Merge tag 'devicetree-fixes-for-6.6-1' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37
38 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67         return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72         int mask, ret;
73
74         ret = fp_toint(x);
75         mask = (1 << FRAC_BITS) - 1;
76         if (x & mask)
77                 ret += 1;
78         return ret;
79 }
80
81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83         return (x * y) >> EXT_FRAC_BITS;
84 }
85
86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88         return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90
91 /**
92  * struct sample -      Store performance sample
93  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
94  *                      performance during last sample period
95  * @busy_scaled:        Scaled busy value which is used to calculate next
96  *                      P state. This can be different than core_avg_perf
97  *                      to account for cpu idle period
98  * @aperf:              Difference of actual performance frequency clock count
99  *                      read from APERF MSR between last and current sample
100  * @mperf:              Difference of maximum performance frequency clock count
101  *                      read from MPERF MSR between last and current sample
102  * @tsc:                Difference of time stamp counter between last and
103  *                      current sample
104  * @time:               Current time from scheduler
105  *
106  * This structure is used in the cpudata structure to store performance sample
107  * data for choosing next P State.
108  */
109 struct sample {
110         int32_t core_avg_perf;
111         int32_t busy_scaled;
112         u64 aperf;
113         u64 mperf;
114         u64 tsc;
115         u64 time;
116 };
117
118 /**
119  * struct pstate_data - Store P state data
120  * @current_pstate:     Current requested P state
121  * @min_pstate:         Min P state possible for this platform
122  * @max_pstate:         Max P state possible for this platform
123  * @max_pstate_physical:This is physical Max P state for a processor
124  *                      This can be higher than the max_pstate which can
125  *                      be limited by platform thermal design power limits
126  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
127  * @scaling:            Scaling factor between performance and frequency
128  * @turbo_pstate:       Max Turbo P state possible for this platform
129  * @min_freq:           @min_pstate frequency in cpufreq units
130  * @max_freq:           @max_pstate frequency in cpufreq units
131  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136         int     current_pstate;
137         int     min_pstate;
138         int     max_pstate;
139         int     max_pstate_physical;
140         int     perf_ctl_scaling;
141         int     scaling;
142         int     turbo_pstate;
143         unsigned int min_freq;
144         unsigned int max_freq;
145         unsigned int turbo_freq;
146 };
147
148 /**
149  * struct vid_data -    Stores voltage information data
150  * @min:                VID data for this platform corresponding to
151  *                      the lowest P state
152  * @max:                VID data corresponding to the highest P State.
153  * @turbo:              VID data for turbo P state
154  * @ratio:              Ratio of (vid max - vid min) /
155  *                      (max P state - Min P State)
156  *
157  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158  * This data is used in Atom platforms, where in addition to target P state,
159  * the voltage data needs to be specified to select next P State.
160  */
161 struct vid_data {
162         int min;
163         int max;
164         int turbo;
165         int32_t ratio;
166 };
167
168 /**
169  * struct global_params - Global parameters, mostly tunable via sysfs.
170  * @no_turbo:           Whether or not to use turbo P-states.
171  * @turbo_disabled:     Whether or not turbo P-states are available at all,
172  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
173  *                      not the maximum reported turbo P-state is different from
174  *                      the maximum reported non-turbo one.
175  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
176  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
177  *                      P-state capacity.
178  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
179  *                      P-state capacity.
180  */
181 struct global_params {
182         bool no_turbo;
183         bool turbo_disabled;
184         bool turbo_disabled_mf;
185         int max_perf_pct;
186         int min_perf_pct;
187 };
188
189 /**
190  * struct cpudata -     Per CPU instance data storage
191  * @cpu:                CPU number for this instance data
192  * @policy:             CPUFreq policy value
193  * @update_util:        CPUFreq utility callback information
194  * @update_util_set:    CPUFreq utility callback is set
195  * @iowait_boost:       iowait-related boost fraction
196  * @last_update:        Time of the last update.
197  * @pstate:             Stores P state limits for this CPU
198  * @vid:                Stores VID limits for this CPU
199  * @last_sample_time:   Last Sample time
200  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
201  * @prev_aperf:         Last APERF value read from APERF MSR
202  * @prev_mperf:         Last MPERF value read from MPERF MSR
203  * @prev_tsc:           Last timestamp counter (TSC) value
204  * @prev_cummulative_iowait: IO Wait time difference from last and
205  *                      current sample
206  * @sample:             Storage for storing last Sample data
207  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
208  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
209  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
210  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
211  * @epp_powersave:      Last saved HWP energy performance preference
212  *                      (EPP) or energy performance bias (EPB),
213  *                      when policy switched to performance
214  * @epp_policy:         Last saved policy used to set EPP/EPB
215  * @epp_default:        Power on default HWP energy performance
216  *                      preference/bias
217  * @epp_cached          Cached HWP energy-performance preference value
218  * @hwp_req_cached:     Cached value of the last HWP Request MSR
219  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
220  * @last_io_update:     Last time when IO wake flag was set
221  * @sched_flags:        Store scheduler flags for possible cross CPU update
222  * @hwp_boost_min:      Last HWP boosted min performance
223  * @suspended:          Whether or not the driver has been suspended.
224  * @hwp_notify_work:    workqueue for HWP notifications.
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229         int cpu;
230
231         unsigned int policy;
232         struct update_util_data update_util;
233         bool   update_util_set;
234
235         struct pstate_data pstate;
236         struct vid_data vid;
237
238         u64     last_update;
239         u64     last_sample_time;
240         u64     aperf_mperf_shift;
241         u64     prev_aperf;
242         u64     prev_mperf;
243         u64     prev_tsc;
244         u64     prev_cummulative_iowait;
245         struct sample sample;
246         int32_t min_perf_ratio;
247         int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249         struct acpi_processor_performance acpi_perf_data;
250         bool valid_pss_table;
251 #endif
252         unsigned int iowait_boost;
253         s16 epp_powersave;
254         s16 epp_policy;
255         s16 epp_default;
256         s16 epp_cached;
257         u64 hwp_req_cached;
258         u64 hwp_cap_cached;
259         u64 last_io_update;
260         unsigned int sched_flags;
261         u32 hwp_boost_min;
262         bool suspended;
263         struct delayed_work hwp_notify_work;
264 };
265
266 static struct cpudata **all_cpu_data;
267
268 /**
269  * struct pstate_funcs - Per CPU model specific callbacks
270  * @get_max:            Callback to get maximum non turbo effective P state
271  * @get_max_physical:   Callback to get maximum non turbo physical P state
272  * @get_min:            Callback to get minimum P state
273  * @get_turbo:          Callback to get turbo P state
274  * @get_scaling:        Callback to get frequency scaling factor
275  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
276  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(int cpu);
285         int (*get_max_physical)(int cpu);
286         int (*get_min)(int cpu);
287         int (*get_turbo)(int cpu);
288         int (*get_scaling)(void);
289         int (*get_cpu_scaling)(int cpu);
290         int (*get_aperf_mperf_shift)(void);
291         u64 (*get_val)(struct cpudata*, int pstate);
292         void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #define HYBRID_SCALING_FACTOR   78741
306
307 static inline int core_get_scaling(void)
308 {
309         return 100000;
310 }
311
312 #ifdef CONFIG_ACPI
313 static bool acpi_ppc;
314 #endif
315
316 static struct global_params global;
317
318 static DEFINE_MUTEX(intel_pstate_driver_lock);
319 static DEFINE_MUTEX(intel_pstate_limits_lock);
320
321 #ifdef CONFIG_ACPI
322
323 static bool intel_pstate_acpi_pm_profile_server(void)
324 {
325         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
326             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
327                 return true;
328
329         return false;
330 }
331
332 static bool intel_pstate_get_ppc_enable_status(void)
333 {
334         if (intel_pstate_acpi_pm_profile_server())
335                 return true;
336
337         return acpi_ppc;
338 }
339
340 #ifdef CONFIG_ACPI_CPPC_LIB
341
342 /* The work item is needed to avoid CPU hotplug locking issues */
343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
344 {
345         sched_set_itmt_support();
346 }
347
348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
349
350 #define CPPC_MAX_PERF   U8_MAX
351
352 static void intel_pstate_set_itmt_prio(int cpu)
353 {
354         struct cppc_perf_caps cppc_perf;
355         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
356         int ret;
357
358         ret = cppc_get_perf_caps(cpu, &cppc_perf);
359         if (ret)
360                 return;
361
362         /*
363          * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
364          * In this case we can't use CPPC.highest_perf to enable ITMT.
365          * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
366          */
367         if (cppc_perf.highest_perf == CPPC_MAX_PERF)
368                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
369
370         /*
371          * The priorities can be set regardless of whether or not
372          * sched_set_itmt_support(true) has been called and it is valid to
373          * update them at any time after it has been called.
374          */
375         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
376
377         if (max_highest_perf <= min_highest_perf) {
378                 if (cppc_perf.highest_perf > max_highest_perf)
379                         max_highest_perf = cppc_perf.highest_perf;
380
381                 if (cppc_perf.highest_perf < min_highest_perf)
382                         min_highest_perf = cppc_perf.highest_perf;
383
384                 if (max_highest_perf > min_highest_perf) {
385                         /*
386                          * This code can be run during CPU online under the
387                          * CPU hotplug locks, so sched_set_itmt_support()
388                          * cannot be called from here.  Queue up a work item
389                          * to invoke it.
390                          */
391                         schedule_work(&sched_itmt_work);
392                 }
393         }
394 }
395
396 static int intel_pstate_get_cppc_guaranteed(int cpu)
397 {
398         struct cppc_perf_caps cppc_perf;
399         int ret;
400
401         ret = cppc_get_perf_caps(cpu, &cppc_perf);
402         if (ret)
403                 return ret;
404
405         if (cppc_perf.guaranteed_perf)
406                 return cppc_perf.guaranteed_perf;
407
408         return cppc_perf.nominal_perf;
409 }
410
411 static int intel_pstate_cppc_get_scaling(int cpu)
412 {
413         struct cppc_perf_caps cppc_perf;
414         int ret;
415
416         ret = cppc_get_perf_caps(cpu, &cppc_perf);
417
418         /*
419          * If the nominal frequency and the nominal performance are not
420          * zero and the ratio between them is not 100, return the hybrid
421          * scaling factor.
422          */
423         if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
424             cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
425                 return HYBRID_SCALING_FACTOR;
426
427         return core_get_scaling();
428 }
429
430 #else /* CONFIG_ACPI_CPPC_LIB */
431 static inline void intel_pstate_set_itmt_prio(int cpu)
432 {
433 }
434 #endif /* CONFIG_ACPI_CPPC_LIB */
435
436 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
437 {
438         struct cpudata *cpu;
439         int ret;
440         int i;
441
442         if (hwp_active) {
443                 intel_pstate_set_itmt_prio(policy->cpu);
444                 return;
445         }
446
447         if (!intel_pstate_get_ppc_enable_status())
448                 return;
449
450         cpu = all_cpu_data[policy->cpu];
451
452         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
453                                                   policy->cpu);
454         if (ret)
455                 return;
456
457         /*
458          * Check if the control value in _PSS is for PERF_CTL MSR, which should
459          * guarantee that the states returned by it map to the states in our
460          * list directly.
461          */
462         if (cpu->acpi_perf_data.control_register.space_id !=
463                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
464                 goto err;
465
466         /*
467          * If there is only one entry _PSS, simply ignore _PSS and continue as
468          * usual without taking _PSS into account
469          */
470         if (cpu->acpi_perf_data.state_count < 2)
471                 goto err;
472
473         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
474         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
475                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
476                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
477                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
478                          (u32) cpu->acpi_perf_data.states[i].power,
479                          (u32) cpu->acpi_perf_data.states[i].control);
480         }
481
482         cpu->valid_pss_table = true;
483         pr_debug("_PPC limits will be enforced\n");
484
485         return;
486
487  err:
488         cpu->valid_pss_table = false;
489         acpi_processor_unregister_performance(policy->cpu);
490 }
491
492 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494         struct cpudata *cpu;
495
496         cpu = all_cpu_data[policy->cpu];
497         if (!cpu->valid_pss_table)
498                 return;
499
500         acpi_processor_unregister_performance(policy->cpu);
501 }
502 #else /* CONFIG_ACPI */
503 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
504 {
505 }
506
507 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
508 {
509 }
510
511 static inline bool intel_pstate_acpi_pm_profile_server(void)
512 {
513         return false;
514 }
515 #endif /* CONFIG_ACPI */
516
517 #ifndef CONFIG_ACPI_CPPC_LIB
518 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
519 {
520         return -ENOTSUPP;
521 }
522
523 static int intel_pstate_cppc_get_scaling(int cpu)
524 {
525         return core_get_scaling();
526 }
527 #endif /* CONFIG_ACPI_CPPC_LIB */
528
529 /**
530  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
531  * @cpu: Target CPU.
532  *
533  * On hybrid processors, HWP may expose more performance levels than there are
534  * P-states accessible through the PERF_CTL interface.  If that happens, the
535  * scaling factor between HWP performance levels and CPU frequency will be less
536  * than the scaling factor between P-state values and CPU frequency.
537  *
538  * In that case, adjust the CPU parameters used in computations accordingly.
539  */
540 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
541 {
542         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
543         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
544         int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
545         int scaling = cpu->pstate.scaling;
546
547         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
548         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
549         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
550         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
551         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
552         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
553
554         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
555                                            perf_ctl_scaling);
556         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
557                                          perf_ctl_scaling);
558
559         cpu->pstate.max_pstate_physical =
560                         DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
561                                      scaling);
562
563         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
564         /*
565          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
566          * the effective range of HWP performance levels.
567          */
568         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
569 }
570
571 static inline void update_turbo_state(void)
572 {
573         u64 misc_en;
574         struct cpudata *cpu;
575
576         cpu = all_cpu_data[0];
577         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
578         global.turbo_disabled =
579                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
580                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
581 }
582
583 static int min_perf_pct_min(void)
584 {
585         struct cpudata *cpu = all_cpu_data[0];
586         int turbo_pstate = cpu->pstate.turbo_pstate;
587
588         return turbo_pstate ?
589                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
590 }
591
592 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
593 {
594         u64 epb;
595         int ret;
596
597         if (!boot_cpu_has(X86_FEATURE_EPB))
598                 return -ENXIO;
599
600         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
601         if (ret)
602                 return (s16)ret;
603
604         return (s16)(epb & 0x0f);
605 }
606
607 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
608 {
609         s16 epp;
610
611         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
612                 /*
613                  * When hwp_req_data is 0, means that caller didn't read
614                  * MSR_HWP_REQUEST, so need to read and get EPP.
615                  */
616                 if (!hwp_req_data) {
617                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
618                                             &hwp_req_data);
619                         if (epp)
620                                 return epp;
621                 }
622                 epp = (hwp_req_data >> 24) & 0xff;
623         } else {
624                 /* When there is no EPP present, HWP uses EPB settings */
625                 epp = intel_pstate_get_epb(cpu_data);
626         }
627
628         return epp;
629 }
630
631 static int intel_pstate_set_epb(int cpu, s16 pref)
632 {
633         u64 epb;
634         int ret;
635
636         if (!boot_cpu_has(X86_FEATURE_EPB))
637                 return -ENXIO;
638
639         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
640         if (ret)
641                 return ret;
642
643         epb = (epb & ~0x0f) | pref;
644         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
645
646         return 0;
647 }
648
649 /*
650  * EPP/EPB display strings corresponding to EPP index in the
651  * energy_perf_strings[]
652  *      index           String
653  *-------------------------------------
654  *      0               default
655  *      1               performance
656  *      2               balance_performance
657  *      3               balance_power
658  *      4               power
659  */
660
661 enum energy_perf_value_index {
662         EPP_INDEX_DEFAULT = 0,
663         EPP_INDEX_PERFORMANCE,
664         EPP_INDEX_BALANCE_PERFORMANCE,
665         EPP_INDEX_BALANCE_POWERSAVE,
666         EPP_INDEX_POWERSAVE,
667 };
668
669 static const char * const energy_perf_strings[] = {
670         [EPP_INDEX_DEFAULT] = "default",
671         [EPP_INDEX_PERFORMANCE] = "performance",
672         [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
673         [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
674         [EPP_INDEX_POWERSAVE] = "power",
675         NULL
676 };
677 static unsigned int epp_values[] = {
678         [EPP_INDEX_DEFAULT] = 0, /* Unused index */
679         [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
680         [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
681         [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
682         [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
683 };
684
685 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
686 {
687         s16 epp;
688         int index = -EINVAL;
689
690         *raw_epp = 0;
691         epp = intel_pstate_get_epp(cpu_data, 0);
692         if (epp < 0)
693                 return epp;
694
695         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
696                 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
697                         return EPP_INDEX_PERFORMANCE;
698                 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
699                         return EPP_INDEX_BALANCE_PERFORMANCE;
700                 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
701                         return EPP_INDEX_BALANCE_POWERSAVE;
702                 if (epp == epp_values[EPP_INDEX_POWERSAVE])
703                         return EPP_INDEX_POWERSAVE;
704                 *raw_epp = epp;
705                 return 0;
706         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
707                 /*
708                  * Range:
709                  *      0x00-0x03       :       Performance
710                  *      0x04-0x07       :       Balance performance
711                  *      0x08-0x0B       :       Balance power
712                  *      0x0C-0x0F       :       Power
713                  * The EPB is a 4 bit value, but our ranges restrict the
714                  * value which can be set. Here only using top two bits
715                  * effectively.
716                  */
717                 index = (epp >> 2) + 1;
718         }
719
720         return index;
721 }
722
723 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
724 {
725         int ret;
726
727         /*
728          * Use the cached HWP Request MSR value, because in the active mode the
729          * register itself may be updated by intel_pstate_hwp_boost_up() or
730          * intel_pstate_hwp_boost_down() at any time.
731          */
732         u64 value = READ_ONCE(cpu->hwp_req_cached);
733
734         value &= ~GENMASK_ULL(31, 24);
735         value |= (u64)epp << 24;
736         /*
737          * The only other updater of hwp_req_cached in the active mode,
738          * intel_pstate_hwp_set(), is called under the same lock as this
739          * function, so it cannot run in parallel with the update below.
740          */
741         WRITE_ONCE(cpu->hwp_req_cached, value);
742         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
743         if (!ret)
744                 cpu->epp_cached = epp;
745
746         return ret;
747 }
748
749 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
750                                               int pref_index, bool use_raw,
751                                               u32 raw_epp)
752 {
753         int epp = -EINVAL;
754         int ret;
755
756         if (!pref_index)
757                 epp = cpu_data->epp_default;
758
759         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
760                 if (use_raw)
761                         epp = raw_epp;
762                 else if (epp == -EINVAL)
763                         epp = epp_values[pref_index];
764
765                 /*
766                  * To avoid confusion, refuse to set EPP to any values different
767                  * from 0 (performance) if the current policy is "performance",
768                  * because those values would be overridden.
769                  */
770                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
771                         return -EBUSY;
772
773                 ret = intel_pstate_set_epp(cpu_data, epp);
774         } else {
775                 if (epp == -EINVAL)
776                         epp = (pref_index - 1) << 2;
777                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
778         }
779
780         return ret;
781 }
782
783 static ssize_t show_energy_performance_available_preferences(
784                                 struct cpufreq_policy *policy, char *buf)
785 {
786         int i = 0;
787         int ret = 0;
788
789         while (energy_perf_strings[i] != NULL)
790                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
791
792         ret += sprintf(&buf[ret], "\n");
793
794         return ret;
795 }
796
797 cpufreq_freq_attr_ro(energy_performance_available_preferences);
798
799 static struct cpufreq_driver intel_pstate;
800
801 static ssize_t store_energy_performance_preference(
802                 struct cpufreq_policy *policy, const char *buf, size_t count)
803 {
804         struct cpudata *cpu = all_cpu_data[policy->cpu];
805         char str_preference[21];
806         bool raw = false;
807         ssize_t ret;
808         u32 epp = 0;
809
810         ret = sscanf(buf, "%20s", str_preference);
811         if (ret != 1)
812                 return -EINVAL;
813
814         ret = match_string(energy_perf_strings, -1, str_preference);
815         if (ret < 0) {
816                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
817                         return ret;
818
819                 ret = kstrtouint(buf, 10, &epp);
820                 if (ret)
821                         return ret;
822
823                 if (epp > 255)
824                         return -EINVAL;
825
826                 raw = true;
827         }
828
829         /*
830          * This function runs with the policy R/W semaphore held, which
831          * guarantees that the driver pointer will not change while it is
832          * running.
833          */
834         if (!intel_pstate_driver)
835                 return -EAGAIN;
836
837         mutex_lock(&intel_pstate_limits_lock);
838
839         if (intel_pstate_driver == &intel_pstate) {
840                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
841         } else {
842                 /*
843                  * In the passive mode the governor needs to be stopped on the
844                  * target CPU before the EPP update and restarted after it,
845                  * which is super-heavy-weight, so make sure it is worth doing
846                  * upfront.
847                  */
848                 if (!raw)
849                         epp = ret ? epp_values[ret] : cpu->epp_default;
850
851                 if (cpu->epp_cached != epp) {
852                         int err;
853
854                         cpufreq_stop_governor(policy);
855                         ret = intel_pstate_set_epp(cpu, epp);
856                         err = cpufreq_start_governor(policy);
857                         if (!ret)
858                                 ret = err;
859                 } else {
860                         ret = 0;
861                 }
862         }
863
864         mutex_unlock(&intel_pstate_limits_lock);
865
866         return ret ?: count;
867 }
868
869 static ssize_t show_energy_performance_preference(
870                                 struct cpufreq_policy *policy, char *buf)
871 {
872         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
873         int preference, raw_epp;
874
875         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
876         if (preference < 0)
877                 return preference;
878
879         if (raw_epp)
880                 return  sprintf(buf, "%d\n", raw_epp);
881         else
882                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
883 }
884
885 cpufreq_freq_attr_rw(energy_performance_preference);
886
887 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
888 {
889         struct cpudata *cpu = all_cpu_data[policy->cpu];
890         int ratio, freq;
891
892         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
893         if (ratio <= 0) {
894                 u64 cap;
895
896                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
897                 ratio = HWP_GUARANTEED_PERF(cap);
898         }
899
900         freq = ratio * cpu->pstate.scaling;
901         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
902                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
903
904         return sprintf(buf, "%d\n", freq);
905 }
906
907 cpufreq_freq_attr_ro(base_frequency);
908
909 static struct freq_attr *hwp_cpufreq_attrs[] = {
910         &energy_performance_preference,
911         &energy_performance_available_preferences,
912         &base_frequency,
913         NULL,
914 };
915
916 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
917 {
918         u64 cap;
919
920         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
921         WRITE_ONCE(cpu->hwp_cap_cached, cap);
922         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
923         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
924 }
925
926 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
927 {
928         int scaling = cpu->pstate.scaling;
929
930         __intel_pstate_get_hwp_cap(cpu);
931
932         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
933         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
934         if (scaling != cpu->pstate.perf_ctl_scaling) {
935                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
936
937                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
938                                                  perf_ctl_scaling);
939                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
940                                                    perf_ctl_scaling);
941         }
942 }
943
944 static void intel_pstate_hwp_set(unsigned int cpu)
945 {
946         struct cpudata *cpu_data = all_cpu_data[cpu];
947         int max, min;
948         u64 value;
949         s16 epp;
950
951         max = cpu_data->max_perf_ratio;
952         min = cpu_data->min_perf_ratio;
953
954         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
955                 min = max;
956
957         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
958
959         value &= ~HWP_MIN_PERF(~0L);
960         value |= HWP_MIN_PERF(min);
961
962         value &= ~HWP_MAX_PERF(~0L);
963         value |= HWP_MAX_PERF(max);
964
965         if (cpu_data->epp_policy == cpu_data->policy)
966                 goto skip_epp;
967
968         cpu_data->epp_policy = cpu_data->policy;
969
970         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
971                 epp = intel_pstate_get_epp(cpu_data, value);
972                 cpu_data->epp_powersave = epp;
973                 /* If EPP read was failed, then don't try to write */
974                 if (epp < 0)
975                         goto skip_epp;
976
977                 epp = 0;
978         } else {
979                 /* skip setting EPP, when saved value is invalid */
980                 if (cpu_data->epp_powersave < 0)
981                         goto skip_epp;
982
983                 /*
984                  * No need to restore EPP when it is not zero. This
985                  * means:
986                  *  - Policy is not changed
987                  *  - user has manually changed
988                  *  - Error reading EPB
989                  */
990                 epp = intel_pstate_get_epp(cpu_data, value);
991                 if (epp)
992                         goto skip_epp;
993
994                 epp = cpu_data->epp_powersave;
995         }
996         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
997                 value &= ~GENMASK_ULL(31, 24);
998                 value |= (u64)epp << 24;
999         } else {
1000                 intel_pstate_set_epb(cpu, epp);
1001         }
1002 skip_epp:
1003         WRITE_ONCE(cpu_data->hwp_req_cached, value);
1004         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1005 }
1006
1007 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1008
1009 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1010 {
1011         u64 value = READ_ONCE(cpu->hwp_req_cached);
1012         int min_perf;
1013
1014         intel_pstate_disable_hwp_interrupt(cpu);
1015
1016         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1017                 /*
1018                  * In case the EPP has been set to "performance" by the
1019                  * active mode "performance" scaling algorithm, replace that
1020                  * temporary value with the cached EPP one.
1021                  */
1022                 value &= ~GENMASK_ULL(31, 24);
1023                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1024                 /*
1025                  * However, make sure that EPP will be set to "performance" when
1026                  * the CPU is brought back online again and the "performance"
1027                  * scaling algorithm is still in effect.
1028                  */
1029                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1030         }
1031
1032         /*
1033          * Clear the desired perf field in the cached HWP request value to
1034          * prevent nonzero desired values from being leaked into the active
1035          * mode.
1036          */
1037         value &= ~HWP_DESIRED_PERF(~0L);
1038         WRITE_ONCE(cpu->hwp_req_cached, value);
1039
1040         value &= ~GENMASK_ULL(31, 0);
1041         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1042
1043         /* Set hwp_max = hwp_min */
1044         value |= HWP_MAX_PERF(min_perf);
1045         value |= HWP_MIN_PERF(min_perf);
1046
1047         /* Set EPP to min */
1048         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1049                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1050
1051         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1052 }
1053
1054 #define POWER_CTL_EE_ENABLE     1
1055 #define POWER_CTL_EE_DISABLE    2
1056
1057 static int power_ctl_ee_state;
1058
1059 static void set_power_ctl_ee_state(bool input)
1060 {
1061         u64 power_ctl;
1062
1063         mutex_lock(&intel_pstate_driver_lock);
1064         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1065         if (input) {
1066                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1067                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1068         } else {
1069                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1070                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1071         }
1072         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1073         mutex_unlock(&intel_pstate_driver_lock);
1074 }
1075
1076 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1077
1078 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1079 {
1080         intel_pstate_hwp_enable(cpu);
1081         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1082 }
1083
1084 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1085 {
1086         struct cpudata *cpu = all_cpu_data[policy->cpu];
1087
1088         pr_debug("CPU %d suspending\n", cpu->cpu);
1089
1090         cpu->suspended = true;
1091
1092         /* disable HWP interrupt and cancel any pending work */
1093         intel_pstate_disable_hwp_interrupt(cpu);
1094
1095         return 0;
1096 }
1097
1098 static int intel_pstate_resume(struct cpufreq_policy *policy)
1099 {
1100         struct cpudata *cpu = all_cpu_data[policy->cpu];
1101
1102         pr_debug("CPU %d resuming\n", cpu->cpu);
1103
1104         /* Only restore if the system default is changed */
1105         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1106                 set_power_ctl_ee_state(true);
1107         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1108                 set_power_ctl_ee_state(false);
1109
1110         if (cpu->suspended && hwp_active) {
1111                 mutex_lock(&intel_pstate_limits_lock);
1112
1113                 /* Re-enable HWP, because "online" has not done that. */
1114                 intel_pstate_hwp_reenable(cpu);
1115
1116                 mutex_unlock(&intel_pstate_limits_lock);
1117         }
1118
1119         cpu->suspended = false;
1120
1121         return 0;
1122 }
1123
1124 static void intel_pstate_update_policies(void)
1125 {
1126         int cpu;
1127
1128         for_each_possible_cpu(cpu)
1129                 cpufreq_update_policy(cpu);
1130 }
1131
1132 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1133                                            struct cpufreq_policy *policy)
1134 {
1135         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1136                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1137         refresh_frequency_limits(policy);
1138 }
1139
1140 static void intel_pstate_update_max_freq(unsigned int cpu)
1141 {
1142         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1143
1144         if (!policy)
1145                 return;
1146
1147         __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1148
1149         cpufreq_cpu_release(policy);
1150 }
1151
1152 static void intel_pstate_update_limits(unsigned int cpu)
1153 {
1154         mutex_lock(&intel_pstate_driver_lock);
1155
1156         update_turbo_state();
1157         /*
1158          * If turbo has been turned on or off globally, policy limits for
1159          * all CPUs need to be updated to reflect that.
1160          */
1161         if (global.turbo_disabled_mf != global.turbo_disabled) {
1162                 global.turbo_disabled_mf = global.turbo_disabled;
1163                 arch_set_max_freq_ratio(global.turbo_disabled);
1164                 for_each_possible_cpu(cpu)
1165                         intel_pstate_update_max_freq(cpu);
1166         } else {
1167                 cpufreq_update_policy(cpu);
1168         }
1169
1170         mutex_unlock(&intel_pstate_driver_lock);
1171 }
1172
1173 /************************** sysfs begin ************************/
1174 #define show_one(file_name, object)                                     \
1175         static ssize_t show_##file_name                                 \
1176         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1177         {                                                               \
1178                 return sprintf(buf, "%u\n", global.object);             \
1179         }
1180
1181 static ssize_t intel_pstate_show_status(char *buf);
1182 static int intel_pstate_update_status(const char *buf, size_t size);
1183
1184 static ssize_t show_status(struct kobject *kobj,
1185                            struct kobj_attribute *attr, char *buf)
1186 {
1187         ssize_t ret;
1188
1189         mutex_lock(&intel_pstate_driver_lock);
1190         ret = intel_pstate_show_status(buf);
1191         mutex_unlock(&intel_pstate_driver_lock);
1192
1193         return ret;
1194 }
1195
1196 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1197                             const char *buf, size_t count)
1198 {
1199         char *p = memchr(buf, '\n', count);
1200         int ret;
1201
1202         mutex_lock(&intel_pstate_driver_lock);
1203         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1204         mutex_unlock(&intel_pstate_driver_lock);
1205
1206         return ret < 0 ? ret : count;
1207 }
1208
1209 static ssize_t show_turbo_pct(struct kobject *kobj,
1210                                 struct kobj_attribute *attr, char *buf)
1211 {
1212         struct cpudata *cpu;
1213         int total, no_turbo, turbo_pct;
1214         uint32_t turbo_fp;
1215
1216         mutex_lock(&intel_pstate_driver_lock);
1217
1218         if (!intel_pstate_driver) {
1219                 mutex_unlock(&intel_pstate_driver_lock);
1220                 return -EAGAIN;
1221         }
1222
1223         cpu = all_cpu_data[0];
1224
1225         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1226         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1227         turbo_fp = div_fp(no_turbo, total);
1228         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1229
1230         mutex_unlock(&intel_pstate_driver_lock);
1231
1232         return sprintf(buf, "%u\n", turbo_pct);
1233 }
1234
1235 static ssize_t show_num_pstates(struct kobject *kobj,
1236                                 struct kobj_attribute *attr, char *buf)
1237 {
1238         struct cpudata *cpu;
1239         int total;
1240
1241         mutex_lock(&intel_pstate_driver_lock);
1242
1243         if (!intel_pstate_driver) {
1244                 mutex_unlock(&intel_pstate_driver_lock);
1245                 return -EAGAIN;
1246         }
1247
1248         cpu = all_cpu_data[0];
1249         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1250
1251         mutex_unlock(&intel_pstate_driver_lock);
1252
1253         return sprintf(buf, "%u\n", total);
1254 }
1255
1256 static ssize_t show_no_turbo(struct kobject *kobj,
1257                              struct kobj_attribute *attr, char *buf)
1258 {
1259         ssize_t ret;
1260
1261         mutex_lock(&intel_pstate_driver_lock);
1262
1263         if (!intel_pstate_driver) {
1264                 mutex_unlock(&intel_pstate_driver_lock);
1265                 return -EAGAIN;
1266         }
1267
1268         update_turbo_state();
1269         if (global.turbo_disabled)
1270                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1271         else
1272                 ret = sprintf(buf, "%u\n", global.no_turbo);
1273
1274         mutex_unlock(&intel_pstate_driver_lock);
1275
1276         return ret;
1277 }
1278
1279 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1280                               const char *buf, size_t count)
1281 {
1282         unsigned int input;
1283         int ret;
1284
1285         ret = sscanf(buf, "%u", &input);
1286         if (ret != 1)
1287                 return -EINVAL;
1288
1289         mutex_lock(&intel_pstate_driver_lock);
1290
1291         if (!intel_pstate_driver) {
1292                 mutex_unlock(&intel_pstate_driver_lock);
1293                 return -EAGAIN;
1294         }
1295
1296         mutex_lock(&intel_pstate_limits_lock);
1297
1298         update_turbo_state();
1299         if (global.turbo_disabled) {
1300                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1301                 mutex_unlock(&intel_pstate_limits_lock);
1302                 mutex_unlock(&intel_pstate_driver_lock);
1303                 return -EPERM;
1304         }
1305
1306         global.no_turbo = clamp_t(int, input, 0, 1);
1307
1308         if (global.no_turbo) {
1309                 struct cpudata *cpu = all_cpu_data[0];
1310                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1311
1312                 /* Squash the global minimum into the permitted range. */
1313                 if (global.min_perf_pct > pct)
1314                         global.min_perf_pct = pct;
1315         }
1316
1317         mutex_unlock(&intel_pstate_limits_lock);
1318
1319         intel_pstate_update_policies();
1320         arch_set_max_freq_ratio(global.no_turbo);
1321
1322         mutex_unlock(&intel_pstate_driver_lock);
1323
1324         return count;
1325 }
1326
1327 static void update_qos_request(enum freq_qos_req_type type)
1328 {
1329         struct freq_qos_request *req;
1330         struct cpufreq_policy *policy;
1331         int i;
1332
1333         for_each_possible_cpu(i) {
1334                 struct cpudata *cpu = all_cpu_data[i];
1335                 unsigned int freq, perf_pct;
1336
1337                 policy = cpufreq_cpu_get(i);
1338                 if (!policy)
1339                         continue;
1340
1341                 req = policy->driver_data;
1342                 cpufreq_cpu_put(policy);
1343
1344                 if (!req)
1345                         continue;
1346
1347                 if (hwp_active)
1348                         intel_pstate_get_hwp_cap(cpu);
1349
1350                 if (type == FREQ_QOS_MIN) {
1351                         perf_pct = global.min_perf_pct;
1352                 } else {
1353                         req++;
1354                         perf_pct = global.max_perf_pct;
1355                 }
1356
1357                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1358
1359                 if (freq_qos_update_request(req, freq) < 0)
1360                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1361         }
1362 }
1363
1364 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1365                                   const char *buf, size_t count)
1366 {
1367         unsigned int input;
1368         int ret;
1369
1370         ret = sscanf(buf, "%u", &input);
1371         if (ret != 1)
1372                 return -EINVAL;
1373
1374         mutex_lock(&intel_pstate_driver_lock);
1375
1376         if (!intel_pstate_driver) {
1377                 mutex_unlock(&intel_pstate_driver_lock);
1378                 return -EAGAIN;
1379         }
1380
1381         mutex_lock(&intel_pstate_limits_lock);
1382
1383         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1384
1385         mutex_unlock(&intel_pstate_limits_lock);
1386
1387         if (intel_pstate_driver == &intel_pstate)
1388                 intel_pstate_update_policies();
1389         else
1390                 update_qos_request(FREQ_QOS_MAX);
1391
1392         mutex_unlock(&intel_pstate_driver_lock);
1393
1394         return count;
1395 }
1396
1397 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1398                                   const char *buf, size_t count)
1399 {
1400         unsigned int input;
1401         int ret;
1402
1403         ret = sscanf(buf, "%u", &input);
1404         if (ret != 1)
1405                 return -EINVAL;
1406
1407         mutex_lock(&intel_pstate_driver_lock);
1408
1409         if (!intel_pstate_driver) {
1410                 mutex_unlock(&intel_pstate_driver_lock);
1411                 return -EAGAIN;
1412         }
1413
1414         mutex_lock(&intel_pstate_limits_lock);
1415
1416         global.min_perf_pct = clamp_t(int, input,
1417                                       min_perf_pct_min(), global.max_perf_pct);
1418
1419         mutex_unlock(&intel_pstate_limits_lock);
1420
1421         if (intel_pstate_driver == &intel_pstate)
1422                 intel_pstate_update_policies();
1423         else
1424                 update_qos_request(FREQ_QOS_MIN);
1425
1426         mutex_unlock(&intel_pstate_driver_lock);
1427
1428         return count;
1429 }
1430
1431 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1432                                 struct kobj_attribute *attr, char *buf)
1433 {
1434         return sprintf(buf, "%u\n", hwp_boost);
1435 }
1436
1437 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1438                                        struct kobj_attribute *b,
1439                                        const char *buf, size_t count)
1440 {
1441         unsigned int input;
1442         int ret;
1443
1444         ret = kstrtouint(buf, 10, &input);
1445         if (ret)
1446                 return ret;
1447
1448         mutex_lock(&intel_pstate_driver_lock);
1449         hwp_boost = !!input;
1450         intel_pstate_update_policies();
1451         mutex_unlock(&intel_pstate_driver_lock);
1452
1453         return count;
1454 }
1455
1456 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1457                                       char *buf)
1458 {
1459         u64 power_ctl;
1460         int enable;
1461
1462         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1463         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1464         return sprintf(buf, "%d\n", !enable);
1465 }
1466
1467 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1468                                        const char *buf, size_t count)
1469 {
1470         bool input;
1471         int ret;
1472
1473         ret = kstrtobool(buf, &input);
1474         if (ret)
1475                 return ret;
1476
1477         set_power_ctl_ee_state(input);
1478
1479         return count;
1480 }
1481
1482 show_one(max_perf_pct, max_perf_pct);
1483 show_one(min_perf_pct, min_perf_pct);
1484
1485 define_one_global_rw(status);
1486 define_one_global_rw(no_turbo);
1487 define_one_global_rw(max_perf_pct);
1488 define_one_global_rw(min_perf_pct);
1489 define_one_global_ro(turbo_pct);
1490 define_one_global_ro(num_pstates);
1491 define_one_global_rw(hwp_dynamic_boost);
1492 define_one_global_rw(energy_efficiency);
1493
1494 static struct attribute *intel_pstate_attributes[] = {
1495         &status.attr,
1496         &no_turbo.attr,
1497         NULL
1498 };
1499
1500 static const struct attribute_group intel_pstate_attr_group = {
1501         .attrs = intel_pstate_attributes,
1502 };
1503
1504 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1505
1506 static struct kobject *intel_pstate_kobject;
1507
1508 static void __init intel_pstate_sysfs_expose_params(void)
1509 {
1510         struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1511         int rc;
1512
1513         if (dev_root) {
1514                 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1515                 put_device(dev_root);
1516         }
1517         if (WARN_ON(!intel_pstate_kobject))
1518                 return;
1519
1520         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1521         if (WARN_ON(rc))
1522                 return;
1523
1524         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1525                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1526                 WARN_ON(rc);
1527
1528                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1529                 WARN_ON(rc);
1530         }
1531
1532         /*
1533          * If per cpu limits are enforced there are no global limits, so
1534          * return without creating max/min_perf_pct attributes
1535          */
1536         if (per_cpu_limits)
1537                 return;
1538
1539         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1540         WARN_ON(rc);
1541
1542         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1543         WARN_ON(rc);
1544
1545         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1546                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1547                 WARN_ON(rc);
1548         }
1549 }
1550
1551 static void __init intel_pstate_sysfs_remove(void)
1552 {
1553         if (!intel_pstate_kobject)
1554                 return;
1555
1556         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1557
1558         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1559                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1560                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1561         }
1562
1563         if (!per_cpu_limits) {
1564                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1565                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1566
1567                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1568                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1569         }
1570
1571         kobject_put(intel_pstate_kobject);
1572 }
1573
1574 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1575 {
1576         int rc;
1577
1578         if (!hwp_active)
1579                 return;
1580
1581         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1582         WARN_ON_ONCE(rc);
1583 }
1584
1585 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1586 {
1587         if (!hwp_active)
1588                 return;
1589
1590         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1591 }
1592
1593 /************************** sysfs end ************************/
1594
1595 static void intel_pstate_notify_work(struct work_struct *work)
1596 {
1597         struct cpudata *cpudata =
1598                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1599         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1600
1601         if (policy) {
1602                 intel_pstate_get_hwp_cap(cpudata);
1603                 __intel_pstate_update_max_freq(cpudata, policy);
1604
1605                 cpufreq_cpu_release(policy);
1606         }
1607
1608         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1609 }
1610
1611 static DEFINE_SPINLOCK(hwp_notify_lock);
1612 static cpumask_t hwp_intr_enable_mask;
1613
1614 void notify_hwp_interrupt(void)
1615 {
1616         unsigned int this_cpu = smp_processor_id();
1617         struct cpudata *cpudata;
1618         unsigned long flags;
1619         u64 value;
1620
1621         if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1622                 return;
1623
1624         rdmsrl_safe(MSR_HWP_STATUS, &value);
1625         if (!(value & 0x01))
1626                 return;
1627
1628         spin_lock_irqsave(&hwp_notify_lock, flags);
1629
1630         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1631                 goto ack_intr;
1632
1633         /*
1634          * Currently we never free all_cpu_data. And we can't reach here
1635          * without this allocated. But for safety for future changes, added
1636          * check.
1637          */
1638         if (unlikely(!READ_ONCE(all_cpu_data)))
1639                 goto ack_intr;
1640
1641         /*
1642          * The free is done during cleanup, when cpufreq registry is failed.
1643          * We wouldn't be here if it fails on init or switch status. But for
1644          * future changes, added check.
1645          */
1646         cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1647         if (unlikely(!cpudata))
1648                 goto ack_intr;
1649
1650         schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1651
1652         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1653
1654         return;
1655
1656 ack_intr:
1657         wrmsrl_safe(MSR_HWP_STATUS, 0);
1658         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1659 }
1660
1661 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1662 {
1663         unsigned long flags;
1664
1665         if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1666                 return;
1667
1668         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1669         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1670
1671         spin_lock_irqsave(&hwp_notify_lock, flags);
1672         if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1673                 cancel_delayed_work(&cpudata->hwp_notify_work);
1674         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1675 }
1676
1677 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1678 {
1679         /* Enable HWP notification interrupt for guaranteed performance change */
1680         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1681                 unsigned long flags;
1682
1683                 spin_lock_irqsave(&hwp_notify_lock, flags);
1684                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1685                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1686                 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1687
1688                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1689                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1690                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1691         }
1692 }
1693
1694 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1695 {
1696         cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1697
1698         /*
1699          * If this CPU gen doesn't call for change in balance_perf
1700          * EPP return.
1701          */
1702         if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1703                 return;
1704
1705         /*
1706          * If the EPP is set by firmware, which means that firmware enabled HWP
1707          * - Is equal or less than 0x80 (default balance_perf EPP)
1708          * - But less performance oriented than performance EPP
1709          *   then use this as new balance_perf EPP.
1710          */
1711         if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1712             cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1713                 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1714                 return;
1715         }
1716
1717         /*
1718          * Use hard coded value per gen to update the balance_perf
1719          * and default EPP.
1720          */
1721         cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1722         intel_pstate_set_epp(cpudata, cpudata->epp_default);
1723 }
1724
1725 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1726 {
1727         /* First disable HWP notification interrupt till we activate again */
1728         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1729                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1730
1731         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1732
1733         intel_pstate_enable_hwp_interrupt(cpudata);
1734
1735         if (cpudata->epp_default >= 0)
1736                 return;
1737
1738         intel_pstate_update_epp_defaults(cpudata);
1739 }
1740
1741 static int atom_get_min_pstate(int not_used)
1742 {
1743         u64 value;
1744
1745         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1746         return (value >> 8) & 0x7F;
1747 }
1748
1749 static int atom_get_max_pstate(int not_used)
1750 {
1751         u64 value;
1752
1753         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1754         return (value >> 16) & 0x7F;
1755 }
1756
1757 static int atom_get_turbo_pstate(int not_used)
1758 {
1759         u64 value;
1760
1761         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1762         return value & 0x7F;
1763 }
1764
1765 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1766 {
1767         u64 val;
1768         int32_t vid_fp;
1769         u32 vid;
1770
1771         val = (u64)pstate << 8;
1772         if (global.no_turbo && !global.turbo_disabled)
1773                 val |= (u64)1 << 32;
1774
1775         vid_fp = cpudata->vid.min + mul_fp(
1776                 int_tofp(pstate - cpudata->pstate.min_pstate),
1777                 cpudata->vid.ratio);
1778
1779         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1780         vid = ceiling_fp(vid_fp);
1781
1782         if (pstate > cpudata->pstate.max_pstate)
1783                 vid = cpudata->vid.turbo;
1784
1785         return val | vid;
1786 }
1787
1788 static int silvermont_get_scaling(void)
1789 {
1790         u64 value;
1791         int i;
1792         /* Defined in Table 35-6 from SDM (Sept 2015) */
1793         static int silvermont_freq_table[] = {
1794                 83300, 100000, 133300, 116700, 80000};
1795
1796         rdmsrl(MSR_FSB_FREQ, value);
1797         i = value & 0x7;
1798         WARN_ON(i > 4);
1799
1800         return silvermont_freq_table[i];
1801 }
1802
1803 static int airmont_get_scaling(void)
1804 {
1805         u64 value;
1806         int i;
1807         /* Defined in Table 35-10 from SDM (Sept 2015) */
1808         static int airmont_freq_table[] = {
1809                 83300, 100000, 133300, 116700, 80000,
1810                 93300, 90000, 88900, 87500};
1811
1812         rdmsrl(MSR_FSB_FREQ, value);
1813         i = value & 0xF;
1814         WARN_ON(i > 8);
1815
1816         return airmont_freq_table[i];
1817 }
1818
1819 static void atom_get_vid(struct cpudata *cpudata)
1820 {
1821         u64 value;
1822
1823         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1824         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1825         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1826         cpudata->vid.ratio = div_fp(
1827                 cpudata->vid.max - cpudata->vid.min,
1828                 int_tofp(cpudata->pstate.max_pstate -
1829                         cpudata->pstate.min_pstate));
1830
1831         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1832         cpudata->vid.turbo = value & 0x7f;
1833 }
1834
1835 static int core_get_min_pstate(int cpu)
1836 {
1837         u64 value;
1838
1839         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1840         return (value >> 40) & 0xFF;
1841 }
1842
1843 static int core_get_max_pstate_physical(int cpu)
1844 {
1845         u64 value;
1846
1847         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1848         return (value >> 8) & 0xFF;
1849 }
1850
1851 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1852 {
1853         /* Check how many TDP levels present */
1854         if (plat_info & 0x600000000) {
1855                 u64 tdp_ctrl;
1856                 u64 tdp_ratio;
1857                 int tdp_msr;
1858                 int err;
1859
1860                 /* Get the TDP level (0, 1, 2) to get ratios */
1861                 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1862                 if (err)
1863                         return err;
1864
1865                 /* TDP MSR are continuous starting at 0x648 */
1866                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1867                 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1868                 if (err)
1869                         return err;
1870
1871                 /* For level 1 and 2, bits[23:16] contain the ratio */
1872                 if (tdp_ctrl & 0x03)
1873                         tdp_ratio >>= 16;
1874
1875                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1876                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1877
1878                 return (int)tdp_ratio;
1879         }
1880
1881         return -ENXIO;
1882 }
1883
1884 static int core_get_max_pstate(int cpu)
1885 {
1886         u64 tar;
1887         u64 plat_info;
1888         int max_pstate;
1889         int tdp_ratio;
1890         int err;
1891
1892         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1893         max_pstate = (plat_info >> 8) & 0xFF;
1894
1895         tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1896         if (tdp_ratio <= 0)
1897                 return max_pstate;
1898
1899         if (hwp_active) {
1900                 /* Turbo activation ratio is not used on HWP platforms */
1901                 return tdp_ratio;
1902         }
1903
1904         err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1905         if (!err) {
1906                 int tar_levels;
1907
1908                 /* Do some sanity checking for safety */
1909                 tar_levels = tar & 0xff;
1910                 if (tdp_ratio - 1 == tar_levels) {
1911                         max_pstate = tar_levels;
1912                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1913                 }
1914         }
1915
1916         return max_pstate;
1917 }
1918
1919 static int core_get_turbo_pstate(int cpu)
1920 {
1921         u64 value;
1922         int nont, ret;
1923
1924         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1925         nont = core_get_max_pstate(cpu);
1926         ret = (value) & 255;
1927         if (ret <= nont)
1928                 ret = nont;
1929         return ret;
1930 }
1931
1932 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1933 {
1934         u64 val;
1935
1936         val = (u64)pstate << 8;
1937         if (global.no_turbo && !global.turbo_disabled)
1938                 val |= (u64)1 << 32;
1939
1940         return val;
1941 }
1942
1943 static int knl_get_aperf_mperf_shift(void)
1944 {
1945         return 10;
1946 }
1947
1948 static int knl_get_turbo_pstate(int cpu)
1949 {
1950         u64 value;
1951         int nont, ret;
1952
1953         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1954         nont = core_get_max_pstate(cpu);
1955         ret = (((value) >> 8) & 0xFF);
1956         if (ret <= nont)
1957                 ret = nont;
1958         return ret;
1959 }
1960
1961 static void hybrid_get_type(void *data)
1962 {
1963         u8 *cpu_type = data;
1964
1965         *cpu_type = get_this_hybrid_cpu_type();
1966 }
1967
1968 static int hwp_get_cpu_scaling(int cpu)
1969 {
1970         u8 cpu_type = 0;
1971
1972         smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1973         /* P-cores have a smaller perf level-to-freqency scaling factor. */
1974         if (cpu_type == 0x40)
1975                 return HYBRID_SCALING_FACTOR;
1976
1977         /* Use default core scaling for E-cores */
1978         if (cpu_type == 0x20)
1979                 return core_get_scaling();
1980
1981         /*
1982          * If reached here, this system is either non-hybrid (like Tiger
1983          * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
1984          * no E cores (in which case CPUID for hybrid support is 0).
1985          *
1986          * The CPPC nominal_frequency field is 0 for non-hybrid systems,
1987          * so the default core scaling will be used for them.
1988          */
1989         return intel_pstate_cppc_get_scaling(cpu);
1990 }
1991
1992 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1993 {
1994         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1995         cpu->pstate.current_pstate = pstate;
1996         /*
1997          * Generally, there is no guarantee that this code will always run on
1998          * the CPU being updated, so force the register update to run on the
1999          * right CPU.
2000          */
2001         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2002                       pstate_funcs.get_val(cpu, pstate));
2003 }
2004
2005 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2006 {
2007         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2008 }
2009
2010 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2011 {
2012         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2013
2014         update_turbo_state();
2015         intel_pstate_set_pstate(cpu, pstate);
2016 }
2017
2018 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2019 {
2020         int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2021         int perf_ctl_scaling = pstate_funcs.get_scaling();
2022
2023         cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2024         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2025         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2026
2027         if (hwp_active && !hwp_mode_bdw) {
2028                 __intel_pstate_get_hwp_cap(cpu);
2029
2030                 if (pstate_funcs.get_cpu_scaling) {
2031                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2032                         if (cpu->pstate.scaling != perf_ctl_scaling)
2033                                 intel_pstate_hybrid_hwp_adjust(cpu);
2034                 } else {
2035                         cpu->pstate.scaling = perf_ctl_scaling;
2036                 }
2037         } else {
2038                 cpu->pstate.scaling = perf_ctl_scaling;
2039                 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2040                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2041         }
2042
2043         if (cpu->pstate.scaling == perf_ctl_scaling) {
2044                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2045                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2046                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2047         }
2048
2049         if (pstate_funcs.get_aperf_mperf_shift)
2050                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2051
2052         if (pstate_funcs.get_vid)
2053                 pstate_funcs.get_vid(cpu);
2054
2055         intel_pstate_set_min_pstate(cpu);
2056 }
2057
2058 /*
2059  * Long hold time will keep high perf limits for long time,
2060  * which negatively impacts perf/watt for some workloads,
2061  * like specpower. 3ms is based on experiements on some
2062  * workoads.
2063  */
2064 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2065
2066 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2067 {
2068         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2069         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2070         u32 max_limit = (hwp_req & 0xff00) >> 8;
2071         u32 min_limit = (hwp_req & 0xff);
2072         u32 boost_level1;
2073
2074         /*
2075          * Cases to consider (User changes via sysfs or boot time):
2076          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2077          *      No boost, return.
2078          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2079          *     Should result in one level boost only for P0.
2080          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2081          *     Should result in two level boost:
2082          *         (min + p1)/2 and P1.
2083          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2084          *     Should result in three level boost:
2085          *        (min + p1)/2, P1 and P0.
2086          */
2087
2088         /* If max and min are equal or already at max, nothing to boost */
2089         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2090                 return;
2091
2092         if (!cpu->hwp_boost_min)
2093                 cpu->hwp_boost_min = min_limit;
2094
2095         /* level at half way mark between min and guranteed */
2096         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2097
2098         if (cpu->hwp_boost_min < boost_level1)
2099                 cpu->hwp_boost_min = boost_level1;
2100         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2101                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2102         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2103                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2104                 cpu->hwp_boost_min = max_limit;
2105         else
2106                 return;
2107
2108         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2109         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2110         cpu->last_update = cpu->sample.time;
2111 }
2112
2113 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2114 {
2115         if (cpu->hwp_boost_min) {
2116                 bool expired;
2117
2118                 /* Check if we are idle for hold time to boost down */
2119                 expired = time_after64(cpu->sample.time, cpu->last_update +
2120                                        hwp_boost_hold_time_ns);
2121                 if (expired) {
2122                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2123                         cpu->hwp_boost_min = 0;
2124                 }
2125         }
2126         cpu->last_update = cpu->sample.time;
2127 }
2128
2129 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2130                                                       u64 time)
2131 {
2132         cpu->sample.time = time;
2133
2134         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2135                 bool do_io = false;
2136
2137                 cpu->sched_flags = 0;
2138                 /*
2139                  * Set iowait_boost flag and update time. Since IO WAIT flag
2140                  * is set all the time, we can't just conclude that there is
2141                  * some IO bound activity is scheduled on this CPU with just
2142                  * one occurrence. If we receive at least two in two
2143                  * consecutive ticks, then we treat as boost candidate.
2144                  */
2145                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2146                         do_io = true;
2147
2148                 cpu->last_io_update = time;
2149
2150                 if (do_io)
2151                         intel_pstate_hwp_boost_up(cpu);
2152
2153         } else {
2154                 intel_pstate_hwp_boost_down(cpu);
2155         }
2156 }
2157
2158 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2159                                                 u64 time, unsigned int flags)
2160 {
2161         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2162
2163         cpu->sched_flags |= flags;
2164
2165         if (smp_processor_id() == cpu->cpu)
2166                 intel_pstate_update_util_hwp_local(cpu, time);
2167 }
2168
2169 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2170 {
2171         struct sample *sample = &cpu->sample;
2172
2173         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2174 }
2175
2176 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2177 {
2178         u64 aperf, mperf;
2179         unsigned long flags;
2180         u64 tsc;
2181
2182         local_irq_save(flags);
2183         rdmsrl(MSR_IA32_APERF, aperf);
2184         rdmsrl(MSR_IA32_MPERF, mperf);
2185         tsc = rdtsc();
2186         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2187                 local_irq_restore(flags);
2188                 return false;
2189         }
2190         local_irq_restore(flags);
2191
2192         cpu->last_sample_time = cpu->sample.time;
2193         cpu->sample.time = time;
2194         cpu->sample.aperf = aperf;
2195         cpu->sample.mperf = mperf;
2196         cpu->sample.tsc =  tsc;
2197         cpu->sample.aperf -= cpu->prev_aperf;
2198         cpu->sample.mperf -= cpu->prev_mperf;
2199         cpu->sample.tsc -= cpu->prev_tsc;
2200
2201         cpu->prev_aperf = aperf;
2202         cpu->prev_mperf = mperf;
2203         cpu->prev_tsc = tsc;
2204         /*
2205          * First time this function is invoked in a given cycle, all of the
2206          * previous sample data fields are equal to zero or stale and they must
2207          * be populated with meaningful numbers for things to work, so assume
2208          * that sample.time will always be reset before setting the utilization
2209          * update hook and make the caller skip the sample then.
2210          */
2211         if (cpu->last_sample_time) {
2212                 intel_pstate_calc_avg_perf(cpu);
2213                 return true;
2214         }
2215         return false;
2216 }
2217
2218 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2219 {
2220         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2221 }
2222
2223 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2224 {
2225         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2226                           cpu->sample.core_avg_perf);
2227 }
2228
2229 static inline int32_t get_target_pstate(struct cpudata *cpu)
2230 {
2231         struct sample *sample = &cpu->sample;
2232         int32_t busy_frac;
2233         int target, avg_pstate;
2234
2235         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2236                            sample->tsc);
2237
2238         if (busy_frac < cpu->iowait_boost)
2239                 busy_frac = cpu->iowait_boost;
2240
2241         sample->busy_scaled = busy_frac * 100;
2242
2243         target = global.no_turbo || global.turbo_disabled ?
2244                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2245         target += target >> 2;
2246         target = mul_fp(target, busy_frac);
2247         if (target < cpu->pstate.min_pstate)
2248                 target = cpu->pstate.min_pstate;
2249
2250         /*
2251          * If the average P-state during the previous cycle was higher than the
2252          * current target, add 50% of the difference to the target to reduce
2253          * possible performance oscillations and offset possible performance
2254          * loss related to moving the workload from one CPU to another within
2255          * a package/module.
2256          */
2257         avg_pstate = get_avg_pstate(cpu);
2258         if (avg_pstate > target)
2259                 target += (avg_pstate - target) >> 1;
2260
2261         return target;
2262 }
2263
2264 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2265 {
2266         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2267         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2268
2269         return clamp_t(int, pstate, min_pstate, max_pstate);
2270 }
2271
2272 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2273 {
2274         if (pstate == cpu->pstate.current_pstate)
2275                 return;
2276
2277         cpu->pstate.current_pstate = pstate;
2278         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2279 }
2280
2281 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2282 {
2283         int from = cpu->pstate.current_pstate;
2284         struct sample *sample;
2285         int target_pstate;
2286
2287         update_turbo_state();
2288
2289         target_pstate = get_target_pstate(cpu);
2290         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2291         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2292         intel_pstate_update_pstate(cpu, target_pstate);
2293
2294         sample = &cpu->sample;
2295         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2296                 fp_toint(sample->busy_scaled),
2297                 from,
2298                 cpu->pstate.current_pstate,
2299                 sample->mperf,
2300                 sample->aperf,
2301                 sample->tsc,
2302                 get_avg_frequency(cpu),
2303                 fp_toint(cpu->iowait_boost * 100));
2304 }
2305
2306 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2307                                      unsigned int flags)
2308 {
2309         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2310         u64 delta_ns;
2311
2312         /* Don't allow remote callbacks */
2313         if (smp_processor_id() != cpu->cpu)
2314                 return;
2315
2316         delta_ns = time - cpu->last_update;
2317         if (flags & SCHED_CPUFREQ_IOWAIT) {
2318                 /* Start over if the CPU may have been idle. */
2319                 if (delta_ns > TICK_NSEC) {
2320                         cpu->iowait_boost = ONE_EIGHTH_FP;
2321                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2322                         cpu->iowait_boost <<= 1;
2323                         if (cpu->iowait_boost > int_tofp(1))
2324                                 cpu->iowait_boost = int_tofp(1);
2325                 } else {
2326                         cpu->iowait_boost = ONE_EIGHTH_FP;
2327                 }
2328         } else if (cpu->iowait_boost) {
2329                 /* Clear iowait_boost if the CPU may have been idle. */
2330                 if (delta_ns > TICK_NSEC)
2331                         cpu->iowait_boost = 0;
2332                 else
2333                         cpu->iowait_boost >>= 1;
2334         }
2335         cpu->last_update = time;
2336         delta_ns = time - cpu->sample.time;
2337         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2338                 return;
2339
2340         if (intel_pstate_sample(cpu, time))
2341                 intel_pstate_adjust_pstate(cpu);
2342 }
2343
2344 static struct pstate_funcs core_funcs = {
2345         .get_max = core_get_max_pstate,
2346         .get_max_physical = core_get_max_pstate_physical,
2347         .get_min = core_get_min_pstate,
2348         .get_turbo = core_get_turbo_pstate,
2349         .get_scaling = core_get_scaling,
2350         .get_val = core_get_val,
2351 };
2352
2353 static const struct pstate_funcs silvermont_funcs = {
2354         .get_max = atom_get_max_pstate,
2355         .get_max_physical = atom_get_max_pstate,
2356         .get_min = atom_get_min_pstate,
2357         .get_turbo = atom_get_turbo_pstate,
2358         .get_val = atom_get_val,
2359         .get_scaling = silvermont_get_scaling,
2360         .get_vid = atom_get_vid,
2361 };
2362
2363 static const struct pstate_funcs airmont_funcs = {
2364         .get_max = atom_get_max_pstate,
2365         .get_max_physical = atom_get_max_pstate,
2366         .get_min = atom_get_min_pstate,
2367         .get_turbo = atom_get_turbo_pstate,
2368         .get_val = atom_get_val,
2369         .get_scaling = airmont_get_scaling,
2370         .get_vid = atom_get_vid,
2371 };
2372
2373 static const struct pstate_funcs knl_funcs = {
2374         .get_max = core_get_max_pstate,
2375         .get_max_physical = core_get_max_pstate_physical,
2376         .get_min = core_get_min_pstate,
2377         .get_turbo = knl_get_turbo_pstate,
2378         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2379         .get_scaling = core_get_scaling,
2380         .get_val = core_get_val,
2381 };
2382
2383 #define X86_MATCH(model, policy)                                         \
2384         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2385                                            X86_FEATURE_APERFMPERF, &policy)
2386
2387 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2388         X86_MATCH(SANDYBRIDGE,          core_funcs),
2389         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2390         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2391         X86_MATCH(IVYBRIDGE,            core_funcs),
2392         X86_MATCH(HASWELL,              core_funcs),
2393         X86_MATCH(BROADWELL,            core_funcs),
2394         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2395         X86_MATCH(HASWELL_X,            core_funcs),
2396         X86_MATCH(HASWELL_L,            core_funcs),
2397         X86_MATCH(HASWELL_G,            core_funcs),
2398         X86_MATCH(BROADWELL_G,          core_funcs),
2399         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2400         X86_MATCH(SKYLAKE_L,            core_funcs),
2401         X86_MATCH(BROADWELL_X,          core_funcs),
2402         X86_MATCH(SKYLAKE,              core_funcs),
2403         X86_MATCH(BROADWELL_D,          core_funcs),
2404         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2405         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2406         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2407         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2408         X86_MATCH(SKYLAKE_X,            core_funcs),
2409         X86_MATCH(COMETLAKE,            core_funcs),
2410         X86_MATCH(ICELAKE_X,            core_funcs),
2411         X86_MATCH(TIGERLAKE,            core_funcs),
2412         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2413         {}
2414 };
2415 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2416
2417 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2418         X86_MATCH(BROADWELL_D,          core_funcs),
2419         X86_MATCH(BROADWELL_X,          core_funcs),
2420         X86_MATCH(SKYLAKE_X,            core_funcs),
2421         X86_MATCH(ICELAKE_X,            core_funcs),
2422         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2423         {}
2424 };
2425
2426 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2427         X86_MATCH(KABYLAKE,             core_funcs),
2428         {}
2429 };
2430
2431 static int intel_pstate_init_cpu(unsigned int cpunum)
2432 {
2433         struct cpudata *cpu;
2434
2435         cpu = all_cpu_data[cpunum];
2436
2437         if (!cpu) {
2438                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2439                 if (!cpu)
2440                         return -ENOMEM;
2441
2442                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2443
2444                 cpu->cpu = cpunum;
2445
2446                 cpu->epp_default = -EINVAL;
2447
2448                 if (hwp_active) {
2449                         intel_pstate_hwp_enable(cpu);
2450
2451                         if (intel_pstate_acpi_pm_profile_server())
2452                                 hwp_boost = true;
2453                 }
2454         } else if (hwp_active) {
2455                 /*
2456                  * Re-enable HWP in case this happens after a resume from ACPI
2457                  * S3 if the CPU was offline during the whole system/resume
2458                  * cycle.
2459                  */
2460                 intel_pstate_hwp_reenable(cpu);
2461         }
2462
2463         cpu->epp_powersave = -EINVAL;
2464         cpu->epp_policy = 0;
2465
2466         intel_pstate_get_cpu_pstates(cpu);
2467
2468         pr_debug("controlling: cpu %d\n", cpunum);
2469
2470         return 0;
2471 }
2472
2473 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2474 {
2475         struct cpudata *cpu = all_cpu_data[cpu_num];
2476
2477         if (hwp_active && !hwp_boost)
2478                 return;
2479
2480         if (cpu->update_util_set)
2481                 return;
2482
2483         /* Prevent intel_pstate_update_util() from using stale data. */
2484         cpu->sample.time = 0;
2485         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2486                                      (hwp_active ?
2487                                       intel_pstate_update_util_hwp :
2488                                       intel_pstate_update_util));
2489         cpu->update_util_set = true;
2490 }
2491
2492 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2493 {
2494         struct cpudata *cpu_data = all_cpu_data[cpu];
2495
2496         if (!cpu_data->update_util_set)
2497                 return;
2498
2499         cpufreq_remove_update_util_hook(cpu);
2500         cpu_data->update_util_set = false;
2501         synchronize_rcu();
2502 }
2503
2504 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2505 {
2506         return global.turbo_disabled || global.no_turbo ?
2507                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2508 }
2509
2510 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2511                                             unsigned int policy_min,
2512                                             unsigned int policy_max)
2513 {
2514         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2515         int32_t max_policy_perf, min_policy_perf;
2516
2517         max_policy_perf = policy_max / perf_ctl_scaling;
2518         if (policy_max == policy_min) {
2519                 min_policy_perf = max_policy_perf;
2520         } else {
2521                 min_policy_perf = policy_min / perf_ctl_scaling;
2522                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2523                                           0, max_policy_perf);
2524         }
2525
2526         /*
2527          * HWP needs some special consideration, because HWP_REQUEST uses
2528          * abstract values to represent performance rather than pure ratios.
2529          */
2530         if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2531                 int scaling = cpu->pstate.scaling;
2532                 int freq;
2533
2534                 freq = max_policy_perf * perf_ctl_scaling;
2535                 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2536                 freq = min_policy_perf * perf_ctl_scaling;
2537                 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2538         }
2539
2540         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2541                  cpu->cpu, min_policy_perf, max_policy_perf);
2542
2543         /* Normalize user input to [min_perf, max_perf] */
2544         if (per_cpu_limits) {
2545                 cpu->min_perf_ratio = min_policy_perf;
2546                 cpu->max_perf_ratio = max_policy_perf;
2547         } else {
2548                 int turbo_max = cpu->pstate.turbo_pstate;
2549                 int32_t global_min, global_max;
2550
2551                 /* Global limits are in percent of the maximum turbo P-state. */
2552                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2553                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2554                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2555
2556                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2557                          global_min, global_max);
2558
2559                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2560                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2561                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2562                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2563
2564                 /* Make sure min_perf <= max_perf */
2565                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2566                                           cpu->max_perf_ratio);
2567
2568         }
2569         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2570                  cpu->max_perf_ratio,
2571                  cpu->min_perf_ratio);
2572 }
2573
2574 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2575 {
2576         struct cpudata *cpu;
2577
2578         if (!policy->cpuinfo.max_freq)
2579                 return -ENODEV;
2580
2581         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2582                  policy->cpuinfo.max_freq, policy->max);
2583
2584         cpu = all_cpu_data[policy->cpu];
2585         cpu->policy = policy->policy;
2586
2587         mutex_lock(&intel_pstate_limits_lock);
2588
2589         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2590
2591         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2592                 /*
2593                  * NOHZ_FULL CPUs need this as the governor callback may not
2594                  * be invoked on them.
2595                  */
2596                 intel_pstate_clear_update_util_hook(policy->cpu);
2597                 intel_pstate_max_within_limits(cpu);
2598         } else {
2599                 intel_pstate_set_update_util_hook(policy->cpu);
2600         }
2601
2602         if (hwp_active) {
2603                 /*
2604                  * When hwp_boost was active before and dynamically it
2605                  * was turned off, in that case we need to clear the
2606                  * update util hook.
2607                  */
2608                 if (!hwp_boost)
2609                         intel_pstate_clear_update_util_hook(policy->cpu);
2610                 intel_pstate_hwp_set(policy->cpu);
2611         }
2612         /*
2613          * policy->cur is never updated with the intel_pstate driver, but it
2614          * is used as a stale frequency value. So, keep it within limits.
2615          */
2616         policy->cur = policy->min;
2617
2618         mutex_unlock(&intel_pstate_limits_lock);
2619
2620         return 0;
2621 }
2622
2623 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2624                                            struct cpufreq_policy_data *policy)
2625 {
2626         if (!hwp_active &&
2627             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2628             policy->max < policy->cpuinfo.max_freq &&
2629             policy->max > cpu->pstate.max_freq) {
2630                 pr_debug("policy->max > max non turbo frequency\n");
2631                 policy->max = policy->cpuinfo.max_freq;
2632         }
2633 }
2634
2635 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2636                                            struct cpufreq_policy_data *policy)
2637 {
2638         int max_freq;
2639
2640         update_turbo_state();
2641         if (hwp_active) {
2642                 intel_pstate_get_hwp_cap(cpu);
2643                 max_freq = global.no_turbo || global.turbo_disabled ?
2644                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2645         } else {
2646                 max_freq = intel_pstate_get_max_freq(cpu);
2647         }
2648         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2649
2650         intel_pstate_adjust_policy_max(cpu, policy);
2651 }
2652
2653 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2654 {
2655         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2656
2657         return 0;
2658 }
2659
2660 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2661 {
2662         struct cpudata *cpu = all_cpu_data[policy->cpu];
2663
2664         pr_debug("CPU %d going offline\n", cpu->cpu);
2665
2666         if (cpu->suspended)
2667                 return 0;
2668
2669         /*
2670          * If the CPU is an SMT thread and it goes offline with the performance
2671          * settings different from the minimum, it will prevent its sibling
2672          * from getting to lower performance levels, so force the minimum
2673          * performance on CPU offline to prevent that from happening.
2674          */
2675         if (hwp_active)
2676                 intel_pstate_hwp_offline(cpu);
2677         else
2678                 intel_pstate_set_min_pstate(cpu);
2679
2680         intel_pstate_exit_perf_limits(policy);
2681
2682         return 0;
2683 }
2684
2685 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2686 {
2687         struct cpudata *cpu = all_cpu_data[policy->cpu];
2688
2689         pr_debug("CPU %d going online\n", cpu->cpu);
2690
2691         intel_pstate_init_acpi_perf_limits(policy);
2692
2693         if (hwp_active) {
2694                 /*
2695                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2696                  * know that it need not do that.
2697                  */
2698                 intel_pstate_hwp_reenable(cpu);
2699                 cpu->suspended = false;
2700         }
2701
2702         return 0;
2703 }
2704
2705 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2706 {
2707         intel_pstate_clear_update_util_hook(policy->cpu);
2708
2709         return intel_cpufreq_cpu_offline(policy);
2710 }
2711
2712 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2713 {
2714         pr_debug("CPU %d exiting\n", policy->cpu);
2715
2716         policy->fast_switch_possible = false;
2717
2718         return 0;
2719 }
2720
2721 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2722 {
2723         struct cpudata *cpu;
2724         int rc;
2725
2726         rc = intel_pstate_init_cpu(policy->cpu);
2727         if (rc)
2728                 return rc;
2729
2730         cpu = all_cpu_data[policy->cpu];
2731
2732         cpu->max_perf_ratio = 0xFF;
2733         cpu->min_perf_ratio = 0;
2734
2735         /* cpuinfo and default policy values */
2736         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2737         update_turbo_state();
2738         global.turbo_disabled_mf = global.turbo_disabled;
2739         policy->cpuinfo.max_freq = global.turbo_disabled ?
2740                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2741
2742         policy->min = policy->cpuinfo.min_freq;
2743         policy->max = policy->cpuinfo.max_freq;
2744
2745         intel_pstate_init_acpi_perf_limits(policy);
2746
2747         policy->fast_switch_possible = true;
2748
2749         return 0;
2750 }
2751
2752 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2753 {
2754         int ret = __intel_pstate_cpu_init(policy);
2755
2756         if (ret)
2757                 return ret;
2758
2759         /*
2760          * Set the policy to powersave to provide a valid fallback value in case
2761          * the default cpufreq governor is neither powersave nor performance.
2762          */
2763         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2764
2765         if (hwp_active) {
2766                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2767
2768                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2769         }
2770
2771         return 0;
2772 }
2773
2774 static struct cpufreq_driver intel_pstate = {
2775         .flags          = CPUFREQ_CONST_LOOPS,
2776         .verify         = intel_pstate_verify_policy,
2777         .setpolicy      = intel_pstate_set_policy,
2778         .suspend        = intel_pstate_suspend,
2779         .resume         = intel_pstate_resume,
2780         .init           = intel_pstate_cpu_init,
2781         .exit           = intel_pstate_cpu_exit,
2782         .offline        = intel_pstate_cpu_offline,
2783         .online         = intel_pstate_cpu_online,
2784         .update_limits  = intel_pstate_update_limits,
2785         .name           = "intel_pstate",
2786 };
2787
2788 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2789 {
2790         struct cpudata *cpu = all_cpu_data[policy->cpu];
2791
2792         intel_pstate_verify_cpu_policy(cpu, policy);
2793         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2794
2795         return 0;
2796 }
2797
2798 /* Use of trace in passive mode:
2799  *
2800  * In passive mode the trace core_busy field (also known as the
2801  * performance field, and lablelled as such on the graphs; also known as
2802  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2803  * driver call was via the normal or fast switch path. Various graphs
2804  * output from the intel_pstate_tracer.py utility that include core_busy
2805  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2806  * so we use 10 to indicate the normal path through the driver, and
2807  * 90 to indicate the fast switch path through the driver.
2808  * The scaled_busy field is not used, and is set to 0.
2809  */
2810
2811 #define INTEL_PSTATE_TRACE_TARGET 10
2812 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2813
2814 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2815 {
2816         struct sample *sample;
2817
2818         if (!trace_pstate_sample_enabled())
2819                 return;
2820
2821         if (!intel_pstate_sample(cpu, ktime_get()))
2822                 return;
2823
2824         sample = &cpu->sample;
2825         trace_pstate_sample(trace_type,
2826                 0,
2827                 old_pstate,
2828                 cpu->pstate.current_pstate,
2829                 sample->mperf,
2830                 sample->aperf,
2831                 sample->tsc,
2832                 get_avg_frequency(cpu),
2833                 fp_toint(cpu->iowait_boost * 100));
2834 }
2835
2836 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2837                                      u32 desired, bool fast_switch)
2838 {
2839         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2840
2841         value &= ~HWP_MIN_PERF(~0L);
2842         value |= HWP_MIN_PERF(min);
2843
2844         value &= ~HWP_MAX_PERF(~0L);
2845         value |= HWP_MAX_PERF(max);
2846
2847         value &= ~HWP_DESIRED_PERF(~0L);
2848         value |= HWP_DESIRED_PERF(desired);
2849
2850         if (value == prev)
2851                 return;
2852
2853         WRITE_ONCE(cpu->hwp_req_cached, value);
2854         if (fast_switch)
2855                 wrmsrl(MSR_HWP_REQUEST, value);
2856         else
2857                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2858 }
2859
2860 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2861                                           u32 target_pstate, bool fast_switch)
2862 {
2863         if (fast_switch)
2864                 wrmsrl(MSR_IA32_PERF_CTL,
2865                        pstate_funcs.get_val(cpu, target_pstate));
2866         else
2867                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2868                               pstate_funcs.get_val(cpu, target_pstate));
2869 }
2870
2871 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2872                                        int target_pstate, bool fast_switch)
2873 {
2874         struct cpudata *cpu = all_cpu_data[policy->cpu];
2875         int old_pstate = cpu->pstate.current_pstate;
2876
2877         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2878         if (hwp_active) {
2879                 int max_pstate = policy->strict_target ?
2880                                         target_pstate : cpu->max_perf_ratio;
2881
2882                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2883                                          fast_switch);
2884         } else if (target_pstate != old_pstate) {
2885                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2886         }
2887
2888         cpu->pstate.current_pstate = target_pstate;
2889
2890         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2891                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2892
2893         return target_pstate;
2894 }
2895
2896 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2897                                 unsigned int target_freq,
2898                                 unsigned int relation)
2899 {
2900         struct cpudata *cpu = all_cpu_data[policy->cpu];
2901         struct cpufreq_freqs freqs;
2902         int target_pstate;
2903
2904         update_turbo_state();
2905
2906         freqs.old = policy->cur;
2907         freqs.new = target_freq;
2908
2909         cpufreq_freq_transition_begin(policy, &freqs);
2910
2911         switch (relation) {
2912         case CPUFREQ_RELATION_L:
2913                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2914                 break;
2915         case CPUFREQ_RELATION_H:
2916                 target_pstate = freqs.new / cpu->pstate.scaling;
2917                 break;
2918         default:
2919                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2920                 break;
2921         }
2922
2923         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2924
2925         freqs.new = target_pstate * cpu->pstate.scaling;
2926
2927         cpufreq_freq_transition_end(policy, &freqs, false);
2928
2929         return 0;
2930 }
2931
2932 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2933                                               unsigned int target_freq)
2934 {
2935         struct cpudata *cpu = all_cpu_data[policy->cpu];
2936         int target_pstate;
2937
2938         update_turbo_state();
2939
2940         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2941
2942         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2943
2944         return target_pstate * cpu->pstate.scaling;
2945 }
2946
2947 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2948                                       unsigned long min_perf,
2949                                       unsigned long target_perf,
2950                                       unsigned long capacity)
2951 {
2952         struct cpudata *cpu = all_cpu_data[cpunum];
2953         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2954         int old_pstate = cpu->pstate.current_pstate;
2955         int cap_pstate, min_pstate, max_pstate, target_pstate;
2956
2957         update_turbo_state();
2958         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2959                                              HWP_HIGHEST_PERF(hwp_cap);
2960
2961         /* Optimization: Avoid unnecessary divisions. */
2962
2963         target_pstate = cap_pstate;
2964         if (target_perf < capacity)
2965                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2966
2967         min_pstate = cap_pstate;
2968         if (min_perf < capacity)
2969                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2970
2971         if (min_pstate < cpu->pstate.min_pstate)
2972                 min_pstate = cpu->pstate.min_pstate;
2973
2974         if (min_pstate < cpu->min_perf_ratio)
2975                 min_pstate = cpu->min_perf_ratio;
2976
2977         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2978         if (max_pstate < min_pstate)
2979                 max_pstate = min_pstate;
2980
2981         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2982
2983         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2984
2985         cpu->pstate.current_pstate = target_pstate;
2986         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2987 }
2988
2989 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2990 {
2991         struct freq_qos_request *req;
2992         struct cpudata *cpu;
2993         struct device *dev;
2994         int ret, freq;
2995
2996         dev = get_cpu_device(policy->cpu);
2997         if (!dev)
2998                 return -ENODEV;
2999
3000         ret = __intel_pstate_cpu_init(policy);
3001         if (ret)
3002                 return ret;
3003
3004         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3005         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3006         policy->cur = policy->cpuinfo.min_freq;
3007
3008         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3009         if (!req) {
3010                 ret = -ENOMEM;
3011                 goto pstate_exit;
3012         }
3013
3014         cpu = all_cpu_data[policy->cpu];
3015
3016         if (hwp_active) {
3017                 u64 value;
3018
3019                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3020
3021                 intel_pstate_get_hwp_cap(cpu);
3022
3023                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3024                 WRITE_ONCE(cpu->hwp_req_cached, value);
3025
3026                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3027         } else {
3028                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3029         }
3030
3031         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3032
3033         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3034                                    freq);
3035         if (ret < 0) {
3036                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3037                 goto free_req;
3038         }
3039
3040         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3041
3042         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3043                                    freq);
3044         if (ret < 0) {
3045                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3046                 goto remove_min_req;
3047         }
3048
3049         policy->driver_data = req;
3050
3051         return 0;
3052
3053 remove_min_req:
3054         freq_qos_remove_request(req);
3055 free_req:
3056         kfree(req);
3057 pstate_exit:
3058         intel_pstate_exit_perf_limits(policy);
3059
3060         return ret;
3061 }
3062
3063 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3064 {
3065         struct freq_qos_request *req;
3066
3067         req = policy->driver_data;
3068
3069         freq_qos_remove_request(req + 1);
3070         freq_qos_remove_request(req);
3071         kfree(req);
3072
3073         return intel_pstate_cpu_exit(policy);
3074 }
3075
3076 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3077 {
3078         intel_pstate_suspend(policy);
3079
3080         if (hwp_active) {
3081                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3082                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3083
3084                 /*
3085                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3086                  * intel_cpufreq_adjust_perf() is in use and the last value
3087                  * written by it may not be suitable.
3088                  */
3089                 value &= ~HWP_DESIRED_PERF(~0L);
3090                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3091                 WRITE_ONCE(cpu->hwp_req_cached, value);
3092         }
3093
3094         return 0;
3095 }
3096
3097 static struct cpufreq_driver intel_cpufreq = {
3098         .flags          = CPUFREQ_CONST_LOOPS,
3099         .verify         = intel_cpufreq_verify_policy,
3100         .target         = intel_cpufreq_target,
3101         .fast_switch    = intel_cpufreq_fast_switch,
3102         .init           = intel_cpufreq_cpu_init,
3103         .exit           = intel_cpufreq_cpu_exit,
3104         .offline        = intel_cpufreq_cpu_offline,
3105         .online         = intel_pstate_cpu_online,
3106         .suspend        = intel_cpufreq_suspend,
3107         .resume         = intel_pstate_resume,
3108         .update_limits  = intel_pstate_update_limits,
3109         .name           = "intel_cpufreq",
3110 };
3111
3112 static struct cpufreq_driver *default_driver;
3113
3114 static void intel_pstate_driver_cleanup(void)
3115 {
3116         unsigned int cpu;
3117
3118         cpus_read_lock();
3119         for_each_online_cpu(cpu) {
3120                 if (all_cpu_data[cpu]) {
3121                         if (intel_pstate_driver == &intel_pstate)
3122                                 intel_pstate_clear_update_util_hook(cpu);
3123
3124                         spin_lock(&hwp_notify_lock);
3125                         kfree(all_cpu_data[cpu]);
3126                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3127                         spin_unlock(&hwp_notify_lock);
3128                 }
3129         }
3130         cpus_read_unlock();
3131
3132         intel_pstate_driver = NULL;
3133 }
3134
3135 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3136 {
3137         int ret;
3138
3139         if (driver == &intel_pstate)
3140                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3141
3142         memset(&global, 0, sizeof(global));
3143         global.max_perf_pct = 100;
3144
3145         intel_pstate_driver = driver;
3146         ret = cpufreq_register_driver(intel_pstate_driver);
3147         if (ret) {
3148                 intel_pstate_driver_cleanup();
3149                 return ret;
3150         }
3151
3152         global.min_perf_pct = min_perf_pct_min();
3153
3154         return 0;
3155 }
3156
3157 static ssize_t intel_pstate_show_status(char *buf)
3158 {
3159         if (!intel_pstate_driver)
3160                 return sprintf(buf, "off\n");
3161
3162         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3163                                         "active" : "passive");
3164 }
3165
3166 static int intel_pstate_update_status(const char *buf, size_t size)
3167 {
3168         if (size == 3 && !strncmp(buf, "off", size)) {
3169                 if (!intel_pstate_driver)
3170                         return -EINVAL;
3171
3172                 if (hwp_active)
3173                         return -EBUSY;
3174
3175                 cpufreq_unregister_driver(intel_pstate_driver);
3176                 intel_pstate_driver_cleanup();
3177                 return 0;
3178         }
3179
3180         if (size == 6 && !strncmp(buf, "active", size)) {
3181                 if (intel_pstate_driver) {
3182                         if (intel_pstate_driver == &intel_pstate)
3183                                 return 0;
3184
3185                         cpufreq_unregister_driver(intel_pstate_driver);
3186                 }
3187
3188                 return intel_pstate_register_driver(&intel_pstate);
3189         }
3190
3191         if (size == 7 && !strncmp(buf, "passive", size)) {
3192                 if (intel_pstate_driver) {
3193                         if (intel_pstate_driver == &intel_cpufreq)
3194                                 return 0;
3195
3196                         cpufreq_unregister_driver(intel_pstate_driver);
3197                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3198                 }
3199
3200                 return intel_pstate_register_driver(&intel_cpufreq);
3201         }
3202
3203         return -EINVAL;
3204 }
3205
3206 static int no_load __initdata;
3207 static int no_hwp __initdata;
3208 static int hwp_only __initdata;
3209 static unsigned int force_load __initdata;
3210
3211 static int __init intel_pstate_msrs_not_valid(void)
3212 {
3213         if (!pstate_funcs.get_max(0) ||
3214             !pstate_funcs.get_min(0) ||
3215             !pstate_funcs.get_turbo(0))
3216                 return -ENODEV;
3217
3218         return 0;
3219 }
3220
3221 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3222 {
3223         pstate_funcs.get_max   = funcs->get_max;
3224         pstate_funcs.get_max_physical = funcs->get_max_physical;
3225         pstate_funcs.get_min   = funcs->get_min;
3226         pstate_funcs.get_turbo = funcs->get_turbo;
3227         pstate_funcs.get_scaling = funcs->get_scaling;
3228         pstate_funcs.get_val   = funcs->get_val;
3229         pstate_funcs.get_vid   = funcs->get_vid;
3230         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3231 }
3232
3233 #ifdef CONFIG_ACPI
3234
3235 static bool __init intel_pstate_no_acpi_pss(void)
3236 {
3237         int i;
3238
3239         for_each_possible_cpu(i) {
3240                 acpi_status status;
3241                 union acpi_object *pss;
3242                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3243                 struct acpi_processor *pr = per_cpu(processors, i);
3244
3245                 if (!pr)
3246                         continue;
3247
3248                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3249                 if (ACPI_FAILURE(status))
3250                         continue;
3251
3252                 pss = buffer.pointer;
3253                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3254                         kfree(pss);
3255                         return false;
3256                 }
3257
3258                 kfree(pss);
3259         }
3260
3261         pr_debug("ACPI _PSS not found\n");
3262         return true;
3263 }
3264
3265 static bool __init intel_pstate_no_acpi_pcch(void)
3266 {
3267         acpi_status status;
3268         acpi_handle handle;
3269
3270         status = acpi_get_handle(NULL, "\\_SB", &handle);
3271         if (ACPI_FAILURE(status))
3272                 goto not_found;
3273
3274         if (acpi_has_method(handle, "PCCH"))
3275                 return false;
3276
3277 not_found:
3278         pr_debug("ACPI PCCH not found\n");
3279         return true;
3280 }
3281
3282 static bool __init intel_pstate_has_acpi_ppc(void)
3283 {
3284         int i;
3285
3286         for_each_possible_cpu(i) {
3287                 struct acpi_processor *pr = per_cpu(processors, i);
3288
3289                 if (!pr)
3290                         continue;
3291                 if (acpi_has_method(pr->handle, "_PPC"))
3292                         return true;
3293         }
3294         pr_debug("ACPI _PPC not found\n");
3295         return false;
3296 }
3297
3298 enum {
3299         PSS,
3300         PPC,
3301 };
3302
3303 /* Hardware vendor-specific info that has its own power management modes */
3304 static struct acpi_platform_list plat_info[] __initdata = {
3305         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3306         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3307         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3308         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3309         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3310         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3311         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3312         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3313         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3314         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3315         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3316         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3317         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3318         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3319         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3320         { } /* End */
3321 };
3322
3323 #define BITMASK_OOB     (BIT(8) | BIT(18))
3324
3325 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3326 {
3327         const struct x86_cpu_id *id;
3328         u64 misc_pwr;
3329         int idx;
3330
3331         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3332         if (id) {
3333                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3334                 if (misc_pwr & BITMASK_OOB) {
3335                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3336                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3337                         return true;
3338                 }
3339         }
3340
3341         idx = acpi_match_platform_list(plat_info);
3342         if (idx < 0)
3343                 return false;
3344
3345         switch (plat_info[idx].data) {
3346         case PSS:
3347                 if (!intel_pstate_no_acpi_pss())
3348                         return false;
3349
3350                 return intel_pstate_no_acpi_pcch();
3351         case PPC:
3352                 return intel_pstate_has_acpi_ppc() && !force_load;
3353         }
3354
3355         return false;
3356 }
3357
3358 static void intel_pstate_request_control_from_smm(void)
3359 {
3360         /*
3361          * It may be unsafe to request P-states control from SMM if _PPC support
3362          * has not been enabled.
3363          */
3364         if (acpi_ppc)
3365                 acpi_processor_pstate_control();
3366 }
3367 #else /* CONFIG_ACPI not enabled */
3368 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3369 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3370 static inline void intel_pstate_request_control_from_smm(void) {}
3371 #endif /* CONFIG_ACPI */
3372
3373 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3374
3375 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3376         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3377                                            X86_FEATURE_HWP, hwp_mode)
3378
3379 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3380         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3381         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3382         X86_MATCH_HWP(ANY,              0),
3383         {}
3384 };
3385
3386 static bool intel_pstate_hwp_is_enabled(void)
3387 {
3388         u64 value;
3389
3390         rdmsrl(MSR_PM_ENABLE, value);
3391         return !!(value & 0x1);
3392 }
3393
3394 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3395         /*
3396          * Set EPP value as 102, this is the max suggested EPP
3397          * which can result in one core turbo frequency for
3398          * AlderLake Mobile CPUs.
3399          */
3400         X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3401         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3402         {}
3403 };
3404
3405 static int __init intel_pstate_init(void)
3406 {
3407         static struct cpudata **_all_cpu_data;
3408         const struct x86_cpu_id *id;
3409         int rc;
3410
3411         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3412                 return -ENODEV;
3413
3414         id = x86_match_cpu(hwp_support_ids);
3415         if (id) {
3416                 hwp_forced = intel_pstate_hwp_is_enabled();
3417
3418                 if (hwp_forced)
3419                         pr_info("HWP enabled by BIOS\n");
3420                 else if (no_load)
3421                         return -ENODEV;
3422
3423                 copy_cpu_funcs(&core_funcs);
3424                 /*
3425                  * Avoid enabling HWP for processors without EPP support,
3426                  * because that means incomplete HWP implementation which is a
3427                  * corner case and supporting it is generally problematic.
3428                  *
3429                  * If HWP is enabled already, though, there is no choice but to
3430                  * deal with it.
3431                  */
3432                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3433                         WRITE_ONCE(hwp_active, 1);
3434                         hwp_mode_bdw = id->driver_data;
3435                         intel_pstate.attr = hwp_cpufreq_attrs;
3436                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3437                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3438                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3439                         if (!default_driver)
3440                                 default_driver = &intel_pstate;
3441
3442                         pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3443
3444                         goto hwp_cpu_matched;
3445                 }
3446                 pr_info("HWP not enabled\n");
3447         } else {
3448                 if (no_load)
3449                         return -ENODEV;
3450
3451                 id = x86_match_cpu(intel_pstate_cpu_ids);
3452                 if (!id) {
3453                         pr_info("CPU model not supported\n");
3454                         return -ENODEV;
3455                 }
3456
3457                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3458         }
3459
3460         if (intel_pstate_msrs_not_valid()) {
3461                 pr_info("Invalid MSRs\n");
3462                 return -ENODEV;
3463         }
3464         /* Without HWP start in the passive mode. */
3465         if (!default_driver)
3466                 default_driver = &intel_cpufreq;
3467
3468 hwp_cpu_matched:
3469         /*
3470          * The Intel pstate driver will be ignored if the platform
3471          * firmware has its own power management modes.
3472          */
3473         if (intel_pstate_platform_pwr_mgmt_exists()) {
3474                 pr_info("P-states controlled by the platform\n");
3475                 return -ENODEV;
3476         }
3477
3478         if (!hwp_active && hwp_only)
3479                 return -ENOTSUPP;
3480
3481         pr_info("Intel P-state driver initializing\n");
3482
3483         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3484         if (!_all_cpu_data)
3485                 return -ENOMEM;
3486
3487         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3488
3489         intel_pstate_request_control_from_smm();
3490
3491         intel_pstate_sysfs_expose_params();
3492
3493         if (hwp_active) {
3494                 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3495
3496                 if (id)
3497                         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3498         }
3499
3500         mutex_lock(&intel_pstate_driver_lock);
3501         rc = intel_pstate_register_driver(default_driver);
3502         mutex_unlock(&intel_pstate_driver_lock);
3503         if (rc) {
3504                 intel_pstate_sysfs_remove();
3505                 return rc;
3506         }
3507
3508         if (hwp_active) {
3509                 const struct x86_cpu_id *id;
3510
3511                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3512                 if (id) {
3513                         set_power_ctl_ee_state(false);
3514                         pr_info("Disabling energy efficiency optimization\n");
3515                 }
3516
3517                 pr_info("HWP enabled\n");
3518         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3519                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3520         }
3521
3522         return 0;
3523 }
3524 device_initcall(intel_pstate_init);
3525
3526 static int __init intel_pstate_setup(char *str)
3527 {
3528         if (!str)
3529                 return -EINVAL;
3530
3531         if (!strcmp(str, "disable"))
3532                 no_load = 1;
3533         else if (!strcmp(str, "active"))
3534                 default_driver = &intel_pstate;
3535         else if (!strcmp(str, "passive"))
3536                 default_driver = &intel_cpufreq;
3537
3538         if (!strcmp(str, "no_hwp"))
3539                 no_hwp = 1;
3540
3541         if (!strcmp(str, "force"))
3542                 force_load = 1;
3543         if (!strcmp(str, "hwp_only"))
3544                 hwp_only = 1;
3545         if (!strcmp(str, "per_cpu_perf_limits"))
3546                 per_cpu_limits = true;
3547
3548 #ifdef CONFIG_ACPI
3549         if (!strcmp(str, "support_acpi_ppc"))
3550                 acpi_ppc = true;
3551 #endif
3552
3553         return 0;
3554 }
3555 early_param("intel_pstate", intel_pstate_setup);
3556
3557 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3558 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");