Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[platform/kernel/linux-rpi.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
40
41 #ifdef CONFIG_ACPI
42 #include <acpi/processor.h>
43 #include <acpi/cppc_acpi.h>
44 #endif
45
46 #define FRAC_BITS 8
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
49
50 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
51
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56
57 static inline int32_t mul_fp(int32_t x, int32_t y)
58 {
59         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
60 }
61
62 static inline int32_t div_fp(s64 x, s64 y)
63 {
64         return div64_s64((int64_t)x << FRAC_BITS, y);
65 }
66
67 static inline int ceiling_fp(int32_t x)
68 {
69         int mask, ret;
70
71         ret = fp_toint(x);
72         mask = (1 << FRAC_BITS) - 1;
73         if (x & mask)
74                 ret += 1;
75         return ret;
76 }
77
78 static inline int32_t percent_fp(int percent)
79 {
80         return div_fp(percent, 100);
81 }
82
83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85         return (x * y) >> EXT_FRAC_BITS;
86 }
87
88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90         return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92
93 static inline int32_t percent_ext_fp(int percent)
94 {
95         return div_ext_fp(percent, 100);
96 }
97
98 /**
99  * struct sample -      Store performance sample
100  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
101  *                      performance during last sample period
102  * @busy_scaled:        Scaled busy value which is used to calculate next
103  *                      P state. This can be different than core_avg_perf
104  *                      to account for cpu idle period
105  * @aperf:              Difference of actual performance frequency clock count
106  *                      read from APERF MSR between last and current sample
107  * @mperf:              Difference of maximum performance frequency clock count
108  *                      read from MPERF MSR between last and current sample
109  * @tsc:                Difference of time stamp counter between last and
110  *                      current sample
111  * @time:               Current time from scheduler
112  *
113  * This structure is used in the cpudata structure to store performance sample
114  * data for choosing next P State.
115  */
116 struct sample {
117         int32_t core_avg_perf;
118         int32_t busy_scaled;
119         u64 aperf;
120         u64 mperf;
121         u64 tsc;
122         u64 time;
123 };
124
125 /**
126  * struct pstate_data - Store P state data
127  * @current_pstate:     Current requested P state
128  * @min_pstate:         Min P state possible for this platform
129  * @max_pstate:         Max P state possible for this platform
130  * @max_pstate_physical:This is physical Max P state for a processor
131  *                      This can be higher than the max_pstate which can
132  *                      be limited by platform thermal design power limits
133  * @scaling:            Scaling factor to  convert frequency to cpufreq
134  *                      frequency units
135  * @turbo_pstate:       Max Turbo P state possible for this platform
136  * @max_freq:           @max_pstate frequency in cpufreq units
137  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
138  *
139  * Stores the per cpu model P state limits and current P state.
140  */
141 struct pstate_data {
142         int     current_pstate;
143         int     min_pstate;
144         int     max_pstate;
145         int     max_pstate_physical;
146         int     scaling;
147         int     turbo_pstate;
148         unsigned int max_freq;
149         unsigned int turbo_freq;
150 };
151
152 /**
153  * struct vid_data -    Stores voltage information data
154  * @min:                VID data for this platform corresponding to
155  *                      the lowest P state
156  * @max:                VID data corresponding to the highest P State.
157  * @turbo:              VID data for turbo P state
158  * @ratio:              Ratio of (vid max - vid min) /
159  *                      (max P state - Min P State)
160  *
161  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162  * This data is used in Atom platforms, where in addition to target P state,
163  * the voltage data needs to be specified to select next P State.
164  */
165 struct vid_data {
166         int min;
167         int max;
168         int turbo;
169         int32_t ratio;
170 };
171
172 /**
173  * struct global_params - Global parameters, mostly tunable via sysfs.
174  * @no_turbo:           Whether or not to use turbo P-states.
175  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
176  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
177  *                      not the maximum reported turbo P-state is different from
178  *                      the maximum reported non-turbo one.
179  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
180  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
181  *                      P-state capacity.
182  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
183  *                      P-state capacity.
184  */
185 struct global_params {
186         bool no_turbo;
187         bool turbo_disabled;
188         bool turbo_disabled_mf;
189         int max_perf_pct;
190         int min_perf_pct;
191 };
192
193 /**
194  * struct cpudata -     Per CPU instance data storage
195  * @cpu:                CPU number for this instance data
196  * @policy:             CPUFreq policy value
197  * @update_util:        CPUFreq utility callback information
198  * @update_util_set:    CPUFreq utility callback is set
199  * @iowait_boost:       iowait-related boost fraction
200  * @last_update:        Time of the last update.
201  * @pstate:             Stores P state limits for this CPU
202  * @vid:                Stores VID limits for this CPU
203  * @last_sample_time:   Last Sample time
204  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
205  *                      This shift is a multiplier to mperf delta to
206  *                      calculate CPU busy.
207  * @prev_aperf:         Last APERF value read from APERF MSR
208  * @prev_mperf:         Last MPERF value read from MPERF MSR
209  * @prev_tsc:           Last timestamp counter (TSC) value
210  * @prev_cummulative_iowait: IO Wait time difference from last and
211  *                      current sample
212  * @sample:             Storage for storing last Sample data
213  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
214  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
215  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
216  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
217  * @epp_powersave:      Last saved HWP energy performance preference
218  *                      (EPP) or energy performance bias (EPB),
219  *                      when policy switched to performance
220  * @epp_policy:         Last saved policy used to set EPP/EPB
221  * @epp_default:        Power on default HWP energy performance
222  *                      preference/bias
223  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
224  *                      operation
225  * @hwp_req_cached:     Cached value of the last HWP Request MSR
226  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
227  * @last_io_update:     Last time when IO wake flag was set
228  * @sched_flags:        Store scheduler flags for possible cross CPU update
229  * @hwp_boost_min:      Last HWP boosted min performance
230  *
231  * This structure stores per CPU instance data for all CPUs.
232  */
233 struct cpudata {
234         int cpu;
235
236         unsigned int policy;
237         struct update_util_data update_util;
238         bool   update_util_set;
239
240         struct pstate_data pstate;
241         struct vid_data vid;
242
243         u64     last_update;
244         u64     last_sample_time;
245         u64     aperf_mperf_shift;
246         u64     prev_aperf;
247         u64     prev_mperf;
248         u64     prev_tsc;
249         u64     prev_cummulative_iowait;
250         struct sample sample;
251         int32_t min_perf_ratio;
252         int32_t max_perf_ratio;
253 #ifdef CONFIG_ACPI
254         struct acpi_processor_performance acpi_perf_data;
255         bool valid_pss_table;
256 #endif
257         unsigned int iowait_boost;
258         s16 epp_powersave;
259         s16 epp_policy;
260         s16 epp_default;
261         s16 epp_saved;
262         u64 hwp_req_cached;
263         u64 hwp_cap_cached;
264         u64 last_io_update;
265         unsigned int sched_flags;
266         u32 hwp_boost_min;
267 };
268
269 static struct cpudata **all_cpu_data;
270
271 /**
272  * struct pstate_funcs - Per CPU model specific callbacks
273  * @get_max:            Callback to get maximum non turbo effective P state
274  * @get_max_physical:   Callback to get maximum non turbo physical P state
275  * @get_min:            Callback to get minimum P state
276  * @get_turbo:          Callback to get turbo P state
277  * @get_scaling:        Callback to get frequency scaling factor
278  * @get_val:            Callback to convert P state to actual MSR write value
279  * @get_vid:            Callback to get VID data for Atom platforms
280  *
281  * Core and Atom CPU models have different way to get P State limits. This
282  * structure is used to store those callbacks.
283  */
284 struct pstate_funcs {
285         int (*get_max)(void);
286         int (*get_max_physical)(void);
287         int (*get_min)(void);
288         int (*get_turbo)(void);
289         int (*get_scaling)(void);
290         int (*get_aperf_mperf_shift)(void);
291         u64 (*get_val)(struct cpudata*, int pstate);
292         void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301
302 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303
304 #ifdef CONFIG_ACPI
305 static bool acpi_ppc;
306 #endif
307
308 static struct global_params global;
309
310 static DEFINE_MUTEX(intel_pstate_driver_lock);
311 static DEFINE_MUTEX(intel_pstate_limits_lock);
312
313 #ifdef CONFIG_ACPI
314
315 static bool intel_pstate_acpi_pm_profile_server(void)
316 {
317         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
318             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
319                 return true;
320
321         return false;
322 }
323
324 static bool intel_pstate_get_ppc_enable_status(void)
325 {
326         if (intel_pstate_acpi_pm_profile_server())
327                 return true;
328
329         return acpi_ppc;
330 }
331
332 #ifdef CONFIG_ACPI_CPPC_LIB
333
334 /* The work item is needed to avoid CPU hotplug locking issues */
335 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
336 {
337         sched_set_itmt_support();
338 }
339
340 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
341
342 static void intel_pstate_set_itmt_prio(int cpu)
343 {
344         struct cppc_perf_caps cppc_perf;
345         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
346         int ret;
347
348         ret = cppc_get_perf_caps(cpu, &cppc_perf);
349         if (ret)
350                 return;
351
352         /*
353          * The priorities can be set regardless of whether or not
354          * sched_set_itmt_support(true) has been called and it is valid to
355          * update them at any time after it has been called.
356          */
357         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
358
359         if (max_highest_perf <= min_highest_perf) {
360                 if (cppc_perf.highest_perf > max_highest_perf)
361                         max_highest_perf = cppc_perf.highest_perf;
362
363                 if (cppc_perf.highest_perf < min_highest_perf)
364                         min_highest_perf = cppc_perf.highest_perf;
365
366                 if (max_highest_perf > min_highest_perf) {
367                         /*
368                          * This code can be run during CPU online under the
369                          * CPU hotplug locks, so sched_set_itmt_support()
370                          * cannot be called from here.  Queue up a work item
371                          * to invoke it.
372                          */
373                         schedule_work(&sched_itmt_work);
374                 }
375         }
376 }
377
378 static int intel_pstate_get_cppc_guranteed(int cpu)
379 {
380         struct cppc_perf_caps cppc_perf;
381         int ret;
382
383         ret = cppc_get_perf_caps(cpu, &cppc_perf);
384         if (ret)
385                 return ret;
386
387         if (cppc_perf.guaranteed_perf)
388                 return cppc_perf.guaranteed_perf;
389
390         return cppc_perf.nominal_perf;
391 }
392
393 #else /* CONFIG_ACPI_CPPC_LIB */
394 static void intel_pstate_set_itmt_prio(int cpu)
395 {
396 }
397 #endif /* CONFIG_ACPI_CPPC_LIB */
398
399 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
400 {
401         struct cpudata *cpu;
402         int ret;
403         int i;
404
405         if (hwp_active) {
406                 intel_pstate_set_itmt_prio(policy->cpu);
407                 return;
408         }
409
410         if (!intel_pstate_get_ppc_enable_status())
411                 return;
412
413         cpu = all_cpu_data[policy->cpu];
414
415         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
416                                                   policy->cpu);
417         if (ret)
418                 return;
419
420         /*
421          * Check if the control value in _PSS is for PERF_CTL MSR, which should
422          * guarantee that the states returned by it map to the states in our
423          * list directly.
424          */
425         if (cpu->acpi_perf_data.control_register.space_id !=
426                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
427                 goto err;
428
429         /*
430          * If there is only one entry _PSS, simply ignore _PSS and continue as
431          * usual without taking _PSS into account
432          */
433         if (cpu->acpi_perf_data.state_count < 2)
434                 goto err;
435
436         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
437         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
438                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
439                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
440                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
441                          (u32) cpu->acpi_perf_data.states[i].power,
442                          (u32) cpu->acpi_perf_data.states[i].control);
443         }
444
445         /*
446          * The _PSS table doesn't contain whole turbo frequency range.
447          * This just contains +1 MHZ above the max non turbo frequency,
448          * with control value corresponding to max turbo ratio. But
449          * when cpufreq set policy is called, it will call with this
450          * max frequency, which will cause a reduced performance as
451          * this driver uses real max turbo frequency as the max
452          * frequency. So correct this frequency in _PSS table to
453          * correct max turbo frequency based on the turbo state.
454          * Also need to convert to MHz as _PSS freq is in MHz.
455          */
456         if (!global.turbo_disabled)
457                 cpu->acpi_perf_data.states[0].core_frequency =
458                                         policy->cpuinfo.max_freq / 1000;
459         cpu->valid_pss_table = true;
460         pr_debug("_PPC limits will be enforced\n");
461
462         return;
463
464  err:
465         cpu->valid_pss_table = false;
466         acpi_processor_unregister_performance(policy->cpu);
467 }
468
469 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
470 {
471         struct cpudata *cpu;
472
473         cpu = all_cpu_data[policy->cpu];
474         if (!cpu->valid_pss_table)
475                 return;
476
477         acpi_processor_unregister_performance(policy->cpu);
478 }
479 #else /* CONFIG_ACPI */
480 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483
484 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 {
486 }
487
488 static inline bool intel_pstate_acpi_pm_profile_server(void)
489 {
490         return false;
491 }
492 #endif /* CONFIG_ACPI */
493
494 #ifndef CONFIG_ACPI_CPPC_LIB
495 static int intel_pstate_get_cppc_guranteed(int cpu)
496 {
497         return -ENOTSUPP;
498 }
499 #endif /* CONFIG_ACPI_CPPC_LIB */
500
501 static inline void update_turbo_state(void)
502 {
503         u64 misc_en;
504         struct cpudata *cpu;
505
506         cpu = all_cpu_data[0];
507         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508         global.turbo_disabled =
509                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
510                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
511 }
512
513 static int min_perf_pct_min(void)
514 {
515         struct cpudata *cpu = all_cpu_data[0];
516         int turbo_pstate = cpu->pstate.turbo_pstate;
517
518         return turbo_pstate ?
519                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 }
521
522 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
523 {
524         u64 epb;
525         int ret;
526
527         if (!boot_cpu_has(X86_FEATURE_EPB))
528                 return -ENXIO;
529
530         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
531         if (ret)
532                 return (s16)ret;
533
534         return (s16)(epb & 0x0f);
535 }
536
537 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
538 {
539         s16 epp;
540
541         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542                 /*
543                  * When hwp_req_data is 0, means that caller didn't read
544                  * MSR_HWP_REQUEST, so need to read and get EPP.
545                  */
546                 if (!hwp_req_data) {
547                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
548                                             &hwp_req_data);
549                         if (epp)
550                                 return epp;
551                 }
552                 epp = (hwp_req_data >> 24) & 0xff;
553         } else {
554                 /* When there is no EPP present, HWP uses EPB settings */
555                 epp = intel_pstate_get_epb(cpu_data);
556         }
557
558         return epp;
559 }
560
561 static int intel_pstate_set_epb(int cpu, s16 pref)
562 {
563         u64 epb;
564         int ret;
565
566         if (!boot_cpu_has(X86_FEATURE_EPB))
567                 return -ENXIO;
568
569         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
570         if (ret)
571                 return ret;
572
573         epb = (epb & ~0x0f) | pref;
574         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575
576         return 0;
577 }
578
579 /*
580  * EPP/EPB display strings corresponding to EPP index in the
581  * energy_perf_strings[]
582  *      index           String
583  *-------------------------------------
584  *      0               default
585  *      1               performance
586  *      2               balance_performance
587  *      3               balance_power
588  *      4               power
589  */
590 static const char * const energy_perf_strings[] = {
591         "default",
592         "performance",
593         "balance_performance",
594         "balance_power",
595         "power",
596         NULL
597 };
598 static const unsigned int epp_values[] = {
599         HWP_EPP_PERFORMANCE,
600         HWP_EPP_BALANCE_PERFORMANCE,
601         HWP_EPP_BALANCE_POWERSAVE,
602         HWP_EPP_POWERSAVE
603 };
604
605 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
606 {
607         s16 epp;
608         int index = -EINVAL;
609
610         epp = intel_pstate_get_epp(cpu_data, 0);
611         if (epp < 0)
612                 return epp;
613
614         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615                 if (epp == HWP_EPP_PERFORMANCE)
616                         return 1;
617                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
618                         return 2;
619                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
620                         return 3;
621                 else
622                         return 4;
623         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
624                 /*
625                  * Range:
626                  *      0x00-0x03       :       Performance
627                  *      0x04-0x07       :       Balance performance
628                  *      0x08-0x0B       :       Balance power
629                  *      0x0C-0x0F       :       Power
630                  * The EPB is a 4 bit value, but our ranges restrict the
631                  * value which can be set. Here only using top two bits
632                  * effectively.
633                  */
634                 index = (epp >> 2) + 1;
635         }
636
637         return index;
638 }
639
640 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
641                                               int pref_index)
642 {
643         int epp = -EINVAL;
644         int ret;
645
646         if (!pref_index)
647                 epp = cpu_data->epp_default;
648
649         mutex_lock(&intel_pstate_limits_lock);
650
651         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
652                 u64 value;
653
654                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
655                 if (ret)
656                         goto return_pref;
657
658                 value &= ~GENMASK_ULL(31, 24);
659
660                 if (epp == -EINVAL)
661                         epp = epp_values[pref_index - 1];
662
663                 value |= (u64)epp << 24;
664                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
665         } else {
666                 if (epp == -EINVAL)
667                         epp = (pref_index - 1) << 2;
668                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
669         }
670 return_pref:
671         mutex_unlock(&intel_pstate_limits_lock);
672
673         return ret;
674 }
675
676 static ssize_t show_energy_performance_available_preferences(
677                                 struct cpufreq_policy *policy, char *buf)
678 {
679         int i = 0;
680         int ret = 0;
681
682         while (energy_perf_strings[i] != NULL)
683                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
684
685         ret += sprintf(&buf[ret], "\n");
686
687         return ret;
688 }
689
690 cpufreq_freq_attr_ro(energy_performance_available_preferences);
691
692 static ssize_t store_energy_performance_preference(
693                 struct cpufreq_policy *policy, const char *buf, size_t count)
694 {
695         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
696         char str_preference[21];
697         int ret;
698
699         ret = sscanf(buf, "%20s", str_preference);
700         if (ret != 1)
701                 return -EINVAL;
702
703         ret = match_string(energy_perf_strings, -1, str_preference);
704         if (ret < 0)
705                 return ret;
706
707         intel_pstate_set_energy_pref_index(cpu_data, ret);
708         return count;
709 }
710
711 static ssize_t show_energy_performance_preference(
712                                 struct cpufreq_policy *policy, char *buf)
713 {
714         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
715         int preference;
716
717         preference = intel_pstate_get_energy_pref_index(cpu_data);
718         if (preference < 0)
719                 return preference;
720
721         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
722 }
723
724 cpufreq_freq_attr_rw(energy_performance_preference);
725
726 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
727 {
728         struct cpudata *cpu;
729         u64 cap;
730         int ratio;
731
732         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
733         if (ratio <= 0) {
734                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
735                 ratio = HWP_GUARANTEED_PERF(cap);
736         }
737
738         cpu = all_cpu_data[policy->cpu];
739
740         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
741 }
742
743 cpufreq_freq_attr_ro(base_frequency);
744
745 static struct freq_attr *hwp_cpufreq_attrs[] = {
746         &energy_performance_preference,
747         &energy_performance_available_preferences,
748         &base_frequency,
749         NULL,
750 };
751
752 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
753                                      int *current_max)
754 {
755         u64 cap;
756
757         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
758         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
759         if (global.no_turbo)
760                 *current_max = HWP_GUARANTEED_PERF(cap);
761         else
762                 *current_max = HWP_HIGHEST_PERF(cap);
763
764         *phy_max = HWP_HIGHEST_PERF(cap);
765 }
766
767 static void intel_pstate_hwp_set(unsigned int cpu)
768 {
769         struct cpudata *cpu_data = all_cpu_data[cpu];
770         int max, min;
771         u64 value;
772         s16 epp;
773
774         max = cpu_data->max_perf_ratio;
775         min = cpu_data->min_perf_ratio;
776
777         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
778                 min = max;
779
780         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
781
782         value &= ~HWP_MIN_PERF(~0L);
783         value |= HWP_MIN_PERF(min);
784
785         value &= ~HWP_MAX_PERF(~0L);
786         value |= HWP_MAX_PERF(max);
787
788         if (cpu_data->epp_policy == cpu_data->policy)
789                 goto skip_epp;
790
791         cpu_data->epp_policy = cpu_data->policy;
792
793         if (cpu_data->epp_saved >= 0) {
794                 epp = cpu_data->epp_saved;
795                 cpu_data->epp_saved = -EINVAL;
796                 goto update_epp;
797         }
798
799         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
800                 epp = intel_pstate_get_epp(cpu_data, value);
801                 cpu_data->epp_powersave = epp;
802                 /* If EPP read was failed, then don't try to write */
803                 if (epp < 0)
804                         goto skip_epp;
805
806                 epp = 0;
807         } else {
808                 /* skip setting EPP, when saved value is invalid */
809                 if (cpu_data->epp_powersave < 0)
810                         goto skip_epp;
811
812                 /*
813                  * No need to restore EPP when it is not zero. This
814                  * means:
815                  *  - Policy is not changed
816                  *  - user has manually changed
817                  *  - Error reading EPB
818                  */
819                 epp = intel_pstate_get_epp(cpu_data, value);
820                 if (epp)
821                         goto skip_epp;
822
823                 epp = cpu_data->epp_powersave;
824         }
825 update_epp:
826         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
827                 value &= ~GENMASK_ULL(31, 24);
828                 value |= (u64)epp << 24;
829         } else {
830                 intel_pstate_set_epb(cpu, epp);
831         }
832 skip_epp:
833         WRITE_ONCE(cpu_data->hwp_req_cached, value);
834         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
835 }
836
837 static void intel_pstate_hwp_force_min_perf(int cpu)
838 {
839         u64 value;
840         int min_perf;
841
842         value = all_cpu_data[cpu]->hwp_req_cached;
843         value &= ~GENMASK_ULL(31, 0);
844         min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
845
846         /* Set hwp_max = hwp_min */
847         value |= HWP_MAX_PERF(min_perf);
848         value |= HWP_MIN_PERF(min_perf);
849
850         /* Set EPP/EPB to min */
851         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
852                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
853         else
854                 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
855
856         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
857 }
858
859 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
860 {
861         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
862
863         if (!hwp_active)
864                 return 0;
865
866         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
867
868         return 0;
869 }
870
871 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
872
873 static int intel_pstate_resume(struct cpufreq_policy *policy)
874 {
875         if (!hwp_active)
876                 return 0;
877
878         mutex_lock(&intel_pstate_limits_lock);
879
880         if (policy->cpu == 0)
881                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
882
883         all_cpu_data[policy->cpu]->epp_policy = 0;
884         intel_pstate_hwp_set(policy->cpu);
885
886         mutex_unlock(&intel_pstate_limits_lock);
887
888         return 0;
889 }
890
891 static void intel_pstate_update_policies(void)
892 {
893         int cpu;
894
895         for_each_possible_cpu(cpu)
896                 cpufreq_update_policy(cpu);
897 }
898
899 static void intel_pstate_update_max_freq(unsigned int cpu)
900 {
901         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
902         struct cpudata *cpudata;
903
904         if (!policy)
905                 return;
906
907         cpudata = all_cpu_data[cpu];
908         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
909                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
910
911         refresh_frequency_limits(policy);
912
913         cpufreq_cpu_release(policy);
914 }
915
916 static void intel_pstate_update_limits(unsigned int cpu)
917 {
918         mutex_lock(&intel_pstate_driver_lock);
919
920         update_turbo_state();
921         /*
922          * If turbo has been turned on or off globally, policy limits for
923          * all CPUs need to be updated to reflect that.
924          */
925         if (global.turbo_disabled_mf != global.turbo_disabled) {
926                 global.turbo_disabled_mf = global.turbo_disabled;
927                 for_each_possible_cpu(cpu)
928                         intel_pstate_update_max_freq(cpu);
929         } else {
930                 cpufreq_update_policy(cpu);
931         }
932
933         mutex_unlock(&intel_pstate_driver_lock);
934 }
935
936 /************************** sysfs begin ************************/
937 #define show_one(file_name, object)                                     \
938         static ssize_t show_##file_name                                 \
939         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
940         {                                                               \
941                 return sprintf(buf, "%u\n", global.object);             \
942         }
943
944 static ssize_t intel_pstate_show_status(char *buf);
945 static int intel_pstate_update_status(const char *buf, size_t size);
946
947 static ssize_t show_status(struct kobject *kobj,
948                            struct kobj_attribute *attr, char *buf)
949 {
950         ssize_t ret;
951
952         mutex_lock(&intel_pstate_driver_lock);
953         ret = intel_pstate_show_status(buf);
954         mutex_unlock(&intel_pstate_driver_lock);
955
956         return ret;
957 }
958
959 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
960                             const char *buf, size_t count)
961 {
962         char *p = memchr(buf, '\n', count);
963         int ret;
964
965         mutex_lock(&intel_pstate_driver_lock);
966         ret = intel_pstate_update_status(buf, p ? p - buf : count);
967         mutex_unlock(&intel_pstate_driver_lock);
968
969         return ret < 0 ? ret : count;
970 }
971
972 static ssize_t show_turbo_pct(struct kobject *kobj,
973                                 struct kobj_attribute *attr, char *buf)
974 {
975         struct cpudata *cpu;
976         int total, no_turbo, turbo_pct;
977         uint32_t turbo_fp;
978
979         mutex_lock(&intel_pstate_driver_lock);
980
981         if (!intel_pstate_driver) {
982                 mutex_unlock(&intel_pstate_driver_lock);
983                 return -EAGAIN;
984         }
985
986         cpu = all_cpu_data[0];
987
988         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
989         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
990         turbo_fp = div_fp(no_turbo, total);
991         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
992
993         mutex_unlock(&intel_pstate_driver_lock);
994
995         return sprintf(buf, "%u\n", turbo_pct);
996 }
997
998 static ssize_t show_num_pstates(struct kobject *kobj,
999                                 struct kobj_attribute *attr, char *buf)
1000 {
1001         struct cpudata *cpu;
1002         int total;
1003
1004         mutex_lock(&intel_pstate_driver_lock);
1005
1006         if (!intel_pstate_driver) {
1007                 mutex_unlock(&intel_pstate_driver_lock);
1008                 return -EAGAIN;
1009         }
1010
1011         cpu = all_cpu_data[0];
1012         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1013
1014         mutex_unlock(&intel_pstate_driver_lock);
1015
1016         return sprintf(buf, "%u\n", total);
1017 }
1018
1019 static ssize_t show_no_turbo(struct kobject *kobj,
1020                              struct kobj_attribute *attr, char *buf)
1021 {
1022         ssize_t ret;
1023
1024         mutex_lock(&intel_pstate_driver_lock);
1025
1026         if (!intel_pstate_driver) {
1027                 mutex_unlock(&intel_pstate_driver_lock);
1028                 return -EAGAIN;
1029         }
1030
1031         update_turbo_state();
1032         if (global.turbo_disabled)
1033                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1034         else
1035                 ret = sprintf(buf, "%u\n", global.no_turbo);
1036
1037         mutex_unlock(&intel_pstate_driver_lock);
1038
1039         return ret;
1040 }
1041
1042 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1043                               const char *buf, size_t count)
1044 {
1045         unsigned int input;
1046         int ret;
1047
1048         ret = sscanf(buf, "%u", &input);
1049         if (ret != 1)
1050                 return -EINVAL;
1051
1052         mutex_lock(&intel_pstate_driver_lock);
1053
1054         if (!intel_pstate_driver) {
1055                 mutex_unlock(&intel_pstate_driver_lock);
1056                 return -EAGAIN;
1057         }
1058
1059         mutex_lock(&intel_pstate_limits_lock);
1060
1061         update_turbo_state();
1062         if (global.turbo_disabled) {
1063                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1064                 mutex_unlock(&intel_pstate_limits_lock);
1065                 mutex_unlock(&intel_pstate_driver_lock);
1066                 return -EPERM;
1067         }
1068
1069         global.no_turbo = clamp_t(int, input, 0, 1);
1070
1071         if (global.no_turbo) {
1072                 struct cpudata *cpu = all_cpu_data[0];
1073                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1074
1075                 /* Squash the global minimum into the permitted range. */
1076                 if (global.min_perf_pct > pct)
1077                         global.min_perf_pct = pct;
1078         }
1079
1080         mutex_unlock(&intel_pstate_limits_lock);
1081
1082         intel_pstate_update_policies();
1083
1084         mutex_unlock(&intel_pstate_driver_lock);
1085
1086         return count;
1087 }
1088
1089 static struct cpufreq_driver intel_pstate;
1090
1091 static void update_qos_request(enum freq_qos_req_type type)
1092 {
1093         int max_state, turbo_max, freq, i, perf_pct;
1094         struct freq_qos_request *req;
1095         struct cpufreq_policy *policy;
1096
1097         for_each_possible_cpu(i) {
1098                 struct cpudata *cpu = all_cpu_data[i];
1099
1100                 policy = cpufreq_cpu_get(i);
1101                 if (!policy)
1102                         continue;
1103
1104                 req = policy->driver_data;
1105                 cpufreq_cpu_put(policy);
1106
1107                 if (!req)
1108                         continue;
1109
1110                 if (hwp_active)
1111                         intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1112                 else
1113                         turbo_max = cpu->pstate.turbo_pstate;
1114
1115                 if (type == FREQ_QOS_MIN) {
1116                         perf_pct = global.min_perf_pct;
1117                 } else {
1118                         req++;
1119                         perf_pct = global.max_perf_pct;
1120                 }
1121
1122                 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1123                 freq *= cpu->pstate.scaling;
1124
1125                 if (freq_qos_update_request(req, freq) < 0)
1126                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1127         }
1128 }
1129
1130 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1131                                   const char *buf, size_t count)
1132 {
1133         unsigned int input;
1134         int ret;
1135
1136         ret = sscanf(buf, "%u", &input);
1137         if (ret != 1)
1138                 return -EINVAL;
1139
1140         mutex_lock(&intel_pstate_driver_lock);
1141
1142         if (!intel_pstate_driver) {
1143                 mutex_unlock(&intel_pstate_driver_lock);
1144                 return -EAGAIN;
1145         }
1146
1147         mutex_lock(&intel_pstate_limits_lock);
1148
1149         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1150
1151         mutex_unlock(&intel_pstate_limits_lock);
1152
1153         if (intel_pstate_driver == &intel_pstate)
1154                 intel_pstate_update_policies();
1155         else
1156                 update_qos_request(FREQ_QOS_MAX);
1157
1158         mutex_unlock(&intel_pstate_driver_lock);
1159
1160         return count;
1161 }
1162
1163 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1164                                   const char *buf, size_t count)
1165 {
1166         unsigned int input;
1167         int ret;
1168
1169         ret = sscanf(buf, "%u", &input);
1170         if (ret != 1)
1171                 return -EINVAL;
1172
1173         mutex_lock(&intel_pstate_driver_lock);
1174
1175         if (!intel_pstate_driver) {
1176                 mutex_unlock(&intel_pstate_driver_lock);
1177                 return -EAGAIN;
1178         }
1179
1180         mutex_lock(&intel_pstate_limits_lock);
1181
1182         global.min_perf_pct = clamp_t(int, input,
1183                                       min_perf_pct_min(), global.max_perf_pct);
1184
1185         mutex_unlock(&intel_pstate_limits_lock);
1186
1187         if (intel_pstate_driver == &intel_pstate)
1188                 intel_pstate_update_policies();
1189         else
1190                 update_qos_request(FREQ_QOS_MIN);
1191
1192         mutex_unlock(&intel_pstate_driver_lock);
1193
1194         return count;
1195 }
1196
1197 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1198                                 struct kobj_attribute *attr, char *buf)
1199 {
1200         return sprintf(buf, "%u\n", hwp_boost);
1201 }
1202
1203 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1204                                        struct kobj_attribute *b,
1205                                        const char *buf, size_t count)
1206 {
1207         unsigned int input;
1208         int ret;
1209
1210         ret = kstrtouint(buf, 10, &input);
1211         if (ret)
1212                 return ret;
1213
1214         mutex_lock(&intel_pstate_driver_lock);
1215         hwp_boost = !!input;
1216         intel_pstate_update_policies();
1217         mutex_unlock(&intel_pstate_driver_lock);
1218
1219         return count;
1220 }
1221
1222 show_one(max_perf_pct, max_perf_pct);
1223 show_one(min_perf_pct, min_perf_pct);
1224
1225 define_one_global_rw(status);
1226 define_one_global_rw(no_turbo);
1227 define_one_global_rw(max_perf_pct);
1228 define_one_global_rw(min_perf_pct);
1229 define_one_global_ro(turbo_pct);
1230 define_one_global_ro(num_pstates);
1231 define_one_global_rw(hwp_dynamic_boost);
1232
1233 static struct attribute *intel_pstate_attributes[] = {
1234         &status.attr,
1235         &no_turbo.attr,
1236         &turbo_pct.attr,
1237         &num_pstates.attr,
1238         NULL
1239 };
1240
1241 static const struct attribute_group intel_pstate_attr_group = {
1242         .attrs = intel_pstate_attributes,
1243 };
1244
1245 static void __init intel_pstate_sysfs_expose_params(void)
1246 {
1247         struct kobject *intel_pstate_kobject;
1248         int rc;
1249
1250         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1251                                                 &cpu_subsys.dev_root->kobj);
1252         if (WARN_ON(!intel_pstate_kobject))
1253                 return;
1254
1255         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1256         if (WARN_ON(rc))
1257                 return;
1258
1259         /*
1260          * If per cpu limits are enforced there are no global limits, so
1261          * return without creating max/min_perf_pct attributes
1262          */
1263         if (per_cpu_limits)
1264                 return;
1265
1266         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1267         WARN_ON(rc);
1268
1269         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1270         WARN_ON(rc);
1271
1272         if (hwp_active) {
1273                 rc = sysfs_create_file(intel_pstate_kobject,
1274                                        &hwp_dynamic_boost.attr);
1275                 WARN_ON(rc);
1276         }
1277 }
1278 /************************** sysfs end ************************/
1279
1280 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1281 {
1282         /* First disable HWP notification interrupt as we don't process them */
1283         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1284                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1285
1286         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1287         cpudata->epp_policy = 0;
1288         if (cpudata->epp_default == -EINVAL)
1289                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1290 }
1291
1292 #define MSR_IA32_POWER_CTL_BIT_EE       19
1293
1294 /* Disable energy efficiency optimization */
1295 static void intel_pstate_disable_ee(int cpu)
1296 {
1297         u64 power_ctl;
1298         int ret;
1299
1300         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1301         if (ret)
1302                 return;
1303
1304         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1305                 pr_info("Disabling energy efficiency optimization\n");
1306                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1307                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1308         }
1309 }
1310
1311 static int atom_get_min_pstate(void)
1312 {
1313         u64 value;
1314
1315         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1316         return (value >> 8) & 0x7F;
1317 }
1318
1319 static int atom_get_max_pstate(void)
1320 {
1321         u64 value;
1322
1323         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1324         return (value >> 16) & 0x7F;
1325 }
1326
1327 static int atom_get_turbo_pstate(void)
1328 {
1329         u64 value;
1330
1331         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1332         return value & 0x7F;
1333 }
1334
1335 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1336 {
1337         u64 val;
1338         int32_t vid_fp;
1339         u32 vid;
1340
1341         val = (u64)pstate << 8;
1342         if (global.no_turbo && !global.turbo_disabled)
1343                 val |= (u64)1 << 32;
1344
1345         vid_fp = cpudata->vid.min + mul_fp(
1346                 int_tofp(pstate - cpudata->pstate.min_pstate),
1347                 cpudata->vid.ratio);
1348
1349         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1350         vid = ceiling_fp(vid_fp);
1351
1352         if (pstate > cpudata->pstate.max_pstate)
1353                 vid = cpudata->vid.turbo;
1354
1355         return val | vid;
1356 }
1357
1358 static int silvermont_get_scaling(void)
1359 {
1360         u64 value;
1361         int i;
1362         /* Defined in Table 35-6 from SDM (Sept 2015) */
1363         static int silvermont_freq_table[] = {
1364                 83300, 100000, 133300, 116700, 80000};
1365
1366         rdmsrl(MSR_FSB_FREQ, value);
1367         i = value & 0x7;
1368         WARN_ON(i > 4);
1369
1370         return silvermont_freq_table[i];
1371 }
1372
1373 static int airmont_get_scaling(void)
1374 {
1375         u64 value;
1376         int i;
1377         /* Defined in Table 35-10 from SDM (Sept 2015) */
1378         static int airmont_freq_table[] = {
1379                 83300, 100000, 133300, 116700, 80000,
1380                 93300, 90000, 88900, 87500};
1381
1382         rdmsrl(MSR_FSB_FREQ, value);
1383         i = value & 0xF;
1384         WARN_ON(i > 8);
1385
1386         return airmont_freq_table[i];
1387 }
1388
1389 static void atom_get_vid(struct cpudata *cpudata)
1390 {
1391         u64 value;
1392
1393         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1394         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1395         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1396         cpudata->vid.ratio = div_fp(
1397                 cpudata->vid.max - cpudata->vid.min,
1398                 int_tofp(cpudata->pstate.max_pstate -
1399                         cpudata->pstate.min_pstate));
1400
1401         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1402         cpudata->vid.turbo = value & 0x7f;
1403 }
1404
1405 static int core_get_min_pstate(void)
1406 {
1407         u64 value;
1408
1409         rdmsrl(MSR_PLATFORM_INFO, value);
1410         return (value >> 40) & 0xFF;
1411 }
1412
1413 static int core_get_max_pstate_physical(void)
1414 {
1415         u64 value;
1416
1417         rdmsrl(MSR_PLATFORM_INFO, value);
1418         return (value >> 8) & 0xFF;
1419 }
1420
1421 static int core_get_tdp_ratio(u64 plat_info)
1422 {
1423         /* Check how many TDP levels present */
1424         if (plat_info & 0x600000000) {
1425                 u64 tdp_ctrl;
1426                 u64 tdp_ratio;
1427                 int tdp_msr;
1428                 int err;
1429
1430                 /* Get the TDP level (0, 1, 2) to get ratios */
1431                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1432                 if (err)
1433                         return err;
1434
1435                 /* TDP MSR are continuous starting at 0x648 */
1436                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1437                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1438                 if (err)
1439                         return err;
1440
1441                 /* For level 1 and 2, bits[23:16] contain the ratio */
1442                 if (tdp_ctrl & 0x03)
1443                         tdp_ratio >>= 16;
1444
1445                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1446                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1447
1448                 return (int)tdp_ratio;
1449         }
1450
1451         return -ENXIO;
1452 }
1453
1454 static int core_get_max_pstate(void)
1455 {
1456         u64 tar;
1457         u64 plat_info;
1458         int max_pstate;
1459         int tdp_ratio;
1460         int err;
1461
1462         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1463         max_pstate = (plat_info >> 8) & 0xFF;
1464
1465         tdp_ratio = core_get_tdp_ratio(plat_info);
1466         if (tdp_ratio <= 0)
1467                 return max_pstate;
1468
1469         if (hwp_active) {
1470                 /* Turbo activation ratio is not used on HWP platforms */
1471                 return tdp_ratio;
1472         }
1473
1474         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1475         if (!err) {
1476                 int tar_levels;
1477
1478                 /* Do some sanity checking for safety */
1479                 tar_levels = tar & 0xff;
1480                 if (tdp_ratio - 1 == tar_levels) {
1481                         max_pstate = tar_levels;
1482                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1483                 }
1484         }
1485
1486         return max_pstate;
1487 }
1488
1489 static int core_get_turbo_pstate(void)
1490 {
1491         u64 value;
1492         int nont, ret;
1493
1494         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1495         nont = core_get_max_pstate();
1496         ret = (value) & 255;
1497         if (ret <= nont)
1498                 ret = nont;
1499         return ret;
1500 }
1501
1502 static inline int core_get_scaling(void)
1503 {
1504         return 100000;
1505 }
1506
1507 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1508 {
1509         u64 val;
1510
1511         val = (u64)pstate << 8;
1512         if (global.no_turbo && !global.turbo_disabled)
1513                 val |= (u64)1 << 32;
1514
1515         return val;
1516 }
1517
1518 static int knl_get_aperf_mperf_shift(void)
1519 {
1520         return 10;
1521 }
1522
1523 static int knl_get_turbo_pstate(void)
1524 {
1525         u64 value;
1526         int nont, ret;
1527
1528         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1529         nont = core_get_max_pstate();
1530         ret = (((value) >> 8) & 0xFF);
1531         if (ret <= nont)
1532                 ret = nont;
1533         return ret;
1534 }
1535
1536 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1537 {
1538         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1539         cpu->pstate.current_pstate = pstate;
1540         /*
1541          * Generally, there is no guarantee that this code will always run on
1542          * the CPU being updated, so force the register update to run on the
1543          * right CPU.
1544          */
1545         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1546                       pstate_funcs.get_val(cpu, pstate));
1547 }
1548
1549 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1550 {
1551         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1552 }
1553
1554 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1555 {
1556         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1557
1558         update_turbo_state();
1559         intel_pstate_set_pstate(cpu, pstate);
1560 }
1561
1562 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1563 {
1564         cpu->pstate.min_pstate = pstate_funcs.get_min();
1565         cpu->pstate.max_pstate = pstate_funcs.get_max();
1566         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1567         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1568         cpu->pstate.scaling = pstate_funcs.get_scaling();
1569         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1570
1571         if (hwp_active && !hwp_mode_bdw) {
1572                 unsigned int phy_max, current_max;
1573
1574                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1575                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1576         } else {
1577                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1578         }
1579
1580         if (pstate_funcs.get_aperf_mperf_shift)
1581                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1582
1583         if (pstate_funcs.get_vid)
1584                 pstate_funcs.get_vid(cpu);
1585
1586         intel_pstate_set_min_pstate(cpu);
1587 }
1588
1589 /*
1590  * Long hold time will keep high perf limits for long time,
1591  * which negatively impacts perf/watt for some workloads,
1592  * like specpower. 3ms is based on experiements on some
1593  * workoads.
1594  */
1595 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1596
1597 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1598 {
1599         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1600         u32 max_limit = (hwp_req & 0xff00) >> 8;
1601         u32 min_limit = (hwp_req & 0xff);
1602         u32 boost_level1;
1603
1604         /*
1605          * Cases to consider (User changes via sysfs or boot time):
1606          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1607          *      No boost, return.
1608          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1609          *     Should result in one level boost only for P0.
1610          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1611          *     Should result in two level boost:
1612          *         (min + p1)/2 and P1.
1613          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1614          *     Should result in three level boost:
1615          *        (min + p1)/2, P1 and P0.
1616          */
1617
1618         /* If max and min are equal or already at max, nothing to boost */
1619         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1620                 return;
1621
1622         if (!cpu->hwp_boost_min)
1623                 cpu->hwp_boost_min = min_limit;
1624
1625         /* level at half way mark between min and guranteed */
1626         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1627
1628         if (cpu->hwp_boost_min < boost_level1)
1629                 cpu->hwp_boost_min = boost_level1;
1630         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1631                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1632         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1633                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1634                 cpu->hwp_boost_min = max_limit;
1635         else
1636                 return;
1637
1638         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1639         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1640         cpu->last_update = cpu->sample.time;
1641 }
1642
1643 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1644 {
1645         if (cpu->hwp_boost_min) {
1646                 bool expired;
1647
1648                 /* Check if we are idle for hold time to boost down */
1649                 expired = time_after64(cpu->sample.time, cpu->last_update +
1650                                        hwp_boost_hold_time_ns);
1651                 if (expired) {
1652                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1653                         cpu->hwp_boost_min = 0;
1654                 }
1655         }
1656         cpu->last_update = cpu->sample.time;
1657 }
1658
1659 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1660                                                       u64 time)
1661 {
1662         cpu->sample.time = time;
1663
1664         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1665                 bool do_io = false;
1666
1667                 cpu->sched_flags = 0;
1668                 /*
1669                  * Set iowait_boost flag and update time. Since IO WAIT flag
1670                  * is set all the time, we can't just conclude that there is
1671                  * some IO bound activity is scheduled on this CPU with just
1672                  * one occurrence. If we receive at least two in two
1673                  * consecutive ticks, then we treat as boost candidate.
1674                  */
1675                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1676                         do_io = true;
1677
1678                 cpu->last_io_update = time;
1679
1680                 if (do_io)
1681                         intel_pstate_hwp_boost_up(cpu);
1682
1683         } else {
1684                 intel_pstate_hwp_boost_down(cpu);
1685         }
1686 }
1687
1688 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1689                                                 u64 time, unsigned int flags)
1690 {
1691         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1692
1693         cpu->sched_flags |= flags;
1694
1695         if (smp_processor_id() == cpu->cpu)
1696                 intel_pstate_update_util_hwp_local(cpu, time);
1697 }
1698
1699 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1700 {
1701         struct sample *sample = &cpu->sample;
1702
1703         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1704 }
1705
1706 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1707 {
1708         u64 aperf, mperf;
1709         unsigned long flags;
1710         u64 tsc;
1711
1712         local_irq_save(flags);
1713         rdmsrl(MSR_IA32_APERF, aperf);
1714         rdmsrl(MSR_IA32_MPERF, mperf);
1715         tsc = rdtsc();
1716         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1717                 local_irq_restore(flags);
1718                 return false;
1719         }
1720         local_irq_restore(flags);
1721
1722         cpu->last_sample_time = cpu->sample.time;
1723         cpu->sample.time = time;
1724         cpu->sample.aperf = aperf;
1725         cpu->sample.mperf = mperf;
1726         cpu->sample.tsc =  tsc;
1727         cpu->sample.aperf -= cpu->prev_aperf;
1728         cpu->sample.mperf -= cpu->prev_mperf;
1729         cpu->sample.tsc -= cpu->prev_tsc;
1730
1731         cpu->prev_aperf = aperf;
1732         cpu->prev_mperf = mperf;
1733         cpu->prev_tsc = tsc;
1734         /*
1735          * First time this function is invoked in a given cycle, all of the
1736          * previous sample data fields are equal to zero or stale and they must
1737          * be populated with meaningful numbers for things to work, so assume
1738          * that sample.time will always be reset before setting the utilization
1739          * update hook and make the caller skip the sample then.
1740          */
1741         if (cpu->last_sample_time) {
1742                 intel_pstate_calc_avg_perf(cpu);
1743                 return true;
1744         }
1745         return false;
1746 }
1747
1748 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1749 {
1750         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1751 }
1752
1753 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1754 {
1755         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1756                           cpu->sample.core_avg_perf);
1757 }
1758
1759 static inline int32_t get_target_pstate(struct cpudata *cpu)
1760 {
1761         struct sample *sample = &cpu->sample;
1762         int32_t busy_frac;
1763         int target, avg_pstate;
1764
1765         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1766                            sample->tsc);
1767
1768         if (busy_frac < cpu->iowait_boost)
1769                 busy_frac = cpu->iowait_boost;
1770
1771         sample->busy_scaled = busy_frac * 100;
1772
1773         target = global.no_turbo || global.turbo_disabled ?
1774                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1775         target += target >> 2;
1776         target = mul_fp(target, busy_frac);
1777         if (target < cpu->pstate.min_pstate)
1778                 target = cpu->pstate.min_pstate;
1779
1780         /*
1781          * If the average P-state during the previous cycle was higher than the
1782          * current target, add 50% of the difference to the target to reduce
1783          * possible performance oscillations and offset possible performance
1784          * loss related to moving the workload from one CPU to another within
1785          * a package/module.
1786          */
1787         avg_pstate = get_avg_pstate(cpu);
1788         if (avg_pstate > target)
1789                 target += (avg_pstate - target) >> 1;
1790
1791         return target;
1792 }
1793
1794 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1795 {
1796         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1797         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1798
1799         return clamp_t(int, pstate, min_pstate, max_pstate);
1800 }
1801
1802 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1803 {
1804         if (pstate == cpu->pstate.current_pstate)
1805                 return;
1806
1807         cpu->pstate.current_pstate = pstate;
1808         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1809 }
1810
1811 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1812 {
1813         int from = cpu->pstate.current_pstate;
1814         struct sample *sample;
1815         int target_pstate;
1816
1817         update_turbo_state();
1818
1819         target_pstate = get_target_pstate(cpu);
1820         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1821         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1822         intel_pstate_update_pstate(cpu, target_pstate);
1823
1824         sample = &cpu->sample;
1825         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1826                 fp_toint(sample->busy_scaled),
1827                 from,
1828                 cpu->pstate.current_pstate,
1829                 sample->mperf,
1830                 sample->aperf,
1831                 sample->tsc,
1832                 get_avg_frequency(cpu),
1833                 fp_toint(cpu->iowait_boost * 100));
1834 }
1835
1836 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1837                                      unsigned int flags)
1838 {
1839         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1840         u64 delta_ns;
1841
1842         /* Don't allow remote callbacks */
1843         if (smp_processor_id() != cpu->cpu)
1844                 return;
1845
1846         delta_ns = time - cpu->last_update;
1847         if (flags & SCHED_CPUFREQ_IOWAIT) {
1848                 /* Start over if the CPU may have been idle. */
1849                 if (delta_ns > TICK_NSEC) {
1850                         cpu->iowait_boost = ONE_EIGHTH_FP;
1851                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1852                         cpu->iowait_boost <<= 1;
1853                         if (cpu->iowait_boost > int_tofp(1))
1854                                 cpu->iowait_boost = int_tofp(1);
1855                 } else {
1856                         cpu->iowait_boost = ONE_EIGHTH_FP;
1857                 }
1858         } else if (cpu->iowait_boost) {
1859                 /* Clear iowait_boost if the CPU may have been idle. */
1860                 if (delta_ns > TICK_NSEC)
1861                         cpu->iowait_boost = 0;
1862                 else
1863                         cpu->iowait_boost >>= 1;
1864         }
1865         cpu->last_update = time;
1866         delta_ns = time - cpu->sample.time;
1867         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1868                 return;
1869
1870         if (intel_pstate_sample(cpu, time))
1871                 intel_pstate_adjust_pstate(cpu);
1872 }
1873
1874 static struct pstate_funcs core_funcs = {
1875         .get_max = core_get_max_pstate,
1876         .get_max_physical = core_get_max_pstate_physical,
1877         .get_min = core_get_min_pstate,
1878         .get_turbo = core_get_turbo_pstate,
1879         .get_scaling = core_get_scaling,
1880         .get_val = core_get_val,
1881 };
1882
1883 static const struct pstate_funcs silvermont_funcs = {
1884         .get_max = atom_get_max_pstate,
1885         .get_max_physical = atom_get_max_pstate,
1886         .get_min = atom_get_min_pstate,
1887         .get_turbo = atom_get_turbo_pstate,
1888         .get_val = atom_get_val,
1889         .get_scaling = silvermont_get_scaling,
1890         .get_vid = atom_get_vid,
1891 };
1892
1893 static const struct pstate_funcs airmont_funcs = {
1894         .get_max = atom_get_max_pstate,
1895         .get_max_physical = atom_get_max_pstate,
1896         .get_min = atom_get_min_pstate,
1897         .get_turbo = atom_get_turbo_pstate,
1898         .get_val = atom_get_val,
1899         .get_scaling = airmont_get_scaling,
1900         .get_vid = atom_get_vid,
1901 };
1902
1903 static const struct pstate_funcs knl_funcs = {
1904         .get_max = core_get_max_pstate,
1905         .get_max_physical = core_get_max_pstate_physical,
1906         .get_min = core_get_min_pstate,
1907         .get_turbo = knl_get_turbo_pstate,
1908         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1909         .get_scaling = core_get_scaling,
1910         .get_val = core_get_val,
1911 };
1912
1913 #define ICPU(model, policy) \
1914         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1915                         (unsigned long)&policy }
1916
1917 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1918         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1919         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1920         ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1921         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1922         ICPU(INTEL_FAM6_HASWELL,                core_funcs),
1923         ICPU(INTEL_FAM6_BROADWELL,              core_funcs),
1924         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1925         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1926         ICPU(INTEL_FAM6_HASWELL_L,              core_funcs),
1927         ICPU(INTEL_FAM6_HASWELL_G,              core_funcs),
1928         ICPU(INTEL_FAM6_BROADWELL_G,            core_funcs),
1929         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1930         ICPU(INTEL_FAM6_SKYLAKE_L,              core_funcs),
1931         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1932         ICPU(INTEL_FAM6_SKYLAKE,                core_funcs),
1933         ICPU(INTEL_FAM6_BROADWELL_D,            core_funcs),
1934         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1935         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1936         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1937         ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1938         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1939         {}
1940 };
1941 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1942
1943 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1944         ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1945         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1946         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1947         {}
1948 };
1949
1950 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1951         ICPU(INTEL_FAM6_KABYLAKE, core_funcs),
1952         {}
1953 };
1954
1955 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1956         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1957         ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1958         {}
1959 };
1960
1961 static int intel_pstate_init_cpu(unsigned int cpunum)
1962 {
1963         struct cpudata *cpu;
1964
1965         cpu = all_cpu_data[cpunum];
1966
1967         if (!cpu) {
1968                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1969                 if (!cpu)
1970                         return -ENOMEM;
1971
1972                 all_cpu_data[cpunum] = cpu;
1973
1974                 cpu->epp_default = -EINVAL;
1975                 cpu->epp_powersave = -EINVAL;
1976                 cpu->epp_saved = -EINVAL;
1977         }
1978
1979         cpu = all_cpu_data[cpunum];
1980
1981         cpu->cpu = cpunum;
1982
1983         if (hwp_active) {
1984                 const struct x86_cpu_id *id;
1985
1986                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1987                 if (id)
1988                         intel_pstate_disable_ee(cpunum);
1989
1990                 intel_pstate_hwp_enable(cpu);
1991
1992                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1993                 if (id && intel_pstate_acpi_pm_profile_server())
1994                         hwp_boost = true;
1995         }
1996
1997         intel_pstate_get_cpu_pstates(cpu);
1998
1999         pr_debug("controlling: cpu %d\n", cpunum);
2000
2001         return 0;
2002 }
2003
2004 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2005 {
2006         struct cpudata *cpu = all_cpu_data[cpu_num];
2007
2008         if (hwp_active && !hwp_boost)
2009                 return;
2010
2011         if (cpu->update_util_set)
2012                 return;
2013
2014         /* Prevent intel_pstate_update_util() from using stale data. */
2015         cpu->sample.time = 0;
2016         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2017                                      (hwp_active ?
2018                                       intel_pstate_update_util_hwp :
2019                                       intel_pstate_update_util));
2020         cpu->update_util_set = true;
2021 }
2022
2023 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2024 {
2025         struct cpudata *cpu_data = all_cpu_data[cpu];
2026
2027         if (!cpu_data->update_util_set)
2028                 return;
2029
2030         cpufreq_remove_update_util_hook(cpu);
2031         cpu_data->update_util_set = false;
2032         synchronize_rcu();
2033 }
2034
2035 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2036 {
2037         return global.turbo_disabled || global.no_turbo ?
2038                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2039 }
2040
2041 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2042                                             struct cpudata *cpu)
2043 {
2044         int max_freq = intel_pstate_get_max_freq(cpu);
2045         int32_t max_policy_perf, min_policy_perf;
2046         int max_state, turbo_max;
2047
2048         /*
2049          * HWP needs some special consideration, because on BDX the
2050          * HWP_REQUEST uses abstract value to represent performance
2051          * rather than pure ratios.
2052          */
2053         if (hwp_active) {
2054                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2055         } else {
2056                 max_state = global.no_turbo || global.turbo_disabled ?
2057                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2058                 turbo_max = cpu->pstate.turbo_pstate;
2059         }
2060
2061         max_policy_perf = max_state * policy->max / max_freq;
2062         if (policy->max == policy->min) {
2063                 min_policy_perf = max_policy_perf;
2064         } else {
2065                 min_policy_perf = max_state * policy->min / max_freq;
2066                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2067                                           0, max_policy_perf);
2068         }
2069
2070         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2071                  policy->cpu, max_state,
2072                  min_policy_perf, max_policy_perf);
2073
2074         /* Normalize user input to [min_perf, max_perf] */
2075         if (per_cpu_limits) {
2076                 cpu->min_perf_ratio = min_policy_perf;
2077                 cpu->max_perf_ratio = max_policy_perf;
2078         } else {
2079                 int32_t global_min, global_max;
2080
2081                 /* Global limits are in percent of the maximum turbo P-state. */
2082                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2083                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2084                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2085
2086                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2087                          global_min, global_max);
2088
2089                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2090                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2091                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2092                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2093
2094                 /* Make sure min_perf <= max_perf */
2095                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2096                                           cpu->max_perf_ratio);
2097
2098         }
2099         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2100                  cpu->max_perf_ratio,
2101                  cpu->min_perf_ratio);
2102 }
2103
2104 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2105 {
2106         struct cpudata *cpu;
2107
2108         if (!policy->cpuinfo.max_freq)
2109                 return -ENODEV;
2110
2111         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2112                  policy->cpuinfo.max_freq, policy->max);
2113
2114         cpu = all_cpu_data[policy->cpu];
2115         cpu->policy = policy->policy;
2116
2117         mutex_lock(&intel_pstate_limits_lock);
2118
2119         intel_pstate_update_perf_limits(policy, cpu);
2120
2121         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2122                 /*
2123                  * NOHZ_FULL CPUs need this as the governor callback may not
2124                  * be invoked on them.
2125                  */
2126                 intel_pstate_clear_update_util_hook(policy->cpu);
2127                 intel_pstate_max_within_limits(cpu);
2128         } else {
2129                 intel_pstate_set_update_util_hook(policy->cpu);
2130         }
2131
2132         if (hwp_active) {
2133                 /*
2134                  * When hwp_boost was active before and dynamically it
2135                  * was turned off, in that case we need to clear the
2136                  * update util hook.
2137                  */
2138                 if (!hwp_boost)
2139                         intel_pstate_clear_update_util_hook(policy->cpu);
2140                 intel_pstate_hwp_set(policy->cpu);
2141         }
2142
2143         mutex_unlock(&intel_pstate_limits_lock);
2144
2145         return 0;
2146 }
2147
2148 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2149                                          struct cpudata *cpu)
2150 {
2151         if (!hwp_active &&
2152             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2153             policy->max < policy->cpuinfo.max_freq &&
2154             policy->max > cpu->pstate.max_freq) {
2155                 pr_debug("policy->max > max non turbo frequency\n");
2156                 policy->max = policy->cpuinfo.max_freq;
2157         }
2158 }
2159
2160 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2161 {
2162         struct cpudata *cpu = all_cpu_data[policy->cpu];
2163
2164         update_turbo_state();
2165         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2166                                      intel_pstate_get_max_freq(cpu));
2167
2168         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2169             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2170                 return -EINVAL;
2171
2172         intel_pstate_adjust_policy_max(policy, cpu);
2173
2174         return 0;
2175 }
2176
2177 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2178 {
2179         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2180 }
2181
2182 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2183 {
2184         pr_debug("CPU %d exiting\n", policy->cpu);
2185
2186         intel_pstate_clear_update_util_hook(policy->cpu);
2187         if (hwp_active) {
2188                 intel_pstate_hwp_save_state(policy);
2189                 intel_pstate_hwp_force_min_perf(policy->cpu);
2190         } else {
2191                 intel_cpufreq_stop_cpu(policy);
2192         }
2193 }
2194
2195 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2196 {
2197         intel_pstate_exit_perf_limits(policy);
2198
2199         policy->fast_switch_possible = false;
2200
2201         return 0;
2202 }
2203
2204 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2205 {
2206         struct cpudata *cpu;
2207         int rc;
2208
2209         rc = intel_pstate_init_cpu(policy->cpu);
2210         if (rc)
2211                 return rc;
2212
2213         cpu = all_cpu_data[policy->cpu];
2214
2215         cpu->max_perf_ratio = 0xFF;
2216         cpu->min_perf_ratio = 0;
2217
2218         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2219         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2220
2221         /* cpuinfo and default policy values */
2222         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2223         update_turbo_state();
2224         global.turbo_disabled_mf = global.turbo_disabled;
2225         policy->cpuinfo.max_freq = global.turbo_disabled ?
2226                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2227         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2228
2229         if (hwp_active) {
2230                 unsigned int max_freq;
2231
2232                 max_freq = global.turbo_disabled ?
2233                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2234                 if (max_freq < policy->cpuinfo.max_freq)
2235                         policy->cpuinfo.max_freq = max_freq;
2236         }
2237
2238         intel_pstate_init_acpi_perf_limits(policy);
2239
2240         policy->fast_switch_possible = true;
2241
2242         return 0;
2243 }
2244
2245 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2246 {
2247         int ret = __intel_pstate_cpu_init(policy);
2248
2249         if (ret)
2250                 return ret;
2251
2252         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2253                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2254         else
2255                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2256
2257         return 0;
2258 }
2259
2260 static struct cpufreq_driver intel_pstate = {
2261         .flags          = CPUFREQ_CONST_LOOPS,
2262         .verify         = intel_pstate_verify_policy,
2263         .setpolicy      = intel_pstate_set_policy,
2264         .suspend        = intel_pstate_hwp_save_state,
2265         .resume         = intel_pstate_resume,
2266         .init           = intel_pstate_cpu_init,
2267         .exit           = intel_pstate_cpu_exit,
2268         .stop_cpu       = intel_pstate_stop_cpu,
2269         .update_limits  = intel_pstate_update_limits,
2270         .name           = "intel_pstate",
2271 };
2272
2273 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2274 {
2275         struct cpudata *cpu = all_cpu_data[policy->cpu];
2276
2277         update_turbo_state();
2278         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2279                                      intel_pstate_get_max_freq(cpu));
2280
2281         intel_pstate_adjust_policy_max(policy, cpu);
2282
2283         intel_pstate_update_perf_limits(policy, cpu);
2284
2285         return 0;
2286 }
2287
2288 /* Use of trace in passive mode:
2289  *
2290  * In passive mode the trace core_busy field (also known as the
2291  * performance field, and lablelled as such on the graphs; also known as
2292  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2293  * driver call was via the normal or fast switch path. Various graphs
2294  * output from the intel_pstate_tracer.py utility that include core_busy
2295  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2296  * so we use 10 to indicate the the normal path through the driver, and
2297  * 90 to indicate the fast switch path through the driver.
2298  * The scaled_busy field is not used, and is set to 0.
2299  */
2300
2301 #define INTEL_PSTATE_TRACE_TARGET 10
2302 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2303
2304 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2305 {
2306         struct sample *sample;
2307
2308         if (!trace_pstate_sample_enabled())
2309                 return;
2310
2311         if (!intel_pstate_sample(cpu, ktime_get()))
2312                 return;
2313
2314         sample = &cpu->sample;
2315         trace_pstate_sample(trace_type,
2316                 0,
2317                 old_pstate,
2318                 cpu->pstate.current_pstate,
2319                 sample->mperf,
2320                 sample->aperf,
2321                 sample->tsc,
2322                 get_avg_frequency(cpu),
2323                 fp_toint(cpu->iowait_boost * 100));
2324 }
2325
2326 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2327                                 unsigned int target_freq,
2328                                 unsigned int relation)
2329 {
2330         struct cpudata *cpu = all_cpu_data[policy->cpu];
2331         struct cpufreq_freqs freqs;
2332         int target_pstate, old_pstate;
2333
2334         update_turbo_state();
2335
2336         freqs.old = policy->cur;
2337         freqs.new = target_freq;
2338
2339         cpufreq_freq_transition_begin(policy, &freqs);
2340         switch (relation) {
2341         case CPUFREQ_RELATION_L:
2342                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2343                 break;
2344         case CPUFREQ_RELATION_H:
2345                 target_pstate = freqs.new / cpu->pstate.scaling;
2346                 break;
2347         default:
2348                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2349                 break;
2350         }
2351         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2352         old_pstate = cpu->pstate.current_pstate;
2353         if (target_pstate != cpu->pstate.current_pstate) {
2354                 cpu->pstate.current_pstate = target_pstate;
2355                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2356                               pstate_funcs.get_val(cpu, target_pstate));
2357         }
2358         freqs.new = target_pstate * cpu->pstate.scaling;
2359         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2360         cpufreq_freq_transition_end(policy, &freqs, false);
2361
2362         return 0;
2363 }
2364
2365 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2366                                               unsigned int target_freq)
2367 {
2368         struct cpudata *cpu = all_cpu_data[policy->cpu];
2369         int target_pstate, old_pstate;
2370
2371         update_turbo_state();
2372
2373         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2374         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2375         old_pstate = cpu->pstate.current_pstate;
2376         intel_pstate_update_pstate(cpu, target_pstate);
2377         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2378         return target_pstate * cpu->pstate.scaling;
2379 }
2380
2381 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2382 {
2383         int max_state, turbo_max, min_freq, max_freq, ret;
2384         struct freq_qos_request *req;
2385         struct cpudata *cpu;
2386         struct device *dev;
2387
2388         dev = get_cpu_device(policy->cpu);
2389         if (!dev)
2390                 return -ENODEV;
2391
2392         ret = __intel_pstate_cpu_init(policy);
2393         if (ret)
2394                 return ret;
2395
2396         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2397         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2398         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2399         policy->cur = policy->cpuinfo.min_freq;
2400
2401         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2402         if (!req) {
2403                 ret = -ENOMEM;
2404                 goto pstate_exit;
2405         }
2406
2407         cpu = all_cpu_data[policy->cpu];
2408
2409         if (hwp_active)
2410                 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2411         else
2412                 turbo_max = cpu->pstate.turbo_pstate;
2413
2414         min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2415         min_freq *= cpu->pstate.scaling;
2416         max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2417         max_freq *= cpu->pstate.scaling;
2418
2419         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2420                                    min_freq);
2421         if (ret < 0) {
2422                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2423                 goto free_req;
2424         }
2425
2426         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2427                                    max_freq);
2428         if (ret < 0) {
2429                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2430                 goto remove_min_req;
2431         }
2432
2433         policy->driver_data = req;
2434
2435         return 0;
2436
2437 remove_min_req:
2438         freq_qos_remove_request(req);
2439 free_req:
2440         kfree(req);
2441 pstate_exit:
2442         intel_pstate_exit_perf_limits(policy);
2443
2444         return ret;
2445 }
2446
2447 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2448 {
2449         struct freq_qos_request *req;
2450
2451         req = policy->driver_data;
2452
2453         freq_qos_remove_request(req + 1);
2454         freq_qos_remove_request(req);
2455         kfree(req);
2456
2457         return intel_pstate_cpu_exit(policy);
2458 }
2459
2460 static struct cpufreq_driver intel_cpufreq = {
2461         .flags          = CPUFREQ_CONST_LOOPS,
2462         .verify         = intel_cpufreq_verify_policy,
2463         .target         = intel_cpufreq_target,
2464         .fast_switch    = intel_cpufreq_fast_switch,
2465         .init           = intel_cpufreq_cpu_init,
2466         .exit           = intel_cpufreq_cpu_exit,
2467         .stop_cpu       = intel_cpufreq_stop_cpu,
2468         .update_limits  = intel_pstate_update_limits,
2469         .name           = "intel_cpufreq",
2470 };
2471
2472 static struct cpufreq_driver *default_driver = &intel_pstate;
2473
2474 static void intel_pstate_driver_cleanup(void)
2475 {
2476         unsigned int cpu;
2477
2478         get_online_cpus();
2479         for_each_online_cpu(cpu) {
2480                 if (all_cpu_data[cpu]) {
2481                         if (intel_pstate_driver == &intel_pstate)
2482                                 intel_pstate_clear_update_util_hook(cpu);
2483
2484                         kfree(all_cpu_data[cpu]);
2485                         all_cpu_data[cpu] = NULL;
2486                 }
2487         }
2488         put_online_cpus();
2489         intel_pstate_driver = NULL;
2490 }
2491
2492 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2493 {
2494         int ret;
2495
2496         memset(&global, 0, sizeof(global));
2497         global.max_perf_pct = 100;
2498
2499         intel_pstate_driver = driver;
2500         ret = cpufreq_register_driver(intel_pstate_driver);
2501         if (ret) {
2502                 intel_pstate_driver_cleanup();
2503                 return ret;
2504         }
2505
2506         global.min_perf_pct = min_perf_pct_min();
2507
2508         return 0;
2509 }
2510
2511 static int intel_pstate_unregister_driver(void)
2512 {
2513         if (hwp_active)
2514                 return -EBUSY;
2515
2516         cpufreq_unregister_driver(intel_pstate_driver);
2517         intel_pstate_driver_cleanup();
2518
2519         return 0;
2520 }
2521
2522 static ssize_t intel_pstate_show_status(char *buf)
2523 {
2524         if (!intel_pstate_driver)
2525                 return sprintf(buf, "off\n");
2526
2527         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2528                                         "active" : "passive");
2529 }
2530
2531 static int intel_pstate_update_status(const char *buf, size_t size)
2532 {
2533         int ret;
2534
2535         if (size == 3 && !strncmp(buf, "off", size))
2536                 return intel_pstate_driver ?
2537                         intel_pstate_unregister_driver() : -EINVAL;
2538
2539         if (size == 6 && !strncmp(buf, "active", size)) {
2540                 if (intel_pstate_driver) {
2541                         if (intel_pstate_driver == &intel_pstate)
2542                                 return 0;
2543
2544                         ret = intel_pstate_unregister_driver();
2545                         if (ret)
2546                                 return ret;
2547                 }
2548
2549                 return intel_pstate_register_driver(&intel_pstate);
2550         }
2551
2552         if (size == 7 && !strncmp(buf, "passive", size)) {
2553                 if (intel_pstate_driver) {
2554                         if (intel_pstate_driver == &intel_cpufreq)
2555                                 return 0;
2556
2557                         ret = intel_pstate_unregister_driver();
2558                         if (ret)
2559                                 return ret;
2560                 }
2561
2562                 return intel_pstate_register_driver(&intel_cpufreq);
2563         }
2564
2565         return -EINVAL;
2566 }
2567
2568 static int no_load __initdata;
2569 static int no_hwp __initdata;
2570 static int hwp_only __initdata;
2571 static unsigned int force_load __initdata;
2572
2573 static int __init intel_pstate_msrs_not_valid(void)
2574 {
2575         if (!pstate_funcs.get_max() ||
2576             !pstate_funcs.get_min() ||
2577             !pstate_funcs.get_turbo())
2578                 return -ENODEV;
2579
2580         return 0;
2581 }
2582
2583 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2584 {
2585         pstate_funcs.get_max   = funcs->get_max;
2586         pstate_funcs.get_max_physical = funcs->get_max_physical;
2587         pstate_funcs.get_min   = funcs->get_min;
2588         pstate_funcs.get_turbo = funcs->get_turbo;
2589         pstate_funcs.get_scaling = funcs->get_scaling;
2590         pstate_funcs.get_val   = funcs->get_val;
2591         pstate_funcs.get_vid   = funcs->get_vid;
2592         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2593 }
2594
2595 #ifdef CONFIG_ACPI
2596
2597 static bool __init intel_pstate_no_acpi_pss(void)
2598 {
2599         int i;
2600
2601         for_each_possible_cpu(i) {
2602                 acpi_status status;
2603                 union acpi_object *pss;
2604                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2605                 struct acpi_processor *pr = per_cpu(processors, i);
2606
2607                 if (!pr)
2608                         continue;
2609
2610                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2611                 if (ACPI_FAILURE(status))
2612                         continue;
2613
2614                 pss = buffer.pointer;
2615                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2616                         kfree(pss);
2617                         return false;
2618                 }
2619
2620                 kfree(pss);
2621         }
2622
2623         pr_debug("ACPI _PSS not found\n");
2624         return true;
2625 }
2626
2627 static bool __init intel_pstate_no_acpi_pcch(void)
2628 {
2629         acpi_status status;
2630         acpi_handle handle;
2631
2632         status = acpi_get_handle(NULL, "\\_SB", &handle);
2633         if (ACPI_FAILURE(status))
2634                 goto not_found;
2635
2636         if (acpi_has_method(handle, "PCCH"))
2637                 return false;
2638
2639 not_found:
2640         pr_debug("ACPI PCCH not found\n");
2641         return true;
2642 }
2643
2644 static bool __init intel_pstate_has_acpi_ppc(void)
2645 {
2646         int i;
2647
2648         for_each_possible_cpu(i) {
2649                 struct acpi_processor *pr = per_cpu(processors, i);
2650
2651                 if (!pr)
2652                         continue;
2653                 if (acpi_has_method(pr->handle, "_PPC"))
2654                         return true;
2655         }
2656         pr_debug("ACPI _PPC not found\n");
2657         return false;
2658 }
2659
2660 enum {
2661         PSS,
2662         PPC,
2663 };
2664
2665 /* Hardware vendor-specific info that has its own power management modes */
2666 static struct acpi_platform_list plat_info[] __initdata = {
2667         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2668         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2669         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2670         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2671         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2672         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2673         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2674         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2675         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2676         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2677         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2678         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2679         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2680         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2681         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2682         { } /* End */
2683 };
2684
2685 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2686 {
2687         const struct x86_cpu_id *id;
2688         u64 misc_pwr;
2689         int idx;
2690
2691         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2692         if (id) {
2693                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2694                 if (misc_pwr & (1 << 8)) {
2695                         pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2696                         return true;
2697                 }
2698         }
2699
2700         idx = acpi_match_platform_list(plat_info);
2701         if (idx < 0)
2702                 return false;
2703
2704         switch (plat_info[idx].data) {
2705         case PSS:
2706                 if (!intel_pstate_no_acpi_pss())
2707                         return false;
2708
2709                 return intel_pstate_no_acpi_pcch();
2710         case PPC:
2711                 return intel_pstate_has_acpi_ppc() && !force_load;
2712         }
2713
2714         return false;
2715 }
2716
2717 static void intel_pstate_request_control_from_smm(void)
2718 {
2719         /*
2720          * It may be unsafe to request P-states control from SMM if _PPC support
2721          * has not been enabled.
2722          */
2723         if (acpi_ppc)
2724                 acpi_processor_pstate_control();
2725 }
2726 #else /* CONFIG_ACPI not enabled */
2727 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2728 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2729 static inline void intel_pstate_request_control_from_smm(void) {}
2730 #endif /* CONFIG_ACPI */
2731
2732 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2733
2734 #define ICPU_HWP(model, hwp_mode) \
2735         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2736
2737 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2738         ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2739         ICPU_HWP(INTEL_FAM6_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2740         ICPU_HWP(X86_MODEL_ANY, 0),
2741         {}
2742 };
2743
2744 static int __init intel_pstate_init(void)
2745 {
2746         const struct x86_cpu_id *id;
2747         int rc;
2748
2749         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2750                 return -ENODEV;
2751
2752         if (no_load)
2753                 return -ENODEV;
2754
2755         id = x86_match_cpu(hwp_support_ids);
2756         if (id) {
2757                 copy_cpu_funcs(&core_funcs);
2758                 if (!no_hwp) {
2759                         hwp_active++;
2760                         hwp_mode_bdw = id->driver_data;
2761                         intel_pstate.attr = hwp_cpufreq_attrs;
2762                         goto hwp_cpu_matched;
2763                 }
2764         } else {
2765                 id = x86_match_cpu(intel_pstate_cpu_ids);
2766                 if (!id) {
2767                         pr_info("CPU model not supported\n");
2768                         return -ENODEV;
2769                 }
2770
2771                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2772         }
2773
2774         if (intel_pstate_msrs_not_valid()) {
2775                 pr_info("Invalid MSRs\n");
2776                 return -ENODEV;
2777         }
2778
2779 hwp_cpu_matched:
2780         /*
2781          * The Intel pstate driver will be ignored if the platform
2782          * firmware has its own power management modes.
2783          */
2784         if (intel_pstate_platform_pwr_mgmt_exists()) {
2785                 pr_info("P-states controlled by the platform\n");
2786                 return -ENODEV;
2787         }
2788
2789         if (!hwp_active && hwp_only)
2790                 return -ENOTSUPP;
2791
2792         pr_info("Intel P-state driver initializing\n");
2793
2794         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2795         if (!all_cpu_data)
2796                 return -ENOMEM;
2797
2798         intel_pstate_request_control_from_smm();
2799
2800         intel_pstate_sysfs_expose_params();
2801
2802         mutex_lock(&intel_pstate_driver_lock);
2803         rc = intel_pstate_register_driver(default_driver);
2804         mutex_unlock(&intel_pstate_driver_lock);
2805         if (rc)
2806                 return rc;
2807
2808         if (hwp_active)
2809                 pr_info("HWP enabled\n");
2810
2811         return 0;
2812 }
2813 device_initcall(intel_pstate_init);
2814
2815 static int __init intel_pstate_setup(char *str)
2816 {
2817         if (!str)
2818                 return -EINVAL;
2819
2820         if (!strcmp(str, "disable")) {
2821                 no_load = 1;
2822         } else if (!strcmp(str, "passive")) {
2823                 pr_info("Passive mode enabled\n");
2824                 default_driver = &intel_cpufreq;
2825                 no_hwp = 1;
2826         }
2827         if (!strcmp(str, "no_hwp")) {
2828                 pr_info("HWP disabled\n");
2829                 no_hwp = 1;
2830         }
2831         if (!strcmp(str, "force"))
2832                 force_load = 1;
2833         if (!strcmp(str, "hwp_only"))
2834                 hwp_only = 1;
2835         if (!strcmp(str, "per_cpu_perf_limits"))
2836                 per_cpu_limits = true;
2837
2838 #ifdef CONFIG_ACPI
2839         if (!strcmp(str, "support_acpi_ppc"))
2840                 acpi_ppc = true;
2841 #endif
2842
2843         return 0;
2844 }
2845 early_param("intel_pstate", intel_pstate_setup);
2846
2847 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2848 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2849 MODULE_LICENSE("GPL");