_ppc_enable_status(void)
322 {
323         if (intel_pstate_acpi_pm_profile_server())
324                 return true;
325
326         return acpi_ppc;
327 }
328
329 #ifdef CONFIG_ACPI_CPPC_LIB
330
331 /* The work item is needed to avoid CPU hotplug locking issues */
332 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
333 {
334         sched_set_itmt_support();
335 }
336
337 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
338
339 #define CPPC_MAX_PERF   U8_MAX
340
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343         struct cppc_perf_caps cppc_perf;
344         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345         int ret;
346
347         ret = cppc_get_perf_caps(cpu, &cppc_perf);
348         if (ret)
349                 return;
350
351         /*
352          * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
353          * In this case we can't use CPPC.highest_perf to enable ITMT.
354          * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
355          */
356         if (cppc_perf.highest_perf == CPPC_MAX_PERF)
357                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
358
359         /*
360          * The priorities can be set regardless of whether or not
361          * sched_set_itmt_support(true) has been called and it is valid to
362          * update them at any time after it has been called.
363          */
364         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
365
366         if (max_highest_perf <= min_highest_perf) {
367                 if (cppc_perf.highest_perf > max_highest_perf)
368                         max_highest_perf = cppc_perf.highest_perf;
369
370                 if (cppc_perf.highest_perf < min_highest_perf)
371                         min_highest_perf = cppc_perf.highest_perf;
372
373                 if (max_highest_perf > min_highest_perf) {
374                         /*
375                          * This code can be run during CPU online under the
376                          * CPU hotplug locks, so sched_set_itmt_support()
377                          * cannot be called from here.  Queue up a work item
378                          * to invoke it.
379                          */
380                         schedule_work(&sched_itmt_work);
381                 }
382         }
383 }
384
385 static int intel_pstate_get_cppc_guaranteed(int cpu)
386 {
387         struct cppc_perf_caps cppc_perf;
388         int ret;
389
390         ret = cppc_get_perf_caps(cpu, &cppc_perf);
391         if (ret)
392                 return ret;
393
394         if (cppc_perf.guaranteed_perf)
395                 return cppc_perf.guaranteed_perf;
396
397         return cppc_perf.nominal_perf;
398 }
399 #else /* CONFIG_ACPI_CPPC_LIB */
400 static inline void intel_pstate_set_itmt_prio(int cpu)
401 {
402 }
403 #endif /* CONFIG_ACPI_CPPC_LIB */
404
405 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
406 {
407         struct cpudata *cpu;
408         int ret;
409         int i;
410
411         if (hwp_active) {
412                 intel_pstate_set_itmt_prio(policy->cpu);
413                 return;
414         }
415
416         if (!intel_pstate_get_ppc_enable_status())
417                 return;
418
419         cpu = all_cpu_data[policy->cpu];
420
421         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
422                                                   policy->cpu);
423         if (ret)
424                 return;
425
426         /*
427          * Check if the control value in _PSS is for PERF_CTL MSR, which should
428          * guarantee that the states returned by it map to the states in our
429          * list directly.
430          */
431         if (cpu->acpi_perf_data.control_register.space_id !=
432                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
433                 goto err;
434
435         /*
436          * If there is only one entry _PSS, simply ignore _PSS and continue as
437          * usual without taking _PSS into account
438          */
439         if (cpu->acpi_perf_data.state_count < 2)
440                 goto err;
441
442         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
443         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
444                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
445                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
446                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
447                          (u32) cpu->acpi_perf_data.states[i].power,
448                          (u32) cpu->acpi_perf_data.states[i].control);
449         }
450
451         /*
452          * The _PSS table doesn't contain whole turbo frequency range.
453          * This just contains +1 MHZ above the max non turbo frequency,
454          * with control value corresponding to max turbo ratio. But
455          * when cpufreq set policy is called, it will call with this
456          * max frequency, which will cause a reduced performance as
457          * this driver uses real max turbo frequency as the max
458          * frequency. So correct this frequency in _PSS table to
459          * correct max turbo frequency based on the turbo state.
460          * Also need to convert to MHz as _PSS freq is in MHz.
461          */
462         if (!global.turbo_disabled)
463                 cpu->acpi_perf_data.states[0].core_frequency =
464                                         policy->cpuinfo.max_freq / 1000;
465         cpu->valid_pss_table = true;
466         pr_debug("_PPC limits will be enforced\n");
467
468         return;
469
470  err:
471         cpu->valid_pss_table = false;
472         acpi_processor_unregister_performance(policy->cpu);
473 }
474
475 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
476 {
477         struct cpudata *cpu;
478
479         cpu = all_cpu_data[policy->cpu];
480         if (!cpu->valid_pss_table)
481                 return;
482
483         acpi_processor_unregister_performance(policy->cpu);
484 }
485 #else /* CONFIG_ACPI */
486 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
487 {
488 }
489
490 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
491 {
492 }
493
494 static inline bool intel_pstate_acpi_pm_profile_server(void)
495 {
496         return false;
497 }
498 #endif /* CONFIG_ACPI */
499
500 #ifndef CONFIG_ACPI_CPPC_LIB
501 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
502 {
503         return -ENOTSUPP;
504 }
505 #endif /* CONFIG_ACPI_CPPC_LIB */
506
507 /**
508  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
509  * @cpu: Target CPU.
510  *
511  * On hybrid processors, HWP may expose more performance levels than there are
512  * P-states accessible through the PERF_CTL interface.  If that happens, the
513  * scaling factor between HWP performance levels and CPU frequency will be less
514  * than the scaling factor between P-state values and CPU frequency.
515  *
516  * In that case, adjust the CPU parameters used in computations accordingly.
517  */
518 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
519 {
520         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
521         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
522         int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
523         int scaling = cpu->pstate.scaling;
524
525         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
526         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
527         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
528         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
529         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
530         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
531
532         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
533                                            perf_ctl_scaling);
534         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
535                                          perf_ctl_scaling);
536
537         cpu->pstate.max_pstate_physical =
538                         DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
539                                      scaling);
540
541         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
542         /*
543          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
544          * the effective range of HWP performance levels.
545          */
546         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
547 }
548
549 static inline void update_turbo_state(void)
550 {
551         u64 misc_en;
552         struct cpudata *cpu;
553
554         cpu = all_cpu_data[0];
555         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
556         global.turbo_disabled =
557                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
558                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
559 }
560
561 static int min_perf_pct_min(void)
562 {
563         struct cpudata *cpu = all_cpu_data[0];
564         int turbo_pstate = cpu->pstate.turbo_pstate;
565
566         return turbo_pstate ?
567                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
568 }
569
570 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
571 {
572         u64 epb;
573         int ret;
574
575         if (!boot_cpu_has(X86_FEATURE_EPB))
576                 return -ENXIO;
577
578         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
579         if (ret)
580                 return (s16)ret;
581
582         return (s16)(epb & 0x0f);
583 }
584
585 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
586 {
587         s16 epp;
588
589         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
590                 /*
591                  * When hwp_req_data is 0, means that caller didn't read
592                  * MSR_HWP_REQUEST, so need to read and get EPP.
593                  */
594                 if (!hwp_req_data) {
595                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
596                                             &hwp_req_data);
597                         if (epp)
598                                 return epp;
599                 }
600                 epp = (hwp_req_data >> 24) & 0xff;
601         } else {
602                 /* When there is no EPP present, HWP uses EPB settings */
603                 epp = intel_pstate_get_epb(cpu_data);
604         }
605
606         return epp;
607 }
608
609 static int intel_pstate_set_epb(int cpu, s16 pref)
610 {
611         u64 epb;
612         int ret;
613
614         if (!boot_cpu_has(X86_FEATURE_EPB))
615                 return -ENXIO;
616
617         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
618         if (ret)
619                 return ret;
620
621         epb = (epb & ~0x0f) | pref;
622         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
623
624         return 0;
625 }
626
627 /*
628  * EPP/EPB display strings corresponding to EPP index in the
629  * energy_perf_strings[]
630  *      index           String
631  *-------------------------------------
632  *      0               default
633  *      1               performance
634  *      2               balance_performance
635  *      3               balance_power
636  *      4               power
637  */
638 static const char * const energy_perf_strings[] = {
639         "default",
640         "performance",
641         "balance_performance",
642         "balance_power",
643         "power",
644         NULL
645 };
646 static const unsigned int epp_values[] = {
647         HWP_EPP_PERFORMANCE,
648         HWP_EPP_BALANCE_PERFORMANCE,
649         HWP_EPP_BALANCE_POWERSAVE,
650         HWP_EPP_POWERSAVE
651 };
652
653 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
654 {
655         s16 epp;
656         int index = -EINVAL;
657
658         *raw_epp = 0;
659         epp = intel_pstate_get_epp(cpu_data, 0);
660         if (epp < 0)
661                 return epp;
662
663         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
664                 if (epp == HWP_EPP_PERFORMANCE)
665                         return 1;
666                 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
667                         return 2;
668                 if (epp == HWP_EPP_BALANCE_POWERSAVE)
669                         return 3;
670                 if (epp == HWP_EPP_POWERSAVE)
671                         return 4;
672                 *raw_epp = epp;
673                 return 0;
674         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
675                 /*
676                  * Range:
677                  *      0x00-0x03       :       Performance
678                  *      0x04-0x07       :       Balance performance
679                  *      0x08-0x0B       :       Balance power
680                  *      0x0C-0x0F       :       Power
681                  * The EPB is a 4 bit value, but our ranges restrict the
682                  * value which can be set. Here only using top two bits
683                  * effectively.
684                  */
685                 index = (epp >> 2) + 1;
686         }
687
688         return index;
689 }
690
691 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
692 {
693         int ret;
694
695         /*
696          * Use the cached HWP Request MSR value, because in the active mode the
697          * register itself may be updated by intel_pstate_hwp_boost_up() or
698          * intel_pstate_hwp_boost_down() at any time.
699          */
700         u64 value = READ_ONCE(cpu->hwp_req_cached);
701
702         value &= ~GENMASK_ULL(31, 24);
703         value |= (u64)epp << 24;
704         /*
705          * The only other updater of hwp_req_cached in the active mode,
706          * intel_pstate_hwp_set(), is called under the same lock as this
707          * function, so it cannot run in parallel with the update below.
708          */
709         WRITE_ONCE(cpu->hwp_req_cached, value);
710         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
711         if (!ret)
712                 cpu->epp_cached = epp;
713
714         return ret;
715 }
716
717 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
718                                               int pref_index, bool use_raw,
719                                               u32 raw_epp)
720 {
721         int epp = -EINVAL;
722         int ret;
723
724         if (!pref_index)
725                 epp = cpu_data->epp_default;
726
727         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
728                 if (use_raw)
729                         epp = raw_epp;
730                 else if (epp == -EINVAL)
731                         epp = epp_values[pref_index - 1];
732
733                 /*
734                  * To avoid confusion, refuse to set EPP to any values different
735                  * from 0 (performance) if the current policy is "performance",
736                  * because those values would be overridden.
737                  */
738                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
739                         return -EBUSY;
740
741                 ret = intel_pstate_set_epp(cpu_data, epp);
742         } else {
743                 if (epp == -EINVAL)
744                         epp = (pref_index - 1) << 2;
745                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
746         }
747
748         return ret;
749 }
750
751 static ssize_t show_energy_performance_available_preferences(
752                                 struct cpufreq_policy *policy, char *buf)
753 {
754         int i = 0;
755         int ret = 0;
756
757         while (energy_perf_strings[i] != NULL)
758                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
759
760         ret += sprintf(&buf[ret], "\n");
761
762         return ret;
763 }
764
765 cpufreq_freq_attr_ro(energy_performance_available_preferences);
766
767 static struct cpufreq_driver intel_pstate;
768
769 static ssize_t store_energy_performance_preference(
770                 struct cpufreq_policy *policy, const char *buf, size_t count)
771 {
772         struct cpudata *cpu = all_cpu_data[policy->cpu];
773         char str_preference[21];
774         bool raw = false;
775         ssize_t ret;
776         u32 epp = 0;
777
778         ret = sscanf(buf, "%20s", str_preference);
779         if (ret != 1)
780                 return -EINVAL;
781
782         ret = match_string(energy_perf_strings, -1, str_preference);
783         if (ret < 0) {
784                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
785                         return ret;
786
787                 ret = kstrtouint(buf, 10, &epp);
788                 if (ret)
789                         return ret;
790
791                 if (epp > 255)
792                         return -EINVAL;
793
794                 raw = true;
795         }
796
797         /*
798          * This function runs with the policy R/W semaphore held, which
799          * guarantees that the driver pointer will not change while it is
800          * running.
801          */
802         if (!intel_pstate_driver)
803                 return -EAGAIN;
804
805         mutex_lock(&intel_pstate_limits_lock);
806
807         if (intel_pstate_driver == &intel_pstate) {
808                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
809         } else {
810                 /*
811                  * In the passive mode the governor needs to be stopped on the
812                  * target CPU before the EPP update and restarted after it,
813                  * which is super-heavy-weight, so make sure it is worth doing
814                  * upfront.
815                  */
816                 if (!raw)
817                         epp = ret ? epp_values[ret - 1] : cpu->epp_default;
818
819                 if (cpu->epp_cached != epp) {
820                         int err;
821
822                         cpufreq_stop_governor(policy);
823                         ret = intel_pstate_set_epp(cpu, epp);
824                         err = cpufreq_start_governor(policy);
825                         if (!ret)
826                                 ret = err;
827                 }
828         }
829
830         mutex_unlock(&intel_pstate_limits_lock);
831
832         return ret ?: count;
833 }
834
835 static ssize_t show_energy_performance_preference(
836                                 struct cpufreq_policy *policy, char *buf)
837 {
838         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
839         int preference, raw_epp;
840
841         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
842         if (preference < 0)
843                 return preference;
844
845         if (raw_epp)
846                 return  sprintf(buf, "%d\n", raw_epp);
847         else
848                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
849 }
850
851 cpufreq_freq_attr_rw(energy_performance_preference);
852
853 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
854 {
855         struct cpudata *cpu = all_cpu_data[policy->cpu];
856         int ratio, freq;
857
858         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
859         if (ratio <= 0) {
860                 u64 cap;
861
862                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
863                 ratio = HWP_GUARANTEED_PERF(cap);
864         }
865
866         freq = ratio * cpu->pstate.scaling;
867         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
868                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
869
870         return sprintf(buf, "%d\n", freq);
871 }
872
873 cpufreq_freq_attr_ro(base_frequency);
874
875 static struct freq_attr *hwp_cpufreq_attrs[] = {
876         &energy_performance_preference,
877         &energy_performance_available_preferences,
878         &base_frequency,
879         NULL,
880 };
881
882 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
883 {
884         u64 cap;
885
886         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
887         WRITE_ONCE(cpu->hwp_cap_cached, cap);
888         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
889         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
890 }
891
892 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
893 {
894         int scaling = cpu->pstate.scaling;
895
896         __intel_pstate_get_hwp_cap(cpu);
897
898         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
899         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
900         if (scaling != cpu->pstate.perf_ctl_scaling) {
901                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
902
903                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
904                                                  perf_ctl_scaling);
905                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
906                                                    perf_ctl_scaling);
907         }
908 }
909
910 static void intel_pstate_hwp_set(unsigned int cpu)
911 {
912         struct cpudata *cpu_data = all_cpu_data[cpu];
913         int max, min;
914         u64 value;
915         s16 epp;
916
917         max = cpu_data->max_perf_ratio;
918         min = cpu_data->min_perf_ratio;
919
920         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
921                 min = max;
922
923         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
924
925         value &= ~HWP_MIN_PERF(~0L);
926         value |= HWP_MIN_PERF(min);
927
928         value &= ~HWP_MAX_PERF(~0L);
929         value |= HWP_MAX_PERF(max);
930
931         if (cpu_data->epp_policy == cpu_data->policy)
932                 goto skip_epp;
933
934         cpu_data->epp_policy = cpu_data->policy;
935
936         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
937                 epp = intel_pstate_get_epp(cpu_data, value);
938                 cpu_data->epp_powersave = epp;
939                 /* If EPP read was failed, then don't try to write */
940                 if (epp < 0)
941                         goto skip_epp;
942
943                 epp = 0;
944         } else {
945                 /* skip setting EPP, when saved value is invalid */
946                 if (cpu_data->epp_powersave < 0)
947                         goto skip_epp;
948
949                 /*
950                  * No need to restore EPP when it is not zero. This
951                  * means:
952                  *  - Policy is not changed
953                  *  - user has manually changed
954                  *  - Error reading EPB
955                  */
956                 epp = intel_pstate_get_epp(cpu_data, value);
957                 if (epp)
958                         goto skip_epp;
959
960                 epp = cpu_data->epp_powersave;
961         }
962         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
963                 value &= ~GENMASK_ULL(31, 24);
964                 value |= (u64)epp << 24;
965         } else {
966                 intel_pstate_set_epb(cpu, epp);
967         }
968 skip_epp:
969         WRITE_ONCE(cpu_data->hwp_req_cached, value);
970         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
971 }
972
973 static void intel_pstate_hwp_offline(struct cpudata *cpu)
974 {
975         u64 value = READ_ONCE(cpu->hwp_req_cached);
976         int min_perf;
977
978         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
979                 /*
980                  * In case the EPP has been set to "performance" by the
981                  * active mode "performance" scaling algorithm, replace that
982                  * temporary value with the cached EPP one.
983                  */
984                 value &= ~GENMASK_ULL(31, 24);
985                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
986                 /*
987                  * However, make sure that EPP will be set to "performance" when
988                  * the CPU is brought back online again and the "performance"
989                  * scaling algorithm is still in effect.
990                  */
991                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
992         }
993
994         /*
995          * Clear the desired perf field in the cached HWP request value to
996          * prevent nonzero desired values from being leaked into the active
997          * mode.
998          */
999         value &= ~HWP_DESIRED_PERF(~0L);
1000         WRITE_ONCE(cpu->hwp_req_cached, value);
1001
1002         value &= ~GENMASK_ULL(31, 0);
1003         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1004
1005         /* Set hwp_max = hwp_min */
1006         value |= HWP_MAX_PERF(min_perf);
1007         value |= HWP_MIN_PERF(min_perf);
1008
1009         /* Set EPP to min */
1010         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1011                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1012
1013         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1014 }
1015
1016 #define POWER_CTL_EE_ENABLE     1
1017 #define POWER_CTL_EE_DISABLE    2
1018
1019 static int power_ctl_ee_state;
1020
1021 static void set_power_ctl_ee_state(bool input)
1022 {
1023         u64 power_ctl;
1024
1025         mutex_lock(&intel_pstate_driver_lock);
1026         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1027         if (input) {
1028                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1029                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1030         } else {
1031                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1032                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1033         }
1034         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1035         mutex_unlock(&intel_pstate_driver_lock);
1036 }
1037
1038 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1039
1040 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1041 {
1042         intel_pstate_hwp_enable(cpu);
1043         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1044 }
1045
1046 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1047 {
1048         struct cpudata *cpu = all_cpu_data[policy->cpu];
1049
1050         pr_debug("CPU %d suspending\n", cpu->cpu);
1051
1052         cpu->suspended = true;
1053
1054         return 0;
1055 }
1056
1057 static int intel_pstate_resume(struct cpufreq_policy *policy)
1058 {
1059         struct cpudata *cpu = all_cpu_data[policy->cpu];
1060
1061         pr_debug("CPU %d resuming\n", cpu->cpu);
1062
1063         /* Only restore if the system default is changed */
1064         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1065                 set_power_ctl_ee_state(true);
1066         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1067                 set_power_ctl_ee_state(false);
1068
1069         if (cpu->suspended && hwp_active) {
1070                 mutex_lock(&intel_pstate_limits_lock);
1071
1072                 /* Re-enable HWP, because "online" has not done that. */
1073                 intel_pstate_hwp_reenable(cpu);
1074
1075                 mutex_unlock(&intel_pstate_limits_lock);
1076         }
1077
1078         cpu->suspended = false;
1079
1080         return 0;
1081 }
1082
1083 static void intel_pstate_update_policies(void)
1084 {
1085         int cpu;
1086
1087         for_each_possible_cpu(cpu)
1088                 cpufreq_update_policy(cpu);
1089 }
1090
1091 static void intel_pstate_update_max_freq(unsigned int cpu)
1092 {
1093         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1094         struct cpudata *cpudata;
1095
1096         if (!policy)
1097                 return;
1098
1099         cpudata = all_cpu_data[cpu];
1100         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1101                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1102
1103         refresh_frequency_limits(policy);
1104
1105         cpufreq_cpu_release(policy);
1106 }
1107
1108 static void intel_pstate_update_limits(unsigned int cpu)
1109 {
1110         mutex_lock(&intel_pstate_driver_lock);
1111
1112         update_turbo_state();
1113         /*
1114          * If turbo has been turned on or off globally, policy limits for
1115          * all CPUs need to be updated to reflect that.
1116          */
1117         if (global.turbo_disabled_mf != global.turbo_disabled) {
1118                 global.turbo_disabled_mf = global.turbo_disabled;
1119                 arch_set_max_freq_ratio(global.turbo_disabled);
1120                 for_each_possible_cpu(cpu)
1121                         intel_pstate_update_max_freq(cpu);
1122         } else {
1123                 cpufreq_update_policy(cpu);
1124         }
1125
1126         mutex_unlock(&intel_pstate_driver_lock);
1127 }
1128
1129 /************************** sysfs begin ************************/
1130 #define show_one(file_name, object)                                     \
1131         static ssize_t show_##file_name                                 \
1132         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1133         {                                                               \
1134                 return sprintf(buf, "%u\n", global.object);             \
1135         }
1136
1137 static ssize_t intel_pstate_show_status(char *buf);
1138 static int intel_pstate_update_status(const char *buf, size_t size);
1139
1140 static ssize_t show_status(struct kobject *kobj,
1141                            struct kobj_attribute *attr, char *buf)
1142 {
1143         ssize_t ret;
1144
1145         mutex_lock(&intel_pstate_driver_lock);
1146         ret = intel_pstate_show_status(buf);
1147         mutex_unlock(&intel_pstate_driver_lock);
1148
1149         return ret;
1150 }
1151
1152 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1153                             const char *buf, size_t count)
1154 {
1155         char *p = memchr(buf, '\n', count);
1156         int ret;
1157
1158         mutex_lock(&intel_pstate_driver_lock);
1159         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1160         mutex_unlock(&intel_pstate_driver_lock);
1161
1162         return ret < 0 ? ret : count;
1163 }
1164
1165 static ssize_t show_turbo_pct(struct kobject *kobj,
1166                                 struct kobj_attribute *attr, char *buf)
1167 {
1168         struct cpudata *cpu;
1169         int total, no_turbo, turbo_pct;
1170         uint32_t turbo_fp;
1171
1172         mutex_lock(&intel_pstate_driver_lock);
1173
1174         if (!intel_pstate_driver) {
1175                 mutex_unlock(&intel_pstate_driver_lock);
1176                 return -EAGAIN;
1177         }
1178
1179         cpu = all_cpu_data[0];
1180
1181         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1182         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1183         turbo_fp = div_fp(no_turbo, total);
1184         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1185
1186         mutex_unlock(&intel_pstate_driver_lock);
1187
1188         return sprintf(buf, "%u\n", turbo_pct);
1189 }
1190
1191 static ssize_t show_num_pstates(struct kobject *kobj,
1192                                 struct kobj_attribute *attr, char *buf)
1193 {
1194         struct cpudata *cpu;
1195         int total;
1196
1197         mutex_lock(&intel_pstate_driver_lock);
1198
1199         if (!intel_pstate_driver) {
1200                 mutex_unlock(&intel_pstate_driver_lock);
1201                 return -EAGAIN;
1202         }
1203
1204         cpu = all_cpu_data[0];
1205         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1206
1207         mutex_unlock(&intel_pstate_driver_lock);
1208
1209         return sprintf(buf, "%u\n", total);
1210 }
1211
1212 static ssize_t show_no_turbo(struct kobject *kobj,
1213                              struct kobj_attribute *attr, char *buf)
1214 {
1215         ssize_t ret;
1216
1217         mutex_lock(&intel_pstate_driver_lock);
1218
1219         if (!intel_pstate_driver) {
1220                 mutex_unlock(&intel_pstate_driver_lock);
1221                 return -EAGAIN;
1222         }
1223
1224         update_turbo_state();
1225         if (global.turbo_disabled)
1226                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1227         else
1228                 ret = sprintf(buf, "%u\n", global.no_turbo);
1229
1230         mutex_unlock(&intel_pstate_driver_lock);
1231
1232         return ret;
1233 }
1234
1235 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1236                               const char *buf, size_t count)
1237 {
1238         unsigned int input;
1239         int ret;
1240
1241         ret = sscanf(buf, "%u", &input);
1242         if (ret != 1)
1243                 return -EINVAL;
1244
1245         mutex_lock(&intel_pstate_driver_lock);
1246
1247         if (!intel_pstate_driver) {
1248                 mutex_unlock(&intel_pstate_driver_lock);
1249                 return -EAGAIN;
1250         }
1251
1252         mutex_lock(&intel_pstate_limits_lock);
1253
1254         update_turbo_state();
1255         if (global.turbo_disabled) {
1256                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1257                 mutex_unlock(&intel_pstate_limits_lock);
1258                 mutex_unlock(&intel_pstate_driver_lock);
1259                 return -EPERM;
1260         }
1261
1262         global.no_turbo = clamp_t(int, input, 0, 1);
1263
1264         if (global.no_turbo) {
1265                 struct cpudata *cpu = all_cpu_data[0];
1266                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1267
1268                 /* Squash the global minimum into the permitted range. */
1269                 if (global.min_perf_pct > pct)
1270                         global.min_perf_pct = pct;
1271         }
1272
1273         mutex_unlock(&intel_pstate_limits_lock);
1274
1275         intel_pstate_update_policies();
1276
1277         mutex_unlock(&intel_pstate_driver_lock);
1278
1279         return count;
1280 }
1281
1282 static void update_qos_request(enum freq_qos_req_type type)
1283 {
1284         struct freq_qos_request *req;
1285         struct cpufreq_policy *policy;
1286         int i;
1287
1288         for_each_possible_cpu(i) {
1289                 struct cpudata *cpu = all_cpu_data[i];
1290                 unsigned int freq, perf_pct;
1291
1292                 policy = cpufreq_cpu_get(i);
1293                 if (!policy)
1294                         continue;
1295
1296                 req = policy->driver_data;
1297                 cpufreq_cpu_put(policy);
1298
1299                 if (!req)
1300                         continue;
1301
1302                 if (hwp_active)
1303                         intel_pstate_get_hwp_cap(cpu);
1304
1305                 if (type == FREQ_QOS_MIN) {
1306                         perf_pct = global.min_perf_pct;
1307                 } else {
1308                         req++;
1309                         perf_pct = global.max_perf_pct;
1310                 }
1311
1312                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1313
1314                 if (freq_qos_update_request(req, freq) < 0)
1315                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1316         }
1317 }
1318
1319 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1320                                   const char *buf, size_t count)
1321 {
1322         unsigned int input;
1323         int ret;
1324
1325         ret = sscanf(buf, "%u", &input);
1326         if (ret != 1)
1327                 return -EINVAL;
1328
1329         mutex_lock(&intel_pstate_driver_lock);
1330
1331         if (!intel_pstate_driver) {
1332                 mutex_unlock(&intel_pstate_driver_lock);
1333                 return -EAGAIN;
1334         }
1335
1336         mutex_lock(&intel_pstate_limits_lock);
1337
1338         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1339
1340         mutex_unlock(&intel_pstate_limits_lock);
1341
1342         if (intel_pstate_driver == &intel_pstate)
1343                 intel_pstate_update_policies();
1344         else
1345                 update_qos_request(FREQ_QOS_MAX);
1346
1347         mutex_unlock(&intel_pstate_driver_lock);
1348
1349         return count;
1350 }
1351
1352 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1353                                   const char *buf, size_t count)
1354 {
1355         unsigned int input;
1356         int ret;
1357
1358         ret = sscanf(buf, "%u", &input);
1359         if (ret != 1)
1360                 return -EINVAL;
1361
1362         mutex_lock(&intel_pstate_driver_lock);
1363
1364         if (!intel_pstate_driver) {
1365                 mutex_unlock(&intel_pstate_driver_lock);
1366                 return -EAGAIN;
1367         }
1368
1369         mutex_lock(&intel_pstate_limits_lock);
1370
1371         global.min_perf_pct = clamp_t(int, input,
1372                                       min_perf_pct_min(), global.max_perf_pct);
1373
1374         mutex_unlock(&intel_pstate_limits_lock);
1375
1376         if (intel_pstate_driver == &intel_pstate)
1377                 intel_pstate_update_policies();
1378         else
1379                 update_qos_request(FREQ_QOS_MIN);
1380
1381         mutex_unlock(&intel_pstate_driver_lock);
1382
1383         return count;
1384 }
1385
1386 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1387                                 struct kobj_attribute *attr, char *buf)
1388 {
1389         return sprintf(buf, "%u\n", hwp_boost);
1390 }
1391
1392 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1393                                        struct kobj_attribute *b,
1394                                        const char *buf, size_t count)
1395 {
1396         unsigned int input;
1397         int ret;
1398
1399         ret = kstrtouint(buf, 10, &input);
1400         if (ret)
1401                 return ret;
1402
1403         mutex_lock(&intel_pstate_driver_lock);
1404         hwp_boost = !!input;
1405         intel_pstate_update_policies();
1406         mutex_unlock(&intel_pstate_driver_lock);
1407
1408         return count;
1409 }
1410
1411 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1412                                       char *buf)
1413 {
1414         u64 power_ctl;
1415         int enable;
1416
1417         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1418         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1419         return sprintf(buf, "%d\n", !enable);
1420 }
1421
1422 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1423                                        const char *buf, size_t count)
1424 {
1425         bool input;
1426         int ret;
1427
1428         ret = kstrtobool(buf, &input);
1429         if (ret)
1430                 return ret;
1431
1432         set_power_ctl_ee_state(input);
1433
1434         return count;
1435 }
1436
1437 show_one(max_perf_pct, max_perf_pct);
1438 show_one(min_perf_pct, min_perf_pct);
1439
1440 define_one_global_rw(status);
1441 define_one_global_rw(no_turbo);
1442 define_one_global_rw(max_perf_pct);
1443 define_one_global_rw(min_perf_pct);
1444 define_one_global_ro(turbo_pct);
1445 define_one_global_ro(num_pstates);
1446 define_one_global_rw(hwp_dynamic_boost);
1447 define_one_global_rw(energy_efficiency);
1448
1449 static struct attribute *intel_pstate_attributes[] = {
1450         &status.attr,
1451         &no_turbo.attr,
1452         NULL
1453 };
1454
1455 static const struct attribute_group intel_pstate_attr_group = {
1456         .attrs = intel_pstate_attributes,
1457 };
1458
1459 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1460
1461 static struct kobject *intel_pstate_kobject;
1462
1463 static void __init intel_pstate_sysfs_expose_params(void)
1464 {
1465         int rc;
1466
1467         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1468                                                 &cpu_subsys.dev_root->kobj);
1469         if (WARN_ON(!intel_pstate_kobject))
1470                 return;
1471
1472         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1473         if (WARN_ON(rc))
1474                 return;
1475
1476         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1477                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1478                 WARN_ON(rc);
1479
1480                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1481                 WARN_ON(rc);
1482         }
1483
1484         /*
1485          * If per cpu limits are enforced there are no global limits, so
1486          * return without creating max/min_perf_pct attributes
1487          */
1488         if (per_cpu_limits)
1489                 return;
1490
1491         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1492         WARN_ON(rc);
1493
1494         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1495         WARN_ON(rc);
1496
1497         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1498                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1499                 WARN_ON(rc);
1500         }
1501 }
1502
1503 static void __init intel_pstate_sysfs_remove(void)
1504 {
1505         if (!intel_pstate_kobject)
1506                 return;
1507
1508         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1509
1510         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1511                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1512                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1513         }
1514
1515         if (!per_cpu_limits) {
1516                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1517                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1518
1519                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1520                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1521         }
1522
1523         kobject_put(intel_pstate_kobject);
1524 }
1525
1526 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1527 {
1528         int rc;
1529
1530         if (!hwp_active)
1531                 return;
1532
1533         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1534         WARN_ON_ONCE(rc);
1535 }
1536
1537 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1538 {
1539         if (!hwp_active)
1540                 return;
1541
1542         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1543 }
1544
1545 /************************** sysfs end ************************/
1546
1547 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1548 {
1549         /* First disable HWP notification interrupt as we don't process them */
1550         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1551                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1552
1553         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1554         if (cpudata->epp_default == -EINVAL)
1555                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1556 }
1557
1558 static int atom_get_min_pstate(int not_used)
1559 {
1560         u64 value;
1561
1562         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1563         return (value >> 8) & 0x7F;
1564 }
1565
1566 static int atom_get_max_pstate(int not_used)
1567 {
1568         u64 value;
1569
1570         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1571         return (value >> 16) & 0x7F;
1572 }
1573
1574 static int atom_get_turbo_pstate(int not_used)
1575 {
1576         u64 value;
1577
1578         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1579         return value & 0x7F;
1580 }
1581
1582 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1583 {
1584         u64 val;
1585         int32_t vid_fp;
1586         u32 vid;
1587
1588         val = (u64)pstate << 8;
1589         if (global.no_turbo && !global.turbo_disabled)
1590                 val |= (u64)1 << 32;
1591
1592         vid_fp = cpudata->vid.min + mul_fp(
1593                 int_tofp(pstate - cpudata->pstate.min_pstate),
1594                 cpudata->vid.ratio);
1595
1596         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1597         vid = ceiling_fp(vid_fp);
1598
1599         if (pstate > cpudata->pstate.max_pstate)
1600                 vid = cpudata->vid.turbo;
1601
1602         return val | vid;
1603 }
1604
1605 static int silvermont_get_scaling(void)
1606 {
1607         u64 value;
1608         int i;
1609         /* Defined in Table 35-6 from SDM (Sept 2015) */
1610         static int silvermont_freq_table[] = {
1611                 83300, 100000, 133300, 116700, 80000};
1612
1613         rdmsrl(MSR_FSB_FREQ, value);
1614         i = value & 0x7;
1615         WARN_ON(i > 4);
1616
1617         return silvermont_freq_table[i];
1618 }
1619
1620 static int airmont_get_scaling(void)
1621 {
1622         u64 value;
1623         int i;
1624         /* Defined in Table 35-10 from SDM (Sept 2015) */
1625         static int airmont_freq_table[] = {
1626                 83300, 100000, 133300, 116700, 80000,
1627                 93300, 90000, 88900, 87500};
1628
1629         rdmsrl(MSR_FSB_FREQ, value);
1630         i = value & 0xF;
1631         WARN_ON(i > 8);
1632
1633         return airmont_freq_table[i];
1634 }
1635
1636 static void atom_get_vid(struct cpudata *cpudata)
1637 {
1638         u64 value;
1639
1640         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1641         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1642         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1643         cpudata->vid.ratio = div_fp(
1644                 cpudata->vid.max - cpudata->vid.min,
1645                 int_tofp(cpudata->pstate.max_pstate -
1646                         cpudata->pstate.min_pstate));
1647
1648         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1649         cpudata->vid.turbo = value & 0x7f;
1650 }
1651
1652 static int core_get_min_pstate(int cpu)
1653 {
1654         u64 value;
1655
1656         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1657         return (value >> 40) & 0xFF;
1658 }
1659
1660 static int core_get_max_pstate_physical(int cpu)
1661 {
1662         u64 value;
1663
1664         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1665         return (value >> 8) & 0xFF;
1666 }
1667
1668 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1669 {
1670         /* Check how many TDP levels present */
1671         if (plat_info & 0x600000000) {
1672                 u64 tdp_ctrl;
1673                 u64 tdp_ratio;
1674                 int tdp_msr;
1675                 int err;
1676
1677                 /* Get the TDP level (0, 1, 2) to get ratios */
1678                 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1679                 if (err)
1680                         return err;
1681
1682                 /* TDP MSR are continuous starting at 0x648 */
1683                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1684                 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1685                 if (err)
1686                         return err;
1687
1688                 /* For level 1 and 2, bits[23:16] contain the ratio */
1689                 if (tdp_ctrl & 0x03)
1690                         tdp_ratio >>= 16;
1691
1692                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1693                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1694
1695                 return (int)tdp_ratio;
1696         }
1697
1698         return -ENXIO;
1699 }
1700
1701 static int core_get_max_pstate(int cpu)
1702 {
1703         u64 tar;
1704         u64 plat_info;
1705         int max_pstate;
1706         int tdp_ratio;
1707         int err;
1708
1709         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1710         max_pstate = (plat_info >> 8) & 0xFF;
1711
1712         tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1713         if (tdp_ratio <= 0)
1714                 return max_pstate;
1715
1716         if (hwp_active) {
1717                 /* Turbo activation ratio is not used on HWP platforms */
1718                 return tdp_ratio;
1719         }
1720
1721         err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1722         if (!err) {
1723                 int tar_levels;
1724
1725                 /* Do some sanity checking for safety */
1726                 tar_levels = tar & 0xff;
1727                 if (tdp_ratio - 1 == tar_levels) {
1728                         max_pstate = tar_levels;
1729                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1730                 }
1731         }
1732
1733         return max_pstate;
1734 }
1735
1736 static int core_get_turbo_pstate(int cpu)
1737 {
1738         u64 value;
1739         int nont, ret;
1740
1741         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1742         nont = core_get_max_pstate(cpu);
1743         ret = (value) & 255;
1744         if (ret <= nont)
1745                 ret = nont;
1746         return ret;
1747 }
1748
1749 static inline int core_get_scaling(void)
1750 {
1751         return 100000;
1752 }
1753
1754 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1755 {
1756         u64 val;
1757
1758         val = (u64)pstate << 8;
1759         if (global.no_turbo && !global.turbo_disabled)
1760                 val |= (u64)1 << 32;
1761
1762         return val;
1763 }
1764
1765 static int knl_get_aperf_mperf_shift(void)
1766 {
1767         return 10;
1768 }
1769
1770 static int knl_get_turbo_pstate(int cpu)
1771 {
1772         u64 value;
1773         int nont, ret;
1774
1775         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1776         nont = core_get_max_pstate(cpu);
1777         ret = (((value) >> 8) & 0xFF);
1778         if (ret <= nont)
1779                 ret = nont;
1780         return ret;
1781 }
1782
1783 static void hybrid_get_type(void *data)
1784 {
1785         u8 *cpu_type = data;
1786
1787         *cpu_type = get_this_hybrid_cpu_type();
1788 }
1789
1790 static int hybrid_get_cpu_scaling(int cpu)
1791 {
1792         u8 cpu_type = 0;
1793
1794         smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1795         /* P-cores have a smaller perf level-to-freqency scaling factor. */
1796         if (cpu_type == 0x40)
1797                 return 78741;
1798
1799         return core_get_scaling();
1800 }
1801
1802 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1803 {
1804         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1805         cpu->pstate.current_pstate = pstate;
1806         /*
1807          * Generally, there is no guarantee that this code will always run on
1808          * the CPU being updated, so force the register update to run on the
1809          * right CPU.
1810          */
1811         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1812                       pstate_funcs.get_val(cpu, pstate));
1813 }
1814
1815 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1816 {
1817         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1818 }
1819
1820 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1821 {
1822         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1823
1824         update_turbo_state();
1825         intel_pstate_set_pstate(cpu, pstate);
1826 }
1827
1828 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1829 {
1830         int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
1831         int perf_ctl_scaling = pstate_funcs.get_scaling();
1832
1833         cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
1834         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1835         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1836
1837         if (hwp_active && !hwp_mode_bdw) {
1838                 __intel_pstate_get_hwp_cap(cpu);
1839
1840                 if (pstate_funcs.get_cpu_scaling) {
1841                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1842                         if (cpu->pstate.scaling != perf_ctl_scaling)
1843                                 intel_pstate_hybrid_hwp_adjust(cpu);
1844                 } else {
1845                         cpu->pstate.scaling = perf_ctl_scaling;
1846                 }
1847         } else {
1848                 cpu->pstate.scaling = perf_ctl_scaling;
1849                 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
1850                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
1851         }
1852
1853         if (cpu->pstate.scaling == perf_ctl_scaling) {
1854                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1855                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1856                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1857         }
1858
1859         if (pstate_funcs.get_aperf_mperf_shift)
1860                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1861
1862         if (pstate_funcs.get_vid)
1863                 pstate_funcs.get_vid(cpu);
1864
1865         intel_pstate_set_min_pstate(cpu);
1866 }
1867
1868 /*
1869  * Long hold time will keep high perf limits for long time,
1870  * which negatively impacts perf/watt for some workloads,
1871  * like specpower. 3ms is based on experiements on some
1872  * workoads.
1873  */
1874 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1875
1876 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1877 {
1878         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1879         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1880         u32 max_limit = (hwp_req & 0xff00) >> 8;
1881         u32 min_limit = (hwp_req & 0xff);
1882         u32 boost_level1;
1883
1884         /*
1885          * Cases to consider (User changes via sysfs or boot time):
1886          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1887          *      No boost, return.
1888          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1889          *     Should result in one level boost only for P0.
1890          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1891          *     Should result in two level boost:
1892          *         (min + p1)/2 and P1.
1893          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1894          *     Should result in three level boost:
1895          *        (min + p1)/2, P1 and P0.
1896          */
1897
1898         /* If max and min are equal or already at max, nothing to boost */
1899         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1900                 return;
1901
1902         if (!cpu->hwp_boost_min)
1903                 cpu->hwp_boost_min = min_limit;
1904
1905         /* level at half way mark between min and guranteed */
1906         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
1907
1908         if (cpu->hwp_boost_min < boost_level1)
1909                 cpu->hwp_boost_min = boost_level1;
1910         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
1911                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
1912         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
1913                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
1914                 cpu->hwp_boost_min = max_limit;
1915         else
1916                 return;
1917
1918         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1919         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1920         cpu->last_update = cpu->sample.time;
1921 }
1922
1923 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1924 {
1925         if (cpu->hwp_boost_min) {
1926                 bool expired;
1927
1928                 /* Check if we are idle for hold time to boost down */
1929                 expired = time_after64(cpu->sample.time, cpu->last_update +
1930                                        hwp_boost_hold_time_ns);
1931                 if (expired) {
1932                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1933                         cpu->hwp_boost_min = 0;
1934                 }
1935         }
1936         cpu->last_update = cpu->sample.time;
1937 }
1938
1939 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1940                                                       u64 time)
1941 {
1942         cpu->sample.time = time;
1943
1944         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1945                 bool do_io = false;
1946
1947                 cpu->sched_flags = 0;
1948                 /*
1949                  * Set iowait_boost flag and update time. Since IO WAIT flag
1950                  * is set all the time, we can't just conclude that there is
1951                  * some IO bound activity is scheduled on this CPU with just
1952                  * one occurrence. If we receive at least two in two
1953                  * consecutive ticks, then we treat as boost candidate.
1954                  */
1955                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1956                         do_io = true;
1957
1958                 cpu->last_io_update = time;
1959
1960                 if (do_io)
1961                         intel_pstate_hwp_boost_up(cpu);
1962
1963         } else {
1964                 intel_pstate_hwp_boost_down(cpu);
1965         }
1966 }
1967
1968 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1969                                                 u64 time, unsigned int flags)
1970 {
1971         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1972
1973         cpu->sched_flags |= flags;
1974
1975         if (smp_processor_id() == cpu->cpu)
1976                 intel_pstate_update_util_hwp_local(cpu, time);
1977 }
1978
1979 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1980 {
1981         struct sample *sample = &cpu->sample;
1982
1983         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1984 }
1985
1986 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1987 {
1988         u64 aperf, mperf;
1989         unsigned long flags;
1990         u64 tsc;
1991
1992         local_irq_save(flags);
1993         rdmsrl(MSR_IA32_APERF, aperf);
1994         rdmsrl(MSR_IA32_MPERF, mperf);
1995         tsc = rdtsc();
1996         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1997                 local_irq_restore(flags);
1998                 return false;
1999         }
2000         local_irq_restore(flags);
2001
2002         cpu->last_sample_time = cpu->sample.time;
2003         cpu->sample.time = time;
2004         cpu->sample.aperf = aperf;
2005         cpu->sample.mperf = mperf;
2006         cpu->sample.tsc =  tsc;
2007         cpu->sample.aperf -= cpu->prev_aperf;
2008         cpu->sample.mperf -= cpu->prev_mperf;
2009         cpu->sample.tsc -= cpu->prev_tsc;
2010
2011         cpu->prev_aperf = aperf;
2012         cpu->prev_mperf = mperf;
2013         cpu->prev_tsc = tsc;
2014         /*
2015          * First time this function is invoked in a given cycle, all of the
2016          * previous sample data fields are equal to zero or stale and they must
2017          * be populated with meaningful numbers for things to work, so assume
2018          * that sample.time will always be reset before setting the utilization
2019          * update hook and make the caller skip the sample then.
2020          */
2021         if (cpu->last_sample_time) {
2022                 intel_pstate_calc_avg_perf(cpu);
2023                 return true;
2024         }
2025         return false;
2026 }
2027
2028 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2029 {
2030         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2031 }
2032
2033 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2034 {
2035         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2036                           cpu->sample.core_avg_perf);
2037 }
2038
2039 static inline int32_t get_target_pstate(struct cpudata *cpu)
2040 {
2041         struct sample *sample = &cpu->sample;
2042         int32_t busy_frac;
2043         int target, avg_pstate;
2044
2045         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2046                            sample->tsc);
2047
2048         if (busy_frac < cpu->iowait_boost)
2049                 busy_frac = cpu->iowait_boost;
2050
2051         sample->busy_scaled = busy_frac * 100;
2052
2053         target = global.no_turbo || global.turbo_disabled ?
2054                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2055         target += target >> 2;
2056         target = mul_fp(target, busy_frac);
2057         if (target < cpu->pstate.min_pstate)
2058                 target = cpu->pstate.min_pstate;
2059
2060         /*
2061          * If the average P-state during the previous cycle was higher than the
2062          * current target, add 50% of the difference to the target to reduce
2063          * possible performance oscillations and offset possible performance
2064          * loss related to moving the workload from one CPU to another within
2065          * a package/module.
2066          */
2067         avg_pstate = get_avg_pstate(cpu);
2068         if (avg_pstate > target)
2069                 target += (avg_pstate - target) >> 1;
2070
2071         return target;
2072 }
2073
2074 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2075 {
2076         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2077         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2078
2079         return clamp_t(int, pstate, min_pstate, max_pstate);
2080 }
2081
2082 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2083 {
2084         if (pstate == cpu->pstate.current_pstate)
2085                 return;
2086
2087         cpu->pstate.current_pstate = pstate;
2088         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2089 }
2090
2091 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2092 {
2093         int from = cpu->pstate.current_pstate;
2094         struct sample *sample;
2095         int target_pstate;
2096
2097         update_turbo_state();
2098
2099         target_pstate = get_target_pstate(cpu);
2100         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2101         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2102         intel_pstate_update_pstate(cpu, target_pstate);
2103
2104         sample = &cpu->sample;
2105         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2106                 fp_toint(sample->busy_scaled),
2107                 from,
2108                 cpu->pstate.current_pstate,
2109                 sample->mperf,
2110                 sample->aperf,
2111                 sample->tsc,
2112                 get_avg_frequency(cpu),
2113                 fp_toint(cpu->iowait_boost * 100));
2114 }
2115
2116 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2117                                      unsigned int flags)
2118 {
2119         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2120         u64 delta_ns;
2121
2122         /* Don't allow remote callbacks */
2123         if (smp_processor_id() != cpu->cpu)
2124                 return;
2125
2126         delta_ns = time - cpu->last_update;
2127         if (flags & SCHED_CPUFREQ_IOWAIT) {
2128                 /* Start over if the CPU may have been idle. */
2129                 if (delta_ns > TICK_NSEC) {
2130                         cpu->iowait_boost = ONE_EIGHTH_FP;
2131                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2132                         cpu->iowait_boost <<= 1;
2133                         if (cpu->iowait_boost > int_tofp(1))
2134                                 cpu->iowait_boost = int_tofp(1);
2135                 } else {
2136                         cpu->iowait_boost = ONE_EIGHTH_FP;
2137                 }
2138         } else if (cpu->iowait_boost) {
2139                 /* Clear iowait_boost if the CPU may have been idle. */
2140                 if (delta_ns > TICK_NSEC)
2141                         cpu->iowait_boost = 0;
2142                 else
2143                         cpu->iowait_boost >>= 1;
2144         }
2145         cpu->last_update = time;
2146         delta_ns = time - cpu->sample.time;
2147         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2148                 return;
2149
2150         if (intel_pstate_sample(cpu, time))
2151                 intel_pstate_adjust_pstate(cpu);
2152 }
2153
2154 static struct pstate_funcs core_funcs = {
2155         .get_max = core_get_max_pstate,
2156         .get_max_physical = core_get_max_pstate_physical,
2157         .get_min = core_get_min_pstate,
2158         .get_turbo = core_get_turbo_pstate,
2159         .get_scaling = core_get_scaling,
2160         .get_val = core_get_val,
2161 };
2162
2163 static const struct pstate_funcs silvermont_funcs = {
2164         .get_max = atom_get_max_pstate,
2165         .get_max_physical = atom_get_max_pstate,
2166         .get_min = atom_get_min_pstate,
2167         .get_turbo = atom_get_turbo_pstate,
2168         .get_val = atom_get_val,
2169         .get_scaling = silvermont_get_scaling,
2170         .get_vid = atom_get_vid,
2171 };
2172
2173 static const struct pstate_funcs airmont_funcs = {
2174         .get_max = atom_get_max_pstate,
2175         .get_max_physical = atom_get_max_pstate,
2176         .get_min = atom_get_min_pstate,
2177         .get_turbo = atom_get_turbo_pstate,
2178         .get_val = atom_get_val,
2179         .get_scaling = airmont_get_scaling,
2180         .get_vid = atom_get_vid,
2181 };
2182
2183 static const struct pstate_funcs knl_funcs = {
2184         .get_max = core_get_max_pstate,
2185         .get_max_physical = core_get_max_pstate_physical,
2186         .get_min = core_get_min_pstate,
2187         .get_turbo = knl_get_turbo_pstate,
2188         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2189         .get_scaling = core_get_scaling,
2190         .get_val = core_get_val,
2191 };
2192
2193 #define X86_MATCH(model, policy)                                         \
2194         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2195                                            X86_FEATURE_APERFMPERF, &policy)
2196
2197 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2198         X86_MATCH(SANDYBRIDGE,          core_funcs),
2199         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2200         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2201         X86_MATCH(IVYBRIDGE,            core_funcs),
2202         X86_MATCH(HASWELL,              core_funcs),
2203         X86_MATCH(BROADWELL,            core_funcs),
2204         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2205         X86_MATCH(HASWELL_X,            core_funcs),
2206         X86_MATCH(HASWELL_L,            core_funcs),
2207         X86_MATCH(HASWELL_G,            core_funcs),
2208         X86_MATCH(BROADWELL_G,          core_funcs),
2209         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2210         X86_MATCH(SKYLAKE_L,            core_funcs),
2211         X86_MATCH(BROADWELL_X,          core_funcs),
2212         X86_MATCH(SKYLAKE,              core_funcs),
2213         X86_MATCH(BROADWELL_D,          core_funcs),
2214         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2215         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2216         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2217         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2218         X86_MATCH(SKYLAKE_X,            core_funcs),
2219         X86_MATCH(COMETLAKE,            core_funcs),
2220         X86_MATCH(ICELAKE_X,            core_funcs),
2221         X86_MATCH(TIGERLAKE,            core_funcs),
2222         {}
2223 };
2224 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2225
2226 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2227         X86_MATCH(BROADWELL_D,          core_funcs),
2228         X86_MATCH(BROADWELL_X,          core_funcs),
2229         X86_MATCH(SKYLAKE_X,            core_funcs),
2230         X86_MATCH(ICELAKE_X,            core_funcs),
2231         {}
2232 };
2233
2234 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2235         X86_MATCH(KABYLAKE,             core_funcs),
2236         {}
2237 };
2238
2239 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2240         X86_MATCH(SKYLAKE_X,            core_funcs),
2241         X86_MATCH(SKYLAKE,              core_funcs),
2242         {}
2243 };
2244
2245 static int intel_pstate_init_cpu(unsigned int cpunum)
2246 {
2247         struct cpudata *cpu;
2248
2249         cpu = all_cpu_data[cpunum];
2250
2251         if (!cpu) {
2252                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2253                 if (!cpu)
2254                         return -ENOMEM;
2255
2256                 all_cpu_data[cpunum] = cpu;
2257
2258                 cpu->cpu = cpunum;
2259
2260                 cpu->epp_default = -EINVAL;
2261
2262                 if (hwp_active) {
2263                         const struct x86_cpu_id *id;
2264
2265                         intel_pstate_hwp_enable(cpu);
2266
2267                         id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2268                         if (id && intel_pstate_acpi_pm_profile_server())
2269                                 hwp_boost = true;
2270                 }
2271         } else if (hwp_active) {
2272                 /*
2273                  * Re-enable HWP in case this happens after a resume from ACPI
2274                  * S3 if the CPU was offline during the whole system/resume
2275                  * cycle.
2276                  */
2277                 intel_pstate_hwp_reenable(cpu);
2278         }
2279
2280         cpu->epp_powersave = -EINVAL;
2281         cpu->epp_policy = 0;
2282
2283         intel_pstate_get_cpu_pstates(cpu);
2284
2285         pr_debug("controlling: cpu %d\n", cpunum);
2286
2287         return 0;
2288 }
2289
2290 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2291 {
2292         struct cpudata *cpu = all_cpu_data[cpu_num];
2293
2294         if (hwp_active && !hwp_boost)
2295                 return;
2296
2297         if (cpu->update_util_set)
2298                 return;
2299
2300         /* Prevent intel_pstate_update_util() from using stale data. */
2301         cpu->sample.time = 0;
2302         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2303                                      (hwp_active ?
2304                                       intel_pstate_update_util_hwp :
2305                                       intel_pstate_update_util));
2306         cpu->update_util_set = true;
2307 }
2308
2309 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2310 {
2311         struct cpudata *cpu_data = all_cpu_data[cpu];
2312
2313         if (!cpu_data->update_util_set)
2314                 return;
2315
2316         cpufreq_remove_update_util_hook(cpu);
2317         cpu_data->update_util_set = false;
2318         synchronize_rcu();
2319 }
2320
2321 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2322 {
2323         return global.turbo_disabled || global.no_turbo ?
2324                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2325 }
2326
2327 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2328                                             unsigned int policy_min,
2329                                             unsigned int policy_max)
2330 {
2331         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2332         int32_t max_policy_perf, min_policy_perf;
2333
2334         max_policy_perf = policy_max / perf_ctl_scaling;
2335         if (policy_max == policy_min) {
2336                 min_policy_perf = max_policy_perf;
2337         } else {
2338                 min_policy_perf = policy_min / perf_ctl_scaling;
2339                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2340                                           0, max_policy_perf);
2341         }
2342
2343         /*
2344          * HWP needs some special consideration, because HWP_REQUEST uses
2345          * abstract values to represent performance rather than pure ratios.
2346          */
2347         if (hwp_active) {
2348                 intel_pstate_get_hwp_cap(cpu);
2349
2350                 if (cpu->pstate.scaling != perf_ctl_scaling) {
2351                         int scaling = cpu->pstate.scaling;
2352                         int freq;
2353
2354                         freq = max_policy_perf * perf_ctl_scaling;
2355                         max_policy_perf = DIV_ROUND_UP(freq, scaling);
2356                         freq = min_policy_perf * perf_ctl_scaling;
2357                         min_policy_perf = DIV_ROUND_UP(freq, scaling);
2358                 }
2359         }
2360
2361         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2362                  cpu->cpu, min_policy_perf, max_policy_perf);
2363
2364         /* Normalize user input to [min_perf, max_perf] */
2365         if (per_cpu_limits) {
2366                 cpu->min_perf_ratio = min_policy_perf;
2367                 cpu->max_perf_ratio = max_policy_perf;
2368         } else {
2369                 int turbo_max = cpu->pstate.turbo_pstate;
2370                 int32_t global_min, global_max;
2371
2372                 /* Global limits are in percent of the maximum turbo P-state. */
2373                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2374                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2375                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2376
2377                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2378                          global_min, global_max);
2379
2380                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2381                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2382                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2383                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2384
2385                 /* Make sure min_perf <= max_perf */
2386                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2387                                           cpu->max_perf_ratio);
2388
2389         }
2390         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2391                  cpu->max_perf_ratio,
2392                  cpu->min_perf_ratio);
2393 }
2394
2395 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2396 {
2397         struct cpudata *cpu;
2398
2399         if (!policy->cpuinfo.max_freq)
2400                 return -ENODEV;
2401
2402         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2403                  policy->cpuinfo.max_freq, policy->max);
2404
2405         cpu = all_cpu_data[policy->cpu];
2406         cpu->policy = policy->policy;
2407
2408         mutex_lock(&intel_pstate_limits_lock);
2409
2410         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2411
2412         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2413                 /*
2414                  * NOHZ_FULL CPUs need this as the governor callback may not
2415                  * be invoked on them.
2416                  */
2417                 intel_pstate_clear_update_util_hook(policy->cpu);
2418                 intel_pstate_max_within_limits(cpu);
2419         } else {
2420                 intel_pstate_set_update_util_hook(policy->cpu);
2421         }
2422
2423         if (hwp_active) {
2424                 /*
2425                  * When hwp_boost was active before and dynamically it
2426                  * was turned off, in that case we need to clear the
2427                  * update util hook.
2428                  */
2429                 if (!hwp_boost)
2430                         intel_pstate_clear_update_util_hook(policy->cpu);
2431                 intel_pstate_hwp_set(policy->cpu);
2432         }
2433
2434         mutex_unlock(&intel_pstate_limits_lock);
2435
2436         return 0;
2437 }
2438
2439 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2440                                            struct cpufreq_policy_data *policy)
2441 {
2442         if (!hwp_active &&
2443             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2444             policy->max < policy->cpuinfo.max_freq &&
2445             policy->max > cpu->pstate.max_freq) {
2446                 pr_debug("policy->max > max non turbo frequency\n");
2447                 policy->max = policy->cpuinfo.max_freq;
2448         }
2449 }
2450
2451 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2452                                            struct cpufreq_policy_data *policy)
2453 {
2454         int max_freq;
2455
2456         update_turbo_state();
2457         if (hwp_active) {
2458                 intel_pstate_get_hwp_cap(cpu);
2459                 max_freq = global.no_turbo || global.turbo_disabled ?
2460                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2461         } else {
2462                 max_freq = intel_pstate_get_max_freq(cpu);
2463         }
2464         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2465
2466         intel_pstate_adjust_policy_max(cpu, policy);
2467 }
2468
2469 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2470 {
2471         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2472
2473         return 0;
2474 }
2475
2476 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2477 {
2478         struct cpudata *cpu = all_cpu_data[policy->cpu];
2479
2480         pr_debug("CPU %d going offline\n", cpu->cpu);
2481
2482         if (cpu->suspended)
2483                 return 0;
2484
2485         /*
2486          * If the CPU is an SMT thread and it goes offline with the performance
2487          * settings different from the minimum, it will prevent its sibling
2488          * from getting to lower performance levels, so force the minimum
2489          * performance on CPU offline to prevent that from happening.
2490          */
2491         if (hwp_active)
2492                 intel_pstate_hwp_offline(cpu);
2493         else
2494                 intel_pstate_set_min_pstate(cpu);
2495
2496         intel_pstate_exit_perf_limits(policy);
2497
2498         return 0;
2499 }
2500
2501 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2502 {
2503         struct cpudata *cpu = all_cpu_data[policy->cpu];
2504
2505         pr_debug("CPU %d going online\n", cpu->cpu);
2506
2507         intel_pstate_init_acpi_perf_limits(policy);
2508
2509         if (hwp_active) {
2510                 /*
2511                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2512                  * know that it need not do that.
2513                  */
2514                 intel_pstate_hwp_reenable(cpu);
2515                 cpu->suspended = false;
2516         }
2517
2518         return 0;
2519 }
2520
2521 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2522 {
2523         intel_pstate_clear_update_util_hook(policy->cpu);
2524
2525         return intel_cpufreq_cpu_offline(policy);
2526 }
2527
2528 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2529 {
2530         pr_debug("CPU %d exiting\n", policy->cpu);
2531
2532         policy->fast_switch_possible = false;
2533
2534         return 0;
2535 }
2536
2537 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2538 {
2539         struct cpudata *cpu;
2540         int rc;
2541
2542         rc = intel_pstate_init_cpu(policy->cpu);
2543         if (rc)
2544                 return rc;
2545
2546         cpu = all_cpu_data[policy->cpu];
2547
2548         cpu->max_perf_ratio = 0xFF;
2549         cpu->min_perf_ratio = 0;
2550
2551         /* cpuinfo and default policy values */
2552         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2553         update_turbo_state();
2554         global.turbo_disabled_mf = global.turbo_disabled;
2555         policy->cpuinfo.max_freq = global.turbo_disabled ?
2556                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2557
2558         policy->min = policy->cpuinfo.min_freq;
2559         policy->max = policy->cpuinfo.max_freq;
2560
2561         intel_pstate_init_acpi_perf_limits(policy);
2562
2563         policy->fast_switch_possible = true;
2564
2565         return 0;
2566 }
2567
2568 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2569 {
2570         int ret = __intel_pstate_cpu_init(policy);
2571
2572         if (ret)
2573                 return ret;
2574
2575         /*
2576          * Set the policy to powersave to provide a valid fallback value in case
2577          * the default cpufreq governor is neither powersave nor performance.
2578          */
2579         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2580
2581         if (hwp_active) {
2582                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2583
2584                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2585         }
2586
2587         return 0;
2588 }
2589
2590 static struct cpufreq_driver intel_pstate = {
2591         .flags          = CPUFREQ_CONST_LOOPS,
2592         .verify         = intel_pstate_verify_policy,
2593         .setpolicy      = intel_pstate_set_policy,
2594         .suspend        = intel_pstate_suspend,
2595         .resume         = intel_pstate_resume,
2596         .init           = intel_pstate_cpu_init,
2597         .exit           = intel_pstate_cpu_exit,
2598         .offline        = intel_pstate_cpu_offline,
2599         .online         = intel_pstate_cpu_online,
2600         .update_limits  = intel_pstate_update_limits,
2601         .name           = "intel_pstate",
2602 };
2603
2604 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2605 {
2606         struct cpudata *cpu = all_cpu_data[policy->cpu];
2607
2608         intel_pstate_verify_cpu_policy(cpu, policy);
2609         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2610
2611         return 0;
2612 }
2613
2614 /* Use of trace in passive mode:
2615  *
2616  * In passive mode the trace core_busy field (also known as the
2617  * performance field, and lablelled as such on the graphs; also known as
2618  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2619  * driver call was via the normal or fast switch path. Various graphs
2620  * output from the intel_pstate_tracer.py utility that include core_busy
2621  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2622  * so we use 10 to indicate the normal path through the driver, and
2623  * 90 to indicate the fast switch path through the driver.
2624  * The scaled_busy field is not used, and is set to 0.
2625  */
2626
2627 #define INTEL_PSTATE_TRACE_TARGET 10
2628 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2629
2630 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2631 {
2632         struct sample *sample;
2633
2634         if (!trace_pstate_sample_enabled())
2635                 return;
2636
2637         if (!intel_pstate_sample(cpu, ktime_get()))
2638                 return;
2639
2640         sample = &cpu->sample;
2641         trace_pstate_sample(trace_type,
2642                 0,
2643                 old_pstate,
2644                 cpu->pstate.current_pstate,
2645                 sample->mperf,
2646                 sample->aperf,
2647                 sample->tsc,
2648                 get_avg_frequency(cpu),
2649                 fp_toint(cpu->iowait_boost * 100));
2650 }
2651
2652 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2653                                      u32 desired, bool fast_switch)
2654 {
2655         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2656
2657         value &= ~HWP_MIN_PERF(~0L);
2658         value |= HWP_MIN_PERF(min);
2659
2660         value &= ~HWP_MAX_PERF(~0L);
2661         value |= HWP_MAX_PERF(max);
2662
2663         value &= ~HWP_DESIRED_PERF(~0L);
2664         value |= HWP_DESIRED_PERF(desired);
2665
2666         if (value == prev)
2667                 return;
2668
2669         WRITE_ONCE(cpu->hwp_req_cached, value);
2670         if (fast_switch)
2671                 wrmsrl(MSR_HWP_REQUEST, value);
2672         else
2673                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2674 }
2675
2676 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2677                                           u32 target_pstate, bool fast_switch)
2678 {
2679         if (fast_switch)
2680                 wrmsrl(MSR_IA32_PERF_CTL,
2681                        pstate_funcs.get_val(cpu, target_pstate));
2682         else
2683                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2684                               pstate_funcs.get_val(cpu, target_pstate));
2685 }
2686
2687 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2688                                        int target_pstate, bool fast_switch)
2689 {
2690         struct cpudata *cpu = all_cpu_data[policy->cpu];
2691         int old_pstate = cpu->pstate.current_pstate;
2692
2693         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2694         if (hwp_active) {
2695                 int max_pstate = policy->strict_target ?
2696                                         target_pstate : cpu->max_perf_ratio;
2697
2698                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2699                                          fast_switch);
2700         } else if (target_pstate != old_pstate) {
2701                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2702         }
2703
2704         cpu->pstate.current_pstate = target_pstate;
2705
2706         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2707                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2708
2709         return target_pstate;
2710 }
2711
2712 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2713                                 unsigned int target_freq,
2714                                 unsigned int relation)
2715 {
2716         struct cpudata *cpu = all_cpu_data[policy->cpu];
2717         struct cpufreq_freqs freqs;
2718         int target_pstate;
2719
2720         update_turbo_state();
2721
2722         freqs.old = policy->cur;
2723         freqs.new = target_freq;
2724
2725         cpufreq_freq_transition_begin(policy, &freqs);
2726
2727         switch (relation) {
2728         case CPUFREQ_RELATION_L:
2729                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2730                 break;
2731         case CPUFREQ_RELATION_H:
2732                 target_pstate = freqs.new / cpu->pstate.scaling;
2733                 break;
2734         default:
2735                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2736                 break;
2737         }
2738
2739         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2740
2741         freqs.new = target_pstate * cpu->pstate.scaling;
2742
2743         cpufreq_freq_transition_end(policy, &freqs, false);
2744
2745         return 0;
2746 }
2747
2748 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2749                                               unsigned int target_freq)
2750 {
2751         struct cpudata *cpu = all_cpu_data[policy->cpu];
2752         int target_pstate;
2753
2754         update_turbo_state();
2755
2756         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2757
2758         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2759
2760         return target_pstate * cpu->pstate.scaling;
2761 }
2762
2763 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2764                                       unsigned long min_perf,
2765                                       unsigned long target_perf,
2766                                       unsigned long capacity)
2767 {
2768         struct cpudata *cpu = all_cpu_data[cpunum];
2769         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2770         int old_pstate = cpu->pstate.current_pstate;
2771         int cap_pstate, min_pstate, max_pstate, target_pstate;
2772
2773         update_turbo_state();
2774         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2775                                              HWP_HIGHEST_PERF(hwp_cap);
2776
2777         /* Optimization: Avoid unnecessary divisions. */
2778
2779         target_pstate = cap_pstate;
2780         if (target_perf < capacity)
2781                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2782
2783         min_pstate = cap_pstate;
2784         if (min_perf < capacity)
2785                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2786
2787         if (min_pstate < cpu->pstate.min_pstate)
2788                 min_pstate = cpu->pstate.min_pstate;
2789
2790         if (min_pstate < cpu->min_perf_ratio)
2791                 min_pstate = cpu->min_perf_ratio;
2792
2793         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2794         if (max_pstate < min_pstate)
2795                 max_pstate = min_pstate;
2796
2797         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2798
2799         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2800
2801         cpu->pstate.current_pstate = target_pstate;
2802         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2803 }
2804
2805 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2806 {
2807         struct freq_qos_request *req;
2808         struct cpudata *cpu;
2809         struct device *dev;
2810         int ret, freq;
2811
2812         dev = get_cpu_device(policy->cpu);
2813         if (!dev)
2814                 return -ENODEV;
2815
2816         ret = __intel_pstate_cpu_init(policy);
2817         if (ret)
2818                 return ret;
2819
2820         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2821         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2822         policy->cur = policy->cpuinfo.min_freq;
2823
2824         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2825         if (!req) {
2826                 ret = -ENOMEM;
2827                 goto pstate_exit;
2828         }
2829
2830         cpu = all_cpu_data[policy->cpu];
2831
2832         if (hwp_active) {
2833                 u64 value;
2834
2835                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2836
2837                 intel_pstate_get_hwp_cap(cpu);
2838
2839                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2840                 WRITE_ONCE(cpu->hwp_req_cached, value);
2841
2842                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2843         } else {
2844                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2845         }
2846
2847         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2848
2849         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2850                                    freq);
2851         if (ret < 0) {
2852                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2853                 goto free_req;
2854         }
2855
2856         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2857
2858         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2859                                    freq);
2860         if (ret < 0) {
2861                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2862                 goto remove_min_req;
2863         }
2864
2865         policy->driver_data = req;
2866
2867         return 0;
2868
2869 remove_min_req:
2870         freq_qos_remove_request(req);
2871 free_req:
2872         kfree(req);
2873 pstate_exit:
2874         intel_pstate_exit_perf_limits(policy);
2875
2876         return ret;
2877 }
2878
2879 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2880 {
2881         struct freq_qos_request *req;
2882
2883         req = policy->driver_data;
2884
2885         freq_qos_remove_request(req + 1);
2886         freq_qos_remove_request(req);
2887         kfree(req);
2888
2889         return intel_pstate_cpu_exit(policy);
2890 }
2891
2892 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
2893 {
2894         intel_pstate_suspend(policy);
2895
2896         if (hwp_active) {
2897                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2898                 u64 value = READ_ONCE(cpu->hwp_req_cached);
2899
2900                 /*
2901                  * Clear the desired perf field in MSR_HWP_REQUEST in case
2902                  * intel_cpufreq_adjust_perf() is in use and the last value
2903                  * written by it may not be suitable.
2904                  */
2905                 value &= ~HWP_DESIRED_PERF(~0L);
2906                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2907                 WRITE_ONCE(cpu->hwp_req_cached, value);
2908         }
2909
2910         return 0;
2911 }
2912
2913 static struct cpufreq_driver intel_cpufreq = {
2914         .flags          = CPUFREQ_CONST_LOOPS,
2915         .verify         = intel_cpufreq_verify_policy,
2916         .target         = intel_cpufreq_target,
2917         .fast_switch    = intel_cpufreq_fast_switch,
2918         .init           = intel_cpufreq_cpu_init,
2919         .exit           = intel_cpufreq_cpu_exit,
2920         .offline        = intel_cpufreq_cpu_offline,
2921         .online         = intel_pstate_cpu_online,
2922         .suspend        = intel_cpufreq_suspend,
2923         .resume         = intel_pstate_resume,
2924         .update_limits  = intel_pstate_update_limits,
2925         .name           = "intel_cpufreq",
2926 };
2927
2928 static struct cpufreq_driver *default_driver;
2929
2930 static void intel_pstate_driver_cleanup(void)
2931 {
2932         unsigned int cpu;
2933
2934         cpus_read_lock();
2935         for_each_online_cpu(cpu) {
2936                 if (all_cpu_data[cpu]) {
2937                         if (intel_pstate_driver == &intel_pstate)
2938                                 intel_pstate_clear_update_util_hook(cpu);
2939
2940                         kfree(all_cpu_data[cpu]);
2941                         all_cpu_data[cpu] = NULL;
2942                 }
2943         }
2944         cpus_read_unlock();
2945
2946         intel_pstate_driver = NULL;
2947 }
2948
2949 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2950 {
2951         int ret;
2952
2953         if (driver == &intel_pstate)
2954                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2955
2956         memset(&global, 0, sizeof(global));
2957         global.max_perf_pct = 100;
2958
2959         intel_pstate_driver = driver;
2960         ret = cpufreq_register_driver(intel_pstate_driver);
2961         if (ret) {
2962                 intel_pstate_driver_cleanup();
2963                 return ret;
2964         }
2965
2966         global.min_perf_pct = min_perf_pct_min();
2967
2968         return 0;
2969 }
2970
2971 static ssize_t intel_pstate_show_status(char *buf)
2972 {
2973         if (!intel_pstate_driver)
2974                 return sprintf(buf, "off\n");
2975
2976         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2977                                         "active" : "passive");
2978 }
2979
2980 static int intel_pstate_update_status(const char *buf, size_t size)
2981 {
2982         if (size == 3 && !strncmp(buf, "off", size)) {
2983                 if (!intel_pstate_driver)
2984                         return -EINVAL;
2985
2986                 if (hwp_active)
2987                         return -EBUSY;
2988
2989                 cpufreq_unregister_driver(intel_pstate_driver);
2990                 intel_pstate_driver_cleanup();
2991                 return 0;
2992         }
2993
2994         if (size == 6 && !strncmp(buf, "active", size)) {
2995                 if (intel_pstate_driver) {
2996                         if (intel_pstate_driver == &intel_pstate)
2997                                 return 0;
2998
2999                         cpufreq_unregister_driver(intel_pstate_driver);
3000                 }
3001
3002                 return intel_pstate_register_driver(&intel_pstate);
3003         }
3004
3005         if (size == 7 && !strncmp(buf, "passive", size)) {
3006                 if (intel_pstate_driver) {
3007                         if (intel_pstate_driver == &intel_cpufreq)
3008                                 return 0;
3009
3010                         cpufreq_unregister_driver(intel_pstate_driver);
3011                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3012                 }
3013
3014                 return intel_pstate_register_driver(&intel_cpufreq);
3015         }
3016
3017         return -EINVAL;
3018 }
3019
3020 static int no_load __initdata;
3021 static int no_hwp __initdata;
3022 static int hwp_only __initdata;
3023 static unsigned int force_load __initdata;
3024
3025 static int __init intel_pstate_msrs_not_valid(void)
3026 {
3027         if (!pstate_funcs.get_max(0) ||
3028             !pstate_funcs.get_min(0) ||
3029             !pstate_funcs.get_turbo(0))
3030                 return -ENODEV;
3031
3032         return 0;
3033 }
3034
3035 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3036 {
3037         pstate_funcs.get_max   = funcs->get_max;
3038         pstate_funcs.get_max_physical = funcs->get_max_physical;
3039         pstate_funcs.get_min   = funcs->get_min;
3040         pstate_funcs.get_turbo = funcs->get_turbo;
3041         pstate_funcs.get_scaling = funcs->get_scaling;
3042         pstate_funcs.get_val   = funcs->get_val;
3043         pstate_funcs.get_vid   = funcs->get_vid;
3044         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3045 }
3046
3047 #ifdef CONFIG_ACPI
3048
3049 static bool __init intel_pstate_no_acpi_pss(void)
3050 {
3051         int i;
3052
3053         for_each_possible_cpu(i) {
3054                 acpi_status status;
3055                 union acpi_object *pss;
3056                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3057                 struct acpi_processor *pr = per_cpu(processors, i);
3058
3059                 if (!pr)
3060                         continue;
3061
3062                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3063                 if (ACPI_FAILURE(status))
3064                         continue;
3065
3066                 pss = buffer.pointer;
3067                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3068                         kfree(pss);
3069                         return false;
3070                 }
3071
3072                 kfree(pss);
3073         }
3074
3075         pr_debug("ACPI _PSS not found\n");
3076         return true;
3077 }
3078
3079 static bool __init intel_pstate_no_acpi_pcch(void)
3080 {
3081         acpi_status status;
3082         acpi_handle handle;
3083
3084         status = acpi_get_handle(NULL, "\\_SB", &handle);
3085         if (ACPI_FAILURE(status))
3086                 goto not_found;
3087
3088         if (acpi_has_method(handle, "PCCH"))
3089                 return false;
3090
3091 not_found:
3092         pr_debug("ACPI PCCH not found\n");
3093         return true;
3094 }
3095
3096 static bool __init intel_pstate_has_acpi_ppc(void)
3097 {
3098         int i;
3099
3100         for_each_possible_cpu(i) {
3101                 struct acpi_processor *pr = per_cpu(processors, i);
3102
3103                 if (!pr)
3104                         continue;
3105                 if (acpi_has_method(pr->handle, "_PPC"))
3106                         return true;
3107         }
3108         pr_debug("ACPI _PPC not found\n");
3109         return false;
3110 }
3111
3112 enum {
3113         PSS,
3114         PPC,
3115 };
3116
3117 /* Hardware vendor-specific info that has its own power management modes */
3118 static struct acpi_platform_list plat_info[] __initdata = {
3119         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3120         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3121         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3122         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3123         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3124         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3125         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3126         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3127         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3128         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3129         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3130         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3131         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3132         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3133         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3134         { } /* End */
3135 };
3136
3137 #define BITMASK_OOB     (BIT(8) | BIT(18))
3138
3139 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3140 {
3141         const struct x86_cpu_id *id;
3142         u64 misc_pwr;
3143         int idx;
3144
3145         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3146         if (id) {
3147                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3148                 if (misc_pwr & BITMASK_OOB) {
3149                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3150                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3151                         return true;
3152                 }
3153         }
3154
3155         idx = acpi_match_platform_list(plat_info);
3156         if (idx < 0)
3157                 return false;
3158
3159         switch (plat_info[idx].data) {
3160         case PSS:
3161                 if (!intel_pstate_no_acpi_pss())
3162                         return false;
3163
3164                 return intel_pstate_no_acpi_pcch();
3165         case PPC:
3166                 return intel_pstate_has_acpi_ppc() && !force_load;
3167         }
3168
3169         return false;
3170 }
3171
3172 static void intel_pstate_request_control_from_smm(void)
3173 {
3174         /*
3175          * It may be unsafe to request P-states control from SMM if _PPC support
3176          * has not been enabled.
3177          */
3178         if (acpi_ppc)
3179                 acpi_processor_pstate_control();
3180 }
3181 #else /* CONFIG_ACPI not enabled */
3182 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3183 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3184 static inline void intel_pstate_request_control_from_smm(void) {}
3185 #endif /* CONFIG_ACPI */
3186
3187 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3188
3189 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3190         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3191                                            X86_FEATURE_HWP, hwp_mode)
3192
3193 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3194         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3195         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3196         X86_MATCH_HWP(ANY,              0),
3197         {}
3198 };
3199
3200 static bool intel_pstate_hwp_is_enabled(void)
3201 {
3202         u64 value;
3203
3204         rdmsrl(MSR_PM_ENABLE, value);
3205         return !!(value & 0x1);
3206 }
3207
3208 static int __init intel_pstate_init(void)
3209 {
3210         const struct x86_cpu_id *id;
3211         int rc;
3212
3213         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3214                 return -ENODEV;
3215
3216         id = x86_match_cpu(hwp_support_ids);
3217         if (id) {
3218                 bool hwp_forced = intel_pstate_hwp_is_enabled();
3219
3220                 if (hwp_forced)
3221                         pr_info("HWP enabled by BIOS\n");
3222                 else if (no_load)
3223                         return -ENODEV;
3224
3225                 copy_cpu_funcs(&core_funcs);
3226                 /*
3227                  * Avoid enabling HWP for processors without EPP support,
3228                  * because that means incomplete HWP implementation which is a
3229                  * corner case and supporting it is generally problematic.
3230                  *
3231                  * If HWP is enabled already, though, there is no choice but to
3232                  * deal with it.
3233                  */
3234                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3235                         hwp_active++;
3236                         hwp_mode_bdw = id->driver_data;
3237                         intel_pstate.attr = hwp_cpufreq_attrs;
3238                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3239                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3240                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3241                         if (!default_driver)
3242                                 default_driver = &intel_pstate;
3243
3244                         if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3245                                 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
3246
3247                         goto hwp_cpu_matched;
3248                 }
3249                 pr_info("HWP not enabled\n");
3250         } else {
3251                 if (no_load)
3252                         return -ENODEV;
3253
3254                 id = x86_match_cpu(intel_pstate_cpu_ids);
3255                 if (!id) {
3256                         pr_info("CPU model not supported\n");
3257                         return -ENODEV;
3258                 }
3259
3260                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3261         }
3262
3263         if (intel_pstate_msrs_not_valid()) {
3264                 pr_info("Invalid MSRs\n");
3265                 return -ENODEV;
3266         }
3267         /* Without HWP start in the passive mode. */
3268         if (!default_driver)
3269                 default_driver = &intel_cpufreq;
3270
3271 hwp_cpu_matched:
3272         /*
3273          * The Intel pstate driver will be ignored if the platform
3274          * firmware has its own power management modes.
3275          */
3276         if (intel_pstate_platform_pwr_mgmt_exists()) {
3277                 pr_info("P-states controlled by the platform\n");
3278                 return -ENODEV;
3279         }
3280
3281         if (!hwp_active && hwp_only)
3282                 return -ENOTSUPP;
3283
3284         pr_info("Intel P-state driver initializing\n");
3285
3286         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3287         if (!all_cpu_data)
3288                 return -ENOMEM;
3289
3290         intel_pstate_request_control_from_smm();
3291
3292         intel_pstate_sysfs_expose_params();
3293
3294         mutex_lock(&intel_pstate_driver_lock);
3295         rc = intel_pstate_register_driver(default_driver);
3296         mutex_unlock(&intel_pstate_driver_lock);
3297         if (rc) {
3298                 intel_pstate_sysfs_remove();
3299                 return rc;
3300         }
3301
3302         if (hwp_active) {
3303                 const struct x86_cpu_id *id;
3304
3305                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3306                 if (id) {
3307                         set_power_ctl_ee_state(false);
3308                         pr_info("Disabling energy efficiency optimization\n");
3309                 }
3310
3311                 pr_info("HWP enabled\n");
3312         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3313                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3314         }
3315
3316         return 0;
3317 }
3318 device_initcall(intel_pstate_init);
3319
3320 static int __init intel_pstate_setup(char *str)
3321 {
3322         if (!str)
3323                 return -EINVAL;
3324
3325         if (!strcmp(str, "disable"))
3326                 no_load = 1;
3327         else if (!strcmp(str, "active"))
3328                 default_driver = &intel_pstate;
3329         else if (!strcmp(str, "passive"))
3330                 default_driver = &intel_cpufreq;
3331
3332         if (!strcmp(str, "no_hwp"))
3333                 no_hwp = 1;
3334
3335         if (!strcmp(str, "force"))
3336                 force_load = 1;
3337         if (!strcmp(str, "hwp_only"))
3338                 hwp_only = 1;
3339         if (!strcmp(str, "per_cpu_perf_limits"))
3340                 per_cpu_limits = true;
3341
3342 #ifdef CONFIG_ACPI
3343         if (!strcmp(str, "support_acpi_ppc"))
3344                 acpi_ppc = true;
3345 #endif
3346
3347         return 0;
3348 }
3349 early_param("intel_pstate", intel_pstate_setup);
3350
3351 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3352 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3353 MODULE_LICENSE("GPL");