a7f1946b34521d23469dede0547b6475cd5973fe
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33
34 #define SAMPLE_COUNT            3
35
36 #define FRAC_BITS 8
37 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
38 #define fp_toint(X) ((X) >> FRAC_BITS)
39
40 static inline int32_t mul_fp(int32_t x, int32_t y)
41 {
42         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
43 }
44
45 static inline int32_t div_fp(int32_t x, int32_t y)
46 {
47         return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
48 }
49
50 struct sample {
51         int core_pct_busy;
52         u64 aperf;
53         u64 mperf;
54         int freq;
55 };
56
57 struct pstate_data {
58         int     current_pstate;
59         int     min_pstate;
60         int     max_pstate;
61         int     turbo_pstate;
62 };
63
64 struct _pid {
65         int setpoint;
66         int32_t integral;
67         int32_t p_gain;
68         int32_t i_gain;
69         int32_t d_gain;
70         int deadband;
71         int last_err;
72 };
73
74 struct cpudata {
75         int cpu;
76
77         char name[64];
78
79         struct timer_list timer;
80
81         struct pstate_adjust_policy *pstate_policy;
82         struct pstate_data pstate;
83         struct _pid pid;
84         struct _pid idle_pid;
85
86         int min_pstate_count;
87         int idle_mode;
88
89         u64     prev_aperf;
90         u64     prev_mperf;
91         int     sample_ptr;
92         struct sample samples[SAMPLE_COUNT];
93 };
94
95 static struct cpudata **all_cpu_data;
96 struct pstate_adjust_policy {
97         int sample_rate_ms;
98         int deadband;
99         int setpoint;
100         int p_gain_pct;
101         int d_gain_pct;
102         int i_gain_pct;
103 };
104
105 static struct pstate_adjust_policy default_policy = {
106         .sample_rate_ms = 10,
107         .deadband = 0,
108         .setpoint = 109,
109         .p_gain_pct = 17,
110         .d_gain_pct = 0,
111         .i_gain_pct = 4,
112 };
113
114 struct perf_limits {
115         int no_turbo;
116         int max_perf_pct;
117         int min_perf_pct;
118         int32_t max_perf;
119         int32_t min_perf;
120         int max_policy_pct;
121         int max_sysfs_pct;
122 };
123
124 static struct perf_limits limits = {
125         .no_turbo = 0,
126         .max_perf_pct = 100,
127         .max_perf = int_tofp(1),
128         .min_perf_pct = 0,
129         .min_perf = 0,
130         .max_policy_pct = 100,
131         .max_sysfs_pct = 100,
132 };
133
134 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
135                         int deadband, int integral) {
136         pid->setpoint = setpoint;
137         pid->deadband  = deadband;
138         pid->integral  = int_tofp(integral);
139         pid->last_err  = setpoint - busy;
140 }
141
142 static inline void pid_p_gain_set(struct _pid *pid, int percent)
143 {
144         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
145 }
146
147 static inline void pid_i_gain_set(struct _pid *pid, int percent)
148 {
149         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
150 }
151
152 static inline void pid_d_gain_set(struct _pid *pid, int percent)
153 {
154
155         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
156 }
157
158 static signed int pid_calc(struct _pid *pid, int busy)
159 {
160         signed int err, result;
161         int32_t pterm, dterm, fp_error;
162         int32_t integral_limit;
163
164         err = pid->setpoint - busy;
165         fp_error = int_tofp(err);
166
167         if (abs(err) <= pid->deadband)
168                 return 0;
169
170         pterm = mul_fp(pid->p_gain, fp_error);
171
172         pid->integral += fp_error;
173
174         /* limit the integral term */
175         integral_limit = int_tofp(30);
176         if (pid->integral > integral_limit)
177                 pid->integral = integral_limit;
178         if (pid->integral < -integral_limit)
179                 pid->integral = -integral_limit;
180
181         dterm = mul_fp(pid->d_gain, (err - pid->last_err));
182         pid->last_err = err;
183
184         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
185
186         return (signed int)fp_toint(result);
187 }
188
189 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
190 {
191         pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct);
192         pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct);
193         pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct);
194
195         pid_reset(&cpu->pid,
196                 cpu->pstate_policy->setpoint,
197                 100,
198                 cpu->pstate_policy->deadband,
199                 0);
200 }
201
202 static inline void intel_pstate_idle_pid_reset(struct cpudata *cpu)
203 {
204         pid_p_gain_set(&cpu->idle_pid, cpu->pstate_policy->p_gain_pct);
205         pid_d_gain_set(&cpu->idle_pid, cpu->pstate_policy->d_gain_pct);
206         pid_i_gain_set(&cpu->idle_pid, cpu->pstate_policy->i_gain_pct);
207
208         pid_reset(&cpu->idle_pid,
209                 75,
210                 50,
211                 cpu->pstate_policy->deadband,
212                 0);
213 }
214
215 static inline void intel_pstate_reset_all_pid(void)
216 {
217         unsigned int cpu;
218         for_each_online_cpu(cpu) {
219                 if (all_cpu_data[cpu])
220                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
221         }
222 }
223
224 /************************** debugfs begin ************************/
225 static int pid_param_set(void *data, u64 val)
226 {
227         *(u32 *)data = val;
228         intel_pstate_reset_all_pid();
229         return 0;
230 }
231 static int pid_param_get(void *data, u64 *val)
232 {
233         *val = *(u32 *)data;
234         return 0;
235 }
236 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
237                         pid_param_set, "%llu\n");
238
239 struct pid_param {
240         char *name;
241         void *value;
242 };
243
244 static struct pid_param pid_files[] = {
245         {"sample_rate_ms", &default_policy.sample_rate_ms},
246         {"d_gain_pct", &default_policy.d_gain_pct},
247         {"i_gain_pct", &default_policy.i_gain_pct},
248         {"deadband", &default_policy.deadband},
249         {"setpoint", &default_policy.setpoint},
250         {"p_gain_pct", &default_policy.p_gain_pct},
251         {NULL, NULL}
252 };
253
254 static struct dentry *debugfs_parent;
255 static void intel_pstate_debug_expose_params(void)
256 {
257         int i = 0;
258
259         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
260         if (IS_ERR_OR_NULL(debugfs_parent))
261                 return;
262         while (pid_files[i].name) {
263                 debugfs_create_file(pid_files[i].name, 0660,
264                                 debugfs_parent, pid_files[i].value,
265                                 &fops_pid_param);
266                 i++;
267         }
268 }
269
270 /************************** debugfs end ************************/
271
272 /************************** sysfs begin ************************/
273 #define show_one(file_name, object)                                     \
274         static ssize_t show_##file_name                                 \
275         (struct kobject *kobj, struct attribute *attr, char *buf)       \
276         {                                                               \
277                 return sprintf(buf, "%u\n", limits.object);             \
278         }
279
280 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
281                                 const char *buf, size_t count)
282 {
283         unsigned int input;
284         int ret;
285         ret = sscanf(buf, "%u", &input);
286         if (ret != 1)
287                 return -EINVAL;
288         limits.no_turbo = clamp_t(int, input, 0 , 1);
289
290         return count;
291 }
292
293 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
294                                 const char *buf, size_t count)
295 {
296         unsigned int input;
297         int ret;
298         ret = sscanf(buf, "%u", &input);
299         if (ret != 1)
300                 return -EINVAL;
301
302         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
303         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
304         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
305         return count;
306 }
307
308 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
309                                 const char *buf, size_t count)
310 {
311         unsigned int input;
312         int ret;
313         ret = sscanf(buf, "%u", &input);
314         if (ret != 1)
315                 return -EINVAL;
316         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
317         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
318
319         return count;
320 }
321
322 show_one(no_turbo, no_turbo);
323 show_one(max_perf_pct, max_perf_pct);
324 show_one(min_perf_pct, min_perf_pct);
325
326 define_one_global_rw(no_turbo);
327 define_one_global_rw(max_perf_pct);
328 define_one_global_rw(min_perf_pct);
329
330 static struct attribute *intel_pstate_attributes[] = {
331         &no_turbo.attr,
332         &max_perf_pct.attr,
333         &min_perf_pct.attr,
334         NULL
335 };
336
337 static struct attribute_group intel_pstate_attr_group = {
338         .attrs = intel_pstate_attributes,
339 };
340 static struct kobject *intel_pstate_kobject;
341
342 static void intel_pstate_sysfs_expose_params(void)
343 {
344         int rc;
345
346         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
347                                                 &cpu_subsys.dev_root->kobj);
348         BUG_ON(!intel_pstate_kobject);
349         rc = sysfs_create_group(intel_pstate_kobject,
350                                 &intel_pstate_attr_group);
351         BUG_ON(rc);
352 }
353
354 /************************** sysfs end ************************/
355
356 static int intel_pstate_min_pstate(void)
357 {
358         u64 value;
359         rdmsrl(MSR_PLATFORM_INFO, value);
360         return (value >> 40) & 0xFF;
361 }
362
363 static int intel_pstate_max_pstate(void)
364 {
365         u64 value;
366         rdmsrl(MSR_PLATFORM_INFO, value);
367         return (value >> 8) & 0xFF;
368 }
369
370 static int intel_pstate_turbo_pstate(void)
371 {
372         u64 value;
373         int nont, ret;
374         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
375         nont = intel_pstate_max_pstate();
376         ret = ((value) & 255);
377         if (ret <= nont)
378                 ret = nont;
379         return ret;
380 }
381
382 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
383 {
384         int max_perf = cpu->pstate.turbo_pstate;
385         int min_perf;
386         if (limits.no_turbo)
387                 max_perf = cpu->pstate.max_pstate;
388
389         max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
390         *max = clamp_t(int, max_perf,
391                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
392
393         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
394         *min = clamp_t(int, min_perf,
395                         cpu->pstate.min_pstate, max_perf);
396 }
397
398 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
399 {
400         int max_perf, min_perf;
401
402         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
403
404         pstate = clamp_t(int, pstate, min_perf, max_perf);
405
406         if (pstate == cpu->pstate.current_pstate)
407                 return;
408
409 #ifndef MODULE
410         trace_cpu_frequency(pstate * 100000, cpu->cpu);
411 #endif
412         cpu->pstate.current_pstate = pstate;
413         wrmsrl(MSR_IA32_PERF_CTL, pstate << 8);
414
415 }
416
417 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
418 {
419         int target;
420         target = cpu->pstate.current_pstate + steps;
421
422         intel_pstate_set_pstate(cpu, target);
423 }
424
425 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
426 {
427         int target;
428         target = cpu->pstate.current_pstate - steps;
429         intel_pstate_set_pstate(cpu, target);
430 }
431
432 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
433 {
434         sprintf(cpu->name, "Intel 2nd generation core");
435
436         cpu->pstate.min_pstate = intel_pstate_min_pstate();
437         cpu->pstate.max_pstate = intel_pstate_max_pstate();
438         cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate();
439
440         /*
441          * goto max pstate so we don't slow up boot if we are built-in if we are
442          * a module we will take care of it during normal operation
443          */
444         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
445 }
446
447 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
448                                         struct sample *sample)
449 {
450         u64 core_pct;
451         core_pct = div64_u64(sample->aperf * 100, sample->mperf);
452         sample->freq = cpu->pstate.max_pstate * core_pct * 1000;
453
454         sample->core_pct_busy = core_pct;
455 }
456
457 static inline void intel_pstate_sample(struct cpudata *cpu)
458 {
459         u64 aperf, mperf;
460
461         rdmsrl(MSR_IA32_APERF, aperf);
462         rdmsrl(MSR_IA32_MPERF, mperf);
463         cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
464         cpu->samples[cpu->sample_ptr].aperf = aperf;
465         cpu->samples[cpu->sample_ptr].mperf = mperf;
466         cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
467         cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
468
469         intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
470
471         cpu->prev_aperf = aperf;
472         cpu->prev_mperf = mperf;
473 }
474
475 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
476 {
477         int sample_time, delay;
478
479         sample_time = cpu->pstate_policy->sample_rate_ms;
480         delay = msecs_to_jiffies(sample_time);
481         mod_timer_pinned(&cpu->timer, jiffies + delay);
482 }
483
484 static inline void intel_pstate_idle_mode(struct cpudata *cpu)
485 {
486         cpu->idle_mode = 1;
487 }
488
489 static inline void intel_pstate_normal_mode(struct cpudata *cpu)
490 {
491         cpu->idle_mode = 0;
492 }
493
494 static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu)
495 {
496         int32_t busy_scaled;
497         int32_t core_busy, turbo_pstate, current_pstate;
498
499         core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy);
500         turbo_pstate = int_tofp(cpu->pstate.turbo_pstate);
501         current_pstate = int_tofp(cpu->pstate.current_pstate);
502         busy_scaled = mul_fp(core_busy, div_fp(turbo_pstate, current_pstate));
503
504         return fp_toint(busy_scaled);
505 }
506
507 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
508 {
509         int busy_scaled;
510         struct _pid *pid;
511         signed int ctl = 0;
512         int steps;
513
514         pid = &cpu->pid;
515         busy_scaled = intel_pstate_get_scaled_busy(cpu);
516
517         ctl = pid_calc(pid, busy_scaled);
518
519         steps = abs(ctl);
520         if (ctl < 0)
521                 intel_pstate_pstate_increase(cpu, steps);
522         else
523                 intel_pstate_pstate_decrease(cpu, steps);
524 }
525
526 static inline void intel_pstate_adjust_idle_pstate(struct cpudata *cpu)
527 {
528         int busy_scaled;
529         struct _pid *pid;
530         int ctl = 0;
531         int steps;
532
533         pid = &cpu->idle_pid;
534
535         busy_scaled = intel_pstate_get_scaled_busy(cpu);
536
537         ctl = pid_calc(pid, 100 - busy_scaled);
538
539         steps = abs(ctl);
540         if (ctl < 0)
541                 intel_pstate_pstate_decrease(cpu, steps);
542         else
543                 intel_pstate_pstate_increase(cpu, steps);
544
545         if (cpu->pstate.current_pstate == cpu->pstate.min_pstate)
546                 intel_pstate_normal_mode(cpu);
547 }
548
549 static void intel_pstate_timer_func(unsigned long __data)
550 {
551         struct cpudata *cpu = (struct cpudata *) __data;
552
553         intel_pstate_sample(cpu);
554         intel_pstate_adjust_busy_pstate(cpu);
555
556         if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
557                 cpu->min_pstate_count++;
558                 if (!(cpu->min_pstate_count % 5)) {
559                         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
560                 }
561         } else
562                 cpu->min_pstate_count = 0;
563
564         intel_pstate_set_sample_time(cpu);
565 }
566
567 #define ICPU(model, policy) \
568         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy }
569
570 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
571         ICPU(0x2a, default_policy),
572         ICPU(0x2d, default_policy),
573         {}
574 };
575 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
576
577 static int intel_pstate_init_cpu(unsigned int cpunum)
578 {
579
580         const struct x86_cpu_id *id;
581         struct cpudata *cpu;
582
583         id = x86_match_cpu(intel_pstate_cpu_ids);
584         if (!id)
585                 return -ENODEV;
586
587         all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
588         if (!all_cpu_data[cpunum])
589                 return -ENOMEM;
590
591         cpu = all_cpu_data[cpunum];
592
593         intel_pstate_get_cpu_pstates(cpu);
594
595         cpu->cpu = cpunum;
596         cpu->pstate_policy =
597                 (struct pstate_adjust_policy *)id->driver_data;
598         init_timer_deferrable(&cpu->timer);
599         cpu->timer.function = intel_pstate_timer_func;
600         cpu->timer.data =
601                 (unsigned long)cpu;
602         cpu->timer.expires = jiffies + HZ/100;
603         intel_pstate_busy_pid_reset(cpu);
604         intel_pstate_idle_pid_reset(cpu);
605         intel_pstate_sample(cpu);
606         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
607
608         add_timer_on(&cpu->timer, cpunum);
609
610         pr_info("Intel pstate controlling: cpu %d\n", cpunum);
611
612         return 0;
613 }
614
615 static unsigned int intel_pstate_get(unsigned int cpu_num)
616 {
617         struct sample *sample;
618         struct cpudata *cpu;
619
620         cpu = all_cpu_data[cpu_num];
621         if (!cpu)
622                 return 0;
623         sample = &cpu->samples[cpu->sample_ptr];
624         return sample->freq;
625 }
626
627 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
628 {
629         struct cpudata *cpu;
630
631         cpu = all_cpu_data[policy->cpu];
632
633         if (!policy->cpuinfo.max_freq)
634                 return -ENODEV;
635
636         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
637                 limits.min_perf_pct = 100;
638                 limits.min_perf = int_tofp(1);
639                 limits.max_perf_pct = 100;
640                 limits.max_perf = int_tofp(1);
641                 limits.no_turbo = 0;
642                 return 0;
643         }
644         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
645         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
646         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
647
648         limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
649         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
650         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
651         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
652
653         return 0;
654 }
655
656 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
657 {
658         cpufreq_verify_within_limits(policy,
659                                 policy->cpuinfo.min_freq,
660                                 policy->cpuinfo.max_freq);
661
662         if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
663                 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
664                 return -EINVAL;
665
666         return 0;
667 }
668
669 static int __cpuinit intel_pstate_cpu_exit(struct cpufreq_policy *policy)
670 {
671         int cpu = policy->cpu;
672
673         del_timer(&all_cpu_data[cpu]->timer);
674         kfree(all_cpu_data[cpu]);
675         all_cpu_data[cpu] = NULL;
676         return 0;
677 }
678
679 static int __cpuinit intel_pstate_cpu_init(struct cpufreq_policy *policy)
680 {
681         int rc, min_pstate, max_pstate;
682         struct cpudata *cpu;
683
684         rc = intel_pstate_init_cpu(policy->cpu);
685         if (rc)
686                 return rc;
687
688         cpu = all_cpu_data[policy->cpu];
689
690         if (!limits.no_turbo &&
691                 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
692                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
693         else
694                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
695
696         intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
697         policy->min = min_pstate * 100000;
698         policy->max = max_pstate * 100000;
699
700         /* cpuinfo and default policy values */
701         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
702         policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
703         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
704         cpumask_set_cpu(policy->cpu, policy->cpus);
705
706         return 0;
707 }
708
709 static struct cpufreq_driver intel_pstate_driver = {
710         .flags          = CPUFREQ_CONST_LOOPS,
711         .verify         = intel_pstate_verify_policy,
712         .setpolicy      = intel_pstate_set_policy,
713         .get            = intel_pstate_get,
714         .init           = intel_pstate_cpu_init,
715         .exit           = intel_pstate_cpu_exit,
716         .name           = "intel_pstate",
717         .owner          = THIS_MODULE,
718 };
719
720 static int __initdata no_load;
721
722 static int intel_pstate_msrs_not_valid(void)
723 {
724         /* Check that all the msr's we are using are valid. */
725         u64 aperf, mperf, tmp;
726
727         rdmsrl(MSR_IA32_APERF, aperf);
728         rdmsrl(MSR_IA32_MPERF, mperf);
729
730         if (!intel_pstate_min_pstate() ||
731                 !intel_pstate_max_pstate() ||
732                 !intel_pstate_turbo_pstate())
733                 return -ENODEV;
734
735         rdmsrl(MSR_IA32_APERF, tmp);
736         if (!(tmp - aperf))
737                 return -ENODEV;
738
739         rdmsrl(MSR_IA32_MPERF, tmp);
740         if (!(tmp - mperf))
741                 return -ENODEV;
742
743         return 0;
744 }
745 static int __init intel_pstate_init(void)
746 {
747         int cpu, rc = 0;
748         const struct x86_cpu_id *id;
749
750         if (no_load)
751                 return -ENODEV;
752
753         id = x86_match_cpu(intel_pstate_cpu_ids);
754         if (!id)
755                 return -ENODEV;
756
757         if (intel_pstate_msrs_not_valid())
758                 return -ENODEV;
759
760         pr_info("Intel P-state driver initializing.\n");
761
762         all_cpu_data = vmalloc(sizeof(void *) * num_possible_cpus());
763         if (!all_cpu_data)
764                 return -ENOMEM;
765         memset(all_cpu_data, 0, sizeof(void *) * num_possible_cpus());
766
767         rc = cpufreq_register_driver(&intel_pstate_driver);
768         if (rc)
769                 goto out;
770
771         intel_pstate_debug_expose_params();
772         intel_pstate_sysfs_expose_params();
773         return rc;
774 out:
775         get_online_cpus();
776         for_each_online_cpu(cpu) {
777                 if (all_cpu_data[cpu]) {
778                         del_timer_sync(&all_cpu_data[cpu]->timer);
779                         kfree(all_cpu_data[cpu]);
780                 }
781         }
782
783         put_online_cpus();
784         vfree(all_cpu_data);
785         return -ENODEV;
786 }
787 device_initcall(intel_pstate_init);
788
789 static int __init intel_pstate_setup(char *str)
790 {
791         if (!str)
792                 return -EINVAL;
793
794         if (!strcmp(str, "disable"))
795                 no_load = 1;
796         return 0;
797 }
798 early_param("intel_pstate", intel_pstate_setup);
799
800 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
801 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
802 MODULE_LICENSE("GPL");