drivers/block/Kconfig: update RAM block device module name
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define SAMPLE_COUNT            3
36
37 #define BYT_RATIOS      0x66a
38
39 #define FRAC_BITS 8
40 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
41 #define fp_toint(X) ((X) >> FRAC_BITS)
42
43 static inline int32_t mul_fp(int32_t x, int32_t y)
44 {
45         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
46 }
47
48 static inline int32_t div_fp(int32_t x, int32_t y)
49 {
50         return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
51 }
52
53 struct sample {
54         int32_t core_pct_busy;
55         u64 aperf;
56         u64 mperf;
57         int freq;
58 };
59
60 struct pstate_data {
61         int     current_pstate;
62         int     min_pstate;
63         int     max_pstate;
64         int     turbo_pstate;
65 };
66
67 struct _pid {
68         int setpoint;
69         int32_t integral;
70         int32_t p_gain;
71         int32_t i_gain;
72         int32_t d_gain;
73         int deadband;
74         int32_t last_err;
75 };
76
77 struct cpudata {
78         int cpu;
79
80         char name[64];
81
82         struct timer_list timer;
83
84         struct pstate_data pstate;
85         struct _pid pid;
86
87         int min_pstate_count;
88
89         u64     prev_aperf;
90         u64     prev_mperf;
91         int     sample_ptr;
92         struct sample samples[SAMPLE_COUNT];
93 };
94
95 static struct cpudata **all_cpu_data;
96 struct pstate_adjust_policy {
97         int sample_rate_ms;
98         int deadband;
99         int setpoint;
100         int p_gain_pct;
101         int d_gain_pct;
102         int i_gain_pct;
103 };
104
105 struct pstate_funcs {
106         int (*get_max)(void);
107         int (*get_min)(void);
108         int (*get_turbo)(void);
109         void (*set)(int pstate);
110 };
111
112 struct cpu_defaults {
113         struct pstate_adjust_policy pid_policy;
114         struct pstate_funcs funcs;
115 };
116
117 static struct pstate_adjust_policy pid_params;
118 static struct pstate_funcs pstate_funcs;
119
120 struct perf_limits {
121         int no_turbo;
122         int max_perf_pct;
123         int min_perf_pct;
124         int32_t max_perf;
125         int32_t min_perf;
126         int max_policy_pct;
127         int max_sysfs_pct;
128 };
129
130 static struct perf_limits limits = {
131         .no_turbo = 0,
132         .max_perf_pct = 100,
133         .max_perf = int_tofp(1),
134         .min_perf_pct = 0,
135         .min_perf = 0,
136         .max_policy_pct = 100,
137         .max_sysfs_pct = 100,
138 };
139
140 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
141                         int deadband, int integral) {
142         pid->setpoint = setpoint;
143         pid->deadband  = deadband;
144         pid->integral  = int_tofp(integral);
145         pid->last_err  = setpoint - busy;
146 }
147
148 static inline void pid_p_gain_set(struct _pid *pid, int percent)
149 {
150         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
151 }
152
153 static inline void pid_i_gain_set(struct _pid *pid, int percent)
154 {
155         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
156 }
157
158 static inline void pid_d_gain_set(struct _pid *pid, int percent)
159 {
160
161         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
162 }
163
164 static signed int pid_calc(struct _pid *pid, int32_t busy)
165 {
166         signed int result;
167         int32_t pterm, dterm, fp_error;
168         int32_t integral_limit;
169
170         fp_error = int_tofp(pid->setpoint) - busy;
171
172         if (abs(fp_error) <= int_tofp(pid->deadband))
173                 return 0;
174
175         pterm = mul_fp(pid->p_gain, fp_error);
176
177         pid->integral += fp_error;
178
179         /* limit the integral term */
180         integral_limit = int_tofp(30);
181         if (pid->integral > integral_limit)
182                 pid->integral = integral_limit;
183         if (pid->integral < -integral_limit)
184                 pid->integral = -integral_limit;
185
186         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
187         pid->last_err = fp_error;
188
189         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
190
191         return (signed int)fp_toint(result);
192 }
193
194 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
195 {
196         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
197         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
198         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
199
200         pid_reset(&cpu->pid,
201                 pid_params.setpoint,
202                 100,
203                 pid_params.deadband,
204                 0);
205 }
206
207 static inline void intel_pstate_reset_all_pid(void)
208 {
209         unsigned int cpu;
210         for_each_online_cpu(cpu) {
211                 if (all_cpu_data[cpu])
212                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
213         }
214 }
215
216 /************************** debugfs begin ************************/
217 static int pid_param_set(void *data, u64 val)
218 {
219         *(u32 *)data = val;
220         intel_pstate_reset_all_pid();
221         return 0;
222 }
223 static int pid_param_get(void *data, u64 *val)
224 {
225         *val = *(u32 *)data;
226         return 0;
227 }
228 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
229                         pid_param_set, "%llu\n");
230
231 struct pid_param {
232         char *name;
233         void *value;
234 };
235
236 static struct pid_param pid_files[] = {
237         {"sample_rate_ms", &pid_params.sample_rate_ms},
238         {"d_gain_pct", &pid_params.d_gain_pct},
239         {"i_gain_pct", &pid_params.i_gain_pct},
240         {"deadband", &pid_params.deadband},
241         {"setpoint", &pid_params.setpoint},
242         {"p_gain_pct", &pid_params.p_gain_pct},
243         {NULL, NULL}
244 };
245
246 static struct dentry *debugfs_parent;
247 static void intel_pstate_debug_expose_params(void)
248 {
249         int i = 0;
250
251         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
252         if (IS_ERR_OR_NULL(debugfs_parent))
253                 return;
254         while (pid_files[i].name) {
255                 debugfs_create_file(pid_files[i].name, 0660,
256                                 debugfs_parent, pid_files[i].value,
257                                 &fops_pid_param);
258                 i++;
259         }
260 }
261
262 /************************** debugfs end ************************/
263
264 /************************** sysfs begin ************************/
265 #define show_one(file_name, object)                                     \
266         static ssize_t show_##file_name                                 \
267         (struct kobject *kobj, struct attribute *attr, char *buf)       \
268         {                                                               \
269                 return sprintf(buf, "%u\n", limits.object);             \
270         }
271
272 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
273                                 const char *buf, size_t count)
274 {
275         unsigned int input;
276         int ret;
277         ret = sscanf(buf, "%u", &input);
278         if (ret != 1)
279                 return -EINVAL;
280         limits.no_turbo = clamp_t(int, input, 0 , 1);
281
282         return count;
283 }
284
285 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
286                                 const char *buf, size_t count)
287 {
288         unsigned int input;
289         int ret;
290         ret = sscanf(buf, "%u", &input);
291         if (ret != 1)
292                 return -EINVAL;
293
294         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
295         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
296         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
297         return count;
298 }
299
300 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
301                                 const char *buf, size_t count)
302 {
303         unsigned int input;
304         int ret;
305         ret = sscanf(buf, "%u", &input);
306         if (ret != 1)
307                 return -EINVAL;
308         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
309         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
310
311         return count;
312 }
313
314 show_one(no_turbo, no_turbo);
315 show_one(max_perf_pct, max_perf_pct);
316 show_one(min_perf_pct, min_perf_pct);
317
318 define_one_global_rw(no_turbo);
319 define_one_global_rw(max_perf_pct);
320 define_one_global_rw(min_perf_pct);
321
322 static struct attribute *intel_pstate_attributes[] = {
323         &no_turbo.attr,
324         &max_perf_pct.attr,
325         &min_perf_pct.attr,
326         NULL
327 };
328
329 static struct attribute_group intel_pstate_attr_group = {
330         .attrs = intel_pstate_attributes,
331 };
332 static struct kobject *intel_pstate_kobject;
333
334 static void intel_pstate_sysfs_expose_params(void)
335 {
336         int rc;
337
338         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
339                                                 &cpu_subsys.dev_root->kobj);
340         BUG_ON(!intel_pstate_kobject);
341         rc = sysfs_create_group(intel_pstate_kobject,
342                                 &intel_pstate_attr_group);
343         BUG_ON(rc);
344 }
345
346 /************************** sysfs end ************************/
347 static int byt_get_min_pstate(void)
348 {
349         u64 value;
350         rdmsrl(BYT_RATIOS, value);
351         return value & 0xFF;
352 }
353
354 static int byt_get_max_pstate(void)
355 {
356         u64 value;
357         rdmsrl(BYT_RATIOS, value);
358         return (value >> 16) & 0xFF;
359 }
360
361 static int core_get_min_pstate(void)
362 {
363         u64 value;
364         rdmsrl(MSR_PLATFORM_INFO, value);
365         return (value >> 40) & 0xFF;
366 }
367
368 static int core_get_max_pstate(void)
369 {
370         u64 value;
371         rdmsrl(MSR_PLATFORM_INFO, value);
372         return (value >> 8) & 0xFF;
373 }
374
375 static int core_get_turbo_pstate(void)
376 {
377         u64 value;
378         int nont, ret;
379         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
380         nont = core_get_max_pstate();
381         ret = ((value) & 255);
382         if (ret <= nont)
383                 ret = nont;
384         return ret;
385 }
386
387 static void core_set_pstate(int pstate)
388 {
389         u64 val;
390
391         val = pstate << 8;
392         if (limits.no_turbo)
393                 val |= (u64)1 << 32;
394
395         wrmsrl(MSR_IA32_PERF_CTL, val);
396 }
397
398 static struct cpu_defaults core_params = {
399         .pid_policy = {
400                 .sample_rate_ms = 10,
401                 .deadband = 0,
402                 .setpoint = 97,
403                 .p_gain_pct = 20,
404                 .d_gain_pct = 0,
405                 .i_gain_pct = 0,
406         },
407         .funcs = {
408                 .get_max = core_get_max_pstate,
409                 .get_min = core_get_min_pstate,
410                 .get_turbo = core_get_turbo_pstate,
411                 .set = core_set_pstate,
412         },
413 };
414
415 static struct cpu_defaults byt_params = {
416         .pid_policy = {
417                 .sample_rate_ms = 10,
418                 .deadband = 0,
419                 .setpoint = 97,
420                 .p_gain_pct = 14,
421                 .d_gain_pct = 0,
422                 .i_gain_pct = 4,
423         },
424         .funcs = {
425                 .get_max = byt_get_max_pstate,
426                 .get_min = byt_get_min_pstate,
427                 .get_turbo = byt_get_max_pstate,
428                 .set = core_set_pstate,
429         },
430 };
431
432
433 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
434 {
435         int max_perf = cpu->pstate.turbo_pstate;
436         int max_perf_adj;
437         int min_perf;
438         if (limits.no_turbo)
439                 max_perf = cpu->pstate.max_pstate;
440
441         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
442         *max = clamp_t(int, max_perf_adj,
443                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
444
445         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
446         *min = clamp_t(int, min_perf,
447                         cpu->pstate.min_pstate, max_perf);
448 }
449
450 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
451 {
452         int max_perf, min_perf;
453
454         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
455
456         pstate = clamp_t(int, pstate, min_perf, max_perf);
457
458         if (pstate == cpu->pstate.current_pstate)
459                 return;
460
461         trace_cpu_frequency(pstate * 100000, cpu->cpu);
462
463         cpu->pstate.current_pstate = pstate;
464
465         pstate_funcs.set(pstate);
466 }
467
468 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
469 {
470         int target;
471         target = cpu->pstate.current_pstate + steps;
472
473         intel_pstate_set_pstate(cpu, target);
474 }
475
476 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
477 {
478         int target;
479         target = cpu->pstate.current_pstate - steps;
480         intel_pstate_set_pstate(cpu, target);
481 }
482
483 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
484 {
485         sprintf(cpu->name, "Intel 2nd generation core");
486
487         cpu->pstate.min_pstate = pstate_funcs.get_min();
488         cpu->pstate.max_pstate = pstate_funcs.get_max();
489         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
490
491         /*
492          * goto max pstate so we don't slow up boot if we are built-in if we are
493          * a module we will take care of it during normal operation
494          */
495         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
496 }
497
498 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
499                                         struct sample *sample)
500 {
501         u64 core_pct;
502         core_pct = div64_u64(int_tofp(sample->aperf * 100),
503                              sample->mperf);
504         sample->freq = fp_toint(cpu->pstate.max_pstate * core_pct * 1000);
505
506         sample->core_pct_busy = core_pct;
507 }
508
509 static inline void intel_pstate_sample(struct cpudata *cpu)
510 {
511         u64 aperf, mperf;
512
513         rdmsrl(MSR_IA32_APERF, aperf);
514         rdmsrl(MSR_IA32_MPERF, mperf);
515         cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
516         cpu->samples[cpu->sample_ptr].aperf = aperf;
517         cpu->samples[cpu->sample_ptr].mperf = mperf;
518         cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
519         cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
520
521         intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
522
523         cpu->prev_aperf = aperf;
524         cpu->prev_mperf = mperf;
525 }
526
527 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
528 {
529         int sample_time, delay;
530
531         sample_time = pid_params.sample_rate_ms;
532         delay = msecs_to_jiffies(sample_time);
533         mod_timer_pinned(&cpu->timer, jiffies + delay);
534 }
535
536 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
537 {
538         int32_t core_busy, max_pstate, current_pstate;
539
540         core_busy = cpu->samples[cpu->sample_ptr].core_pct_busy;
541         max_pstate = int_tofp(cpu->pstate.max_pstate);
542         current_pstate = int_tofp(cpu->pstate.current_pstate);
543         return mul_fp(core_busy, div_fp(max_pstate, current_pstate));
544 }
545
546 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
547 {
548         int32_t busy_scaled;
549         struct _pid *pid;
550         signed int ctl = 0;
551         int steps;
552
553         pid = &cpu->pid;
554         busy_scaled = intel_pstate_get_scaled_busy(cpu);
555
556         ctl = pid_calc(pid, busy_scaled);
557
558         steps = abs(ctl);
559         if (ctl < 0)
560                 intel_pstate_pstate_increase(cpu, steps);
561         else
562                 intel_pstate_pstate_decrease(cpu, steps);
563 }
564
565 static void intel_pstate_timer_func(unsigned long __data)
566 {
567         struct cpudata *cpu = (struct cpudata *) __data;
568
569         intel_pstate_sample(cpu);
570         intel_pstate_adjust_busy_pstate(cpu);
571
572         if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
573                 cpu->min_pstate_count++;
574                 if (!(cpu->min_pstate_count % 5)) {
575                         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
576                 }
577         } else
578                 cpu->min_pstate_count = 0;
579
580         intel_pstate_set_sample_time(cpu);
581 }
582
583 #define ICPU(model, policy) \
584         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
585                         (unsigned long)&policy }
586
587 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
588         ICPU(0x2a, core_params),
589         ICPU(0x2d, core_params),
590         ICPU(0x37, byt_params),
591         ICPU(0x3a, core_params),
592         ICPU(0x3c, core_params),
593         ICPU(0x3e, core_params),
594         ICPU(0x3f, core_params),
595         ICPU(0x45, core_params),
596         ICPU(0x46, core_params),
597         {}
598 };
599 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
600
601 static int intel_pstate_init_cpu(unsigned int cpunum)
602 {
603
604         const struct x86_cpu_id *id;
605         struct cpudata *cpu;
606
607         id = x86_match_cpu(intel_pstate_cpu_ids);
608         if (!id)
609                 return -ENODEV;
610
611         all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
612         if (!all_cpu_data[cpunum])
613                 return -ENOMEM;
614
615         cpu = all_cpu_data[cpunum];
616
617         intel_pstate_get_cpu_pstates(cpu);
618         if (!cpu->pstate.current_pstate) {
619                 all_cpu_data[cpunum] = NULL;
620                 kfree(cpu);
621                 return -ENODATA;
622         }
623
624         cpu->cpu = cpunum;
625
626         init_timer_deferrable(&cpu->timer);
627         cpu->timer.function = intel_pstate_timer_func;
628         cpu->timer.data =
629                 (unsigned long)cpu;
630         cpu->timer.expires = jiffies + HZ/100;
631         intel_pstate_busy_pid_reset(cpu);
632         intel_pstate_sample(cpu);
633         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
634
635         add_timer_on(&cpu->timer, cpunum);
636
637         pr_info("Intel pstate controlling: cpu %d\n", cpunum);
638
639         return 0;
640 }
641
642 static unsigned int intel_pstate_get(unsigned int cpu_num)
643 {
644         struct sample *sample;
645         struct cpudata *cpu;
646
647         cpu = all_cpu_data[cpu_num];
648         if (!cpu)
649                 return 0;
650         sample = &cpu->samples[cpu->sample_ptr];
651         return sample->freq;
652 }
653
654 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
655 {
656         struct cpudata *cpu;
657
658         cpu = all_cpu_data[policy->cpu];
659
660         if (!policy->cpuinfo.max_freq)
661                 return -ENODEV;
662
663         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
664                 limits.min_perf_pct = 100;
665                 limits.min_perf = int_tofp(1);
666                 limits.max_perf_pct = 100;
667                 limits.max_perf = int_tofp(1);
668                 limits.no_turbo = 0;
669                 return 0;
670         }
671         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
672         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
673         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
674
675         limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
676         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
677         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
678         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
679
680         return 0;
681 }
682
683 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
684 {
685         cpufreq_verify_within_cpu_limits(policy);
686
687         if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
688                 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
689                 return -EINVAL;
690
691         return 0;
692 }
693
694 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
695 {
696         int cpu = policy->cpu;
697
698         del_timer(&all_cpu_data[cpu]->timer);
699         kfree(all_cpu_data[cpu]);
700         all_cpu_data[cpu] = NULL;
701         return 0;
702 }
703
704 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
705 {
706         struct cpudata *cpu;
707         int rc;
708
709         rc = intel_pstate_init_cpu(policy->cpu);
710         if (rc)
711                 return rc;
712
713         cpu = all_cpu_data[policy->cpu];
714
715         if (!limits.no_turbo &&
716                 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
717                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
718         else
719                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
720
721         policy->min = cpu->pstate.min_pstate * 100000;
722         policy->max = cpu->pstate.turbo_pstate * 100000;
723
724         /* cpuinfo and default policy values */
725         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
726         policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
727         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
728         cpumask_set_cpu(policy->cpu, policy->cpus);
729
730         return 0;
731 }
732
733 static struct cpufreq_driver intel_pstate_driver = {
734         .flags          = CPUFREQ_CONST_LOOPS,
735         .verify         = intel_pstate_verify_policy,
736         .setpolicy      = intel_pstate_set_policy,
737         .get            = intel_pstate_get,
738         .init           = intel_pstate_cpu_init,
739         .exit           = intel_pstate_cpu_exit,
740         .name           = "intel_pstate",
741 };
742
743 static int __initdata no_load;
744
745 static int intel_pstate_msrs_not_valid(void)
746 {
747         /* Check that all the msr's we are using are valid. */
748         u64 aperf, mperf, tmp;
749
750         rdmsrl(MSR_IA32_APERF, aperf);
751         rdmsrl(MSR_IA32_MPERF, mperf);
752
753         if (!pstate_funcs.get_max() ||
754                 !pstate_funcs.get_min() ||
755                 !pstate_funcs.get_turbo())
756                 return -ENODEV;
757
758         rdmsrl(MSR_IA32_APERF, tmp);
759         if (!(tmp - aperf))
760                 return -ENODEV;
761
762         rdmsrl(MSR_IA32_MPERF, tmp);
763         if (!(tmp - mperf))
764                 return -ENODEV;
765
766         return 0;
767 }
768
769 static void copy_pid_params(struct pstate_adjust_policy *policy)
770 {
771         pid_params.sample_rate_ms = policy->sample_rate_ms;
772         pid_params.p_gain_pct = policy->p_gain_pct;
773         pid_params.i_gain_pct = policy->i_gain_pct;
774         pid_params.d_gain_pct = policy->d_gain_pct;
775         pid_params.deadband = policy->deadband;
776         pid_params.setpoint = policy->setpoint;
777 }
778
779 static void copy_cpu_funcs(struct pstate_funcs *funcs)
780 {
781         pstate_funcs.get_max   = funcs->get_max;
782         pstate_funcs.get_min   = funcs->get_min;
783         pstate_funcs.get_turbo = funcs->get_turbo;
784         pstate_funcs.set       = funcs->set;
785 }
786
787 #if IS_ENABLED(CONFIG_ACPI)
788 #include <acpi/processor.h>
789
790 static bool intel_pstate_no_acpi_pss(void)
791 {
792         int i;
793
794         for_each_possible_cpu(i) {
795                 acpi_status status;
796                 union acpi_object *pss;
797                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
798                 struct acpi_processor *pr = per_cpu(processors, i);
799
800                 if (!pr)
801                         continue;
802
803                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
804                 if (ACPI_FAILURE(status))
805                         continue;
806
807                 pss = buffer.pointer;
808                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
809                         kfree(pss);
810                         return false;
811                 }
812
813                 kfree(pss);
814         }
815
816         return true;
817 }
818
819 struct hw_vendor_info {
820         u16  valid;
821         char oem_id[ACPI_OEM_ID_SIZE];
822         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
823 };
824
825 /* Hardware vendor-specific info that has its own power management modes */
826 static struct hw_vendor_info vendor_info[] = {
827         {1, "HP    ", "ProLiant"},
828         {0, "", ""},
829 };
830
831 static bool intel_pstate_platform_pwr_mgmt_exists(void)
832 {
833         struct acpi_table_header hdr;
834         struct hw_vendor_info *v_info;
835
836         if (acpi_disabled
837             || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
838                 return false;
839
840         for (v_info = vendor_info; v_info->valid; v_info++) {
841                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
842                     && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
843                     && intel_pstate_no_acpi_pss())
844                         return true;
845         }
846
847         return false;
848 }
849 #else /* CONFIG_ACPI not enabled */
850 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
851 #endif /* CONFIG_ACPI */
852
853 static int __init intel_pstate_init(void)
854 {
855         int cpu, rc = 0;
856         const struct x86_cpu_id *id;
857         struct cpu_defaults *cpu_info;
858
859         if (no_load)
860                 return -ENODEV;
861
862         id = x86_match_cpu(intel_pstate_cpu_ids);
863         if (!id)
864                 return -ENODEV;
865
866         /*
867          * The Intel pstate driver will be ignored if the platform
868          * firmware has its own power management modes.
869          */
870         if (intel_pstate_platform_pwr_mgmt_exists())
871                 return -ENODEV;
872
873         cpu_info = (struct cpu_defaults *)id->driver_data;
874
875         copy_pid_params(&cpu_info->pid_policy);
876         copy_cpu_funcs(&cpu_info->funcs);
877
878         if (intel_pstate_msrs_not_valid())
879                 return -ENODEV;
880
881         pr_info("Intel P-state driver initializing.\n");
882
883         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
884         if (!all_cpu_data)
885                 return -ENOMEM;
886
887         rc = cpufreq_register_driver(&intel_pstate_driver);
888         if (rc)
889                 goto out;
890
891         intel_pstate_debug_expose_params();
892         intel_pstate_sysfs_expose_params();
893         return rc;
894 out:
895         get_online_cpus();
896         for_each_online_cpu(cpu) {
897                 if (all_cpu_data[cpu]) {
898                         del_timer_sync(&all_cpu_data[cpu]->timer);
899                         kfree(all_cpu_data[cpu]);
900                 }
901         }
902
903         put_online_cpus();
904         vfree(all_cpu_data);
905         return -ENODEV;
906 }
907 device_initcall(intel_pstate_init);
908
909 static int __init intel_pstate_setup(char *str)
910 {
911         if (!str)
912                 return -EINVAL;
913
914         if (!strcmp(str, "disable"))
915                 no_load = 1;
916         return 0;
917 }
918 early_param("intel_pstate", intel_pstate_setup);
919
920 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
921 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
922 MODULE_LICENSE("GPL");