Merge tag 'pm-6.3-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[platform/kernel/linux-starfive.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37
38 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67         return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72         int mask, ret;
73
74         ret = fp_toint(x);
75         mask = (1 << FRAC_BITS) - 1;
76         if (x & mask)
77                 ret += 1;
78         return ret;
79 }
80
81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83         return (x * y) >> EXT_FRAC_BITS;
84 }
85
86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88         return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90
91 /**
92  * struct sample -      Store performance sample
93  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
94  *                      performance during last sample period
95  * @busy_scaled:        Scaled busy value which is used to calculate next
96  *                      P state. This can be different than core_avg_perf
97  *                      to account for cpu idle period
98  * @aperf:              Difference of actual performance frequency clock count
99  *                      read from APERF MSR between last and current sample
100  * @mperf:              Difference of maximum performance frequency clock count
101  *                      read from MPERF MSR between last and current sample
102  * @tsc:                Difference of time stamp counter between last and
103  *                      current sample
104  * @time:               Current time from scheduler
105  *
106  * This structure is used in the cpudata structure to store performance sample
107  * data for choosing next P State.
108  */
109 struct sample {
110         int32_t core_avg_perf;
111         int32_t busy_scaled;
112         u64 aperf;
113         u64 mperf;
114         u64 tsc;
115         u64 time;
116 };
117
118 /**
119  * struct pstate_data - Store P state data
120  * @current_pstate:     Current requested P state
121  * @min_pstate:         Min P state possible for this platform
122  * @max_pstate:         Max P state possible for this platform
123  * @max_pstate_physical:This is physical Max P state for a processor
124  *                      This can be higher than the max_pstate which can
125  *                      be limited by platform thermal design power limits
126  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
127  * @scaling:            Scaling factor between performance and frequency
128  * @turbo_pstate:       Max Turbo P state possible for this platform
129  * @min_freq:           @min_pstate frequency in cpufreq units
130  * @max_freq:           @max_pstate frequency in cpufreq units
131  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136         int     current_pstate;
137         int     min_pstate;
138         int     max_pstate;
139         int     max_pstate_physical;
140         int     perf_ctl_scaling;
141         int     scaling;
142         int     turbo_pstate;
143         unsigned int min_freq;
144         unsigned int max_freq;
145         unsigned int turbo_freq;
146 };
147
148 /**
149  * struct vid_data -    Stores voltage information data
150  * @min:                VID data for this platform corresponding to
151  *                      the lowest P state
152  * @max:                VID data corresponding to the highest P State.
153  * @turbo:              VID data for turbo P state
154  * @ratio:              Ratio of (vid max - vid min) /
155  *                      (max P state - Min P State)
156  *
157  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158  * This data is used in Atom platforms, where in addition to target P state,
159  * the voltage data needs to be specified to select next P State.
160  */
161 struct vid_data {
162         int min;
163         int max;
164         int turbo;
165         int32_t ratio;
166 };
167
168 /**
169  * struct global_params - Global parameters, mostly tunable via sysfs.
170  * @no_turbo:           Whether or not to use turbo P-states.
171  * @turbo_disabled:     Whether or not turbo P-states are available at all,
172  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
173  *                      not the maximum reported turbo P-state is different from
174  *                      the maximum reported non-turbo one.
175  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
176  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
177  *                      P-state capacity.
178  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
179  *                      P-state capacity.
180  */
181 struct global_params {
182         bool no_turbo;
183         bool turbo_disabled;
184         bool turbo_disabled_mf;
185         int max_perf_pct;
186         int min_perf_pct;
187 };
188
189 /**
190  * struct cpudata -     Per CPU instance data storage
191  * @cpu:                CPU number for this instance data
192  * @policy:             CPUFreq policy value
193  * @update_util:        CPUFreq utility callback information
194  * @update_util_set:    CPUFreq utility callback is set
195  * @iowait_boost:       iowait-related boost fraction
196  * @last_update:        Time of the last update.
197  * @pstate:             Stores P state limits for this CPU
198  * @vid:                Stores VID limits for this CPU
199  * @last_sample_time:   Last Sample time
200  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
201  * @prev_aperf:         Last APERF value read from APERF MSR
202  * @prev_mperf:         Last MPERF value read from MPERF MSR
203  * @prev_tsc:           Last timestamp counter (TSC) value
204  * @prev_cummulative_iowait: IO Wait time difference from last and
205  *                      current sample
206  * @sample:             Storage for storing last Sample data
207  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
208  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
209  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
210  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
211  * @epp_powersave:      Last saved HWP energy performance preference
212  *                      (EPP) or energy performance bias (EPB),
213  *                      when policy switched to performance
214  * @epp_policy:         Last saved policy used to set EPP/EPB
215  * @epp_default:        Power on default HWP energy performance
216  *                      preference/bias
217  * @epp_cached          Cached HWP energy-performance preference value
218  * @hwp_req_cached:     Cached value of the last HWP Request MSR
219  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
220  * @last_io_update:     Last time when IO wake flag was set
221  * @sched_flags:        Store scheduler flags for possible cross CPU update
222  * @hwp_boost_min:      Last HWP boosted min performance
223  * @suspended:          Whether or not the driver has been suspended.
224  * @hwp_notify_work:    workqueue for HWP notifications.
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229         int cpu;
230
231         unsigned int policy;
232         struct update_util_data update_util;
233         bool   update_util_set;
234
235         struct pstate_data pstate;
236         struct vid_data vid;
237
238         u64     last_update;
239         u64     last_sample_time;
240         u64     aperf_mperf_shift;
241         u64     prev_aperf;
242         u64     prev_mperf;
243         u64     prev_tsc;
244         u64     prev_cummulative_iowait;
245         struct sample sample;
246         int32_t min_perf_ratio;
247         int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249         struct acpi_processor_performance acpi_perf_data;
250         bool valid_pss_table;
251 #endif
252         unsigned int iowait_boost;
253         s16 epp_powersave;
254         s16 epp_policy;
255         s16 epp_default;
256         s16 epp_cached;
257         u64 hwp_req_cached;
258         u64 hwp_cap_cached;
259         u64 last_io_update;
260         unsigned int sched_flags;
261         u32 hwp_boost_min;
262         bool suspended;
263         struct delayed_work hwp_notify_work;
264 };
265
266 static struct cpudata **all_cpu_data;
267
268 /**
269  * struct pstate_funcs - Per CPU model specific callbacks
270  * @get_max:            Callback to get maximum non turbo effective P state
271  * @get_max_physical:   Callback to get maximum non turbo physical P state
272  * @get_min:            Callback to get minimum P state
273  * @get_turbo:          Callback to get turbo P state
274  * @get_scaling:        Callback to get frequency scaling factor
275  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
276  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(int cpu);
285         int (*get_max_physical)(int cpu);
286         int (*get_min)(int cpu);
287         int (*get_turbo)(int cpu);
288         int (*get_scaling)(void);
289         int (*get_cpu_scaling)(int cpu);
290         int (*get_aperf_mperf_shift)(void);
291         u64 (*get_val)(struct cpudata*, int pstate);
292         void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #ifdef CONFIG_ACPI
306 static bool acpi_ppc;
307 #endif
308
309 static struct global_params global;
310
311 static DEFINE_MUTEX(intel_pstate_driver_lock);
312 static DEFINE_MUTEX(intel_pstate_limits_lock);
313
314 #ifdef CONFIG_ACPI
315
316 static bool intel_pstate_acpi_pm_profile_server(void)
317 {
318         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320                 return true;
321
322         return false;
323 }
324
325 static bool intel_pstate_get_ppc_enable_status(void)
326 {
327         if (intel_pstate_acpi_pm_profile_server())
328                 return true;
329
330         return acpi_ppc;
331 }
332
333 #ifdef CONFIG_ACPI_CPPC_LIB
334
335 /* The work item is needed to avoid CPU hotplug locking issues */
336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337 {
338         sched_set_itmt_support();
339 }
340
341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342
343 #define CPPC_MAX_PERF   U8_MAX
344
345 static void intel_pstate_set_itmt_prio(int cpu)
346 {
347         struct cppc_perf_caps cppc_perf;
348         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
349         int ret;
350
351         ret = cppc_get_perf_caps(cpu, &cppc_perf);
352         if (ret)
353                 return;
354
355         /*
356          * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
357          * In this case we can't use CPPC.highest_perf to enable ITMT.
358          * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
359          */
360         if (cppc_perf.highest_perf == CPPC_MAX_PERF)
361                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
362
363         /*
364          * The priorities can be set regardless of whether or not
365          * sched_set_itmt_support(true) has been called and it is valid to
366          * update them at any time after it has been called.
367          */
368         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
369
370         if (max_highest_perf <= min_highest_perf) {
371                 if (cppc_perf.highest_perf > max_highest_perf)
372                         max_highest_perf = cppc_perf.highest_perf;
373
374                 if (cppc_perf.highest_perf < min_highest_perf)
375                         min_highest_perf = cppc_perf.highest_perf;
376
377                 if (max_highest_perf > min_highest_perf) {
378                         /*
379                          * This code can be run during CPU online under the
380                          * CPU hotplug locks, so sched_set_itmt_support()
381                          * cannot be called from here.  Queue up a work item
382                          * to invoke it.
383                          */
384                         schedule_work(&sched_itmt_work);
385                 }
386         }
387 }
388
389 static int intel_pstate_get_cppc_guaranteed(int cpu)
390 {
391         struct cppc_perf_caps cppc_perf;
392         int ret;
393
394         ret = cppc_get_perf_caps(cpu, &cppc_perf);
395         if (ret)
396                 return ret;
397
398         if (cppc_perf.guaranteed_perf)
399                 return cppc_perf.guaranteed_perf;
400
401         return cppc_perf.nominal_perf;
402 }
403 #else /* CONFIG_ACPI_CPPC_LIB */
404 static inline void intel_pstate_set_itmt_prio(int cpu)
405 {
406 }
407 #endif /* CONFIG_ACPI_CPPC_LIB */
408
409 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
410 {
411         struct cpudata *cpu;
412         int ret;
413         int i;
414
415         if (hwp_active) {
416                 intel_pstate_set_itmt_prio(policy->cpu);
417                 return;
418         }
419
420         if (!intel_pstate_get_ppc_enable_status())
421                 return;
422
423         cpu = all_cpu_data[policy->cpu];
424
425         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
426                                                   policy->cpu);
427         if (ret)
428                 return;
429
430         /*
431          * Check if the control value in _PSS is for PERF_CTL MSR, which should
432          * guarantee that the states returned by it map to the states in our
433          * list directly.
434          */
435         if (cpu->acpi_perf_data.control_register.space_id !=
436                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
437                 goto err;
438
439         /*
440          * If there is only one entry _PSS, simply ignore _PSS and continue as
441          * usual without taking _PSS into account
442          */
443         if (cpu->acpi_perf_data.state_count < 2)
444                 goto err;
445
446         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
447         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
448                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
449                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
450                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
451                          (u32) cpu->acpi_perf_data.states[i].power,
452                          (u32) cpu->acpi_perf_data.states[i].control);
453         }
454
455         cpu->valid_pss_table = true;
456         pr_debug("_PPC limits will be enforced\n");
457
458         return;
459
460  err:
461         cpu->valid_pss_table = false;
462         acpi_processor_unregister_performance(policy->cpu);
463 }
464
465 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
466 {
467         struct cpudata *cpu;
468
469         cpu = all_cpu_data[policy->cpu];
470         if (!cpu->valid_pss_table)
471                 return;
472
473         acpi_processor_unregister_performance(policy->cpu);
474 }
475 #else /* CONFIG_ACPI */
476 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
477 {
478 }
479
480 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483
484 static inline bool intel_pstate_acpi_pm_profile_server(void)
485 {
486         return false;
487 }
488 #endif /* CONFIG_ACPI */
489
490 #ifndef CONFIG_ACPI_CPPC_LIB
491 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
492 {
493         return -ENOTSUPP;
494 }
495 #endif /* CONFIG_ACPI_CPPC_LIB */
496
497 /**
498  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
499  * @cpu: Target CPU.
500  *
501  * On hybrid processors, HWP may expose more performance levels than there are
502  * P-states accessible through the PERF_CTL interface.  If that happens, the
503  * scaling factor between HWP performance levels and CPU frequency will be less
504  * than the scaling factor between P-state values and CPU frequency.
505  *
506  * In that case, adjust the CPU parameters used in computations accordingly.
507  */
508 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
509 {
510         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
511         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
512         int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
513         int scaling = cpu->pstate.scaling;
514
515         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
516         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
517         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
518         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
519         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
520         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
521
522         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
523                                            perf_ctl_scaling);
524         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
525                                          perf_ctl_scaling);
526
527         cpu->pstate.max_pstate_physical =
528                         DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
529                                      scaling);
530
531         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
532         /*
533          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
534          * the effective range of HWP performance levels.
535          */
536         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
537 }
538
539 static inline void update_turbo_state(void)
540 {
541         u64 misc_en;
542         struct cpudata *cpu;
543
544         cpu = all_cpu_data[0];
545         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
546         global.turbo_disabled =
547                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
548                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
549 }
550
551 static int min_perf_pct_min(void)
552 {
553         struct cpudata *cpu = all_cpu_data[0];
554         int turbo_pstate = cpu->pstate.turbo_pstate;
555
556         return turbo_pstate ?
557                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
558 }
559
560 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
561 {
562         u64 epb;
563         int ret;
564
565         if (!boot_cpu_has(X86_FEATURE_EPB))
566                 return -ENXIO;
567
568         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
569         if (ret)
570                 return (s16)ret;
571
572         return (s16)(epb & 0x0f);
573 }
574
575 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
576 {
577         s16 epp;
578
579         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
580                 /*
581                  * When hwp_req_data is 0, means that caller didn't read
582                  * MSR_HWP_REQUEST, so need to read and get EPP.
583                  */
584                 if (!hwp_req_data) {
585                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
586                                             &hwp_req_data);
587                         if (epp)
588                                 return epp;
589                 }
590                 epp = (hwp_req_data >> 24) & 0xff;
591         } else {
592                 /* When there is no EPP present, HWP uses EPB settings */
593                 epp = intel_pstate_get_epb(cpu_data);
594         }
595
596         return epp;
597 }
598
599 static int intel_pstate_set_epb(int cpu, s16 pref)
600 {
601         u64 epb;
602         int ret;
603
604         if (!boot_cpu_has(X86_FEATURE_EPB))
605                 return -ENXIO;
606
607         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608         if (ret)
609                 return ret;
610
611         epb = (epb & ~0x0f) | pref;
612         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
613
614         return 0;
615 }
616
617 /*
618  * EPP/EPB display strings corresponding to EPP index in the
619  * energy_perf_strings[]
620  *      index           String
621  *-------------------------------------
622  *      0               default
623  *      1               performance
624  *      2               balance_performance
625  *      3               balance_power
626  *      4               power
627  */
628
629 enum energy_perf_value_index {
630         EPP_INDEX_DEFAULT = 0,
631         EPP_INDEX_PERFORMANCE,
632         EPP_INDEX_BALANCE_PERFORMANCE,
633         EPP_INDEX_BALANCE_POWERSAVE,
634         EPP_INDEX_POWERSAVE,
635 };
636
637 static const char * const energy_perf_strings[] = {
638         [EPP_INDEX_DEFAULT] = "default",
639         [EPP_INDEX_PERFORMANCE] = "performance",
640         [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
641         [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
642         [EPP_INDEX_POWERSAVE] = "power",
643         NULL
644 };
645 static unsigned int epp_values[] = {
646         [EPP_INDEX_DEFAULT] = 0, /* Unused index */
647         [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
648         [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
649         [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
650         [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
651 };
652
653 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
654 {
655         s16 epp;
656         int index = -EINVAL;
657
658         *raw_epp = 0;
659         epp = intel_pstate_get_epp(cpu_data, 0);
660         if (epp < 0)
661                 return epp;
662
663         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
664                 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
665                         return EPP_INDEX_PERFORMANCE;
666                 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
667                         return EPP_INDEX_BALANCE_PERFORMANCE;
668                 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
669                         return EPP_INDEX_BALANCE_POWERSAVE;
670                 if (epp == epp_values[EPP_INDEX_POWERSAVE])
671                         return EPP_INDEX_POWERSAVE;
672                 *raw_epp = epp;
673                 return 0;
674         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
675                 /*
676                  * Range:
677                  *      0x00-0x03       :       Performance
678                  *      0x04-0x07       :       Balance performance
679                  *      0x08-0x0B       :       Balance power
680                  *      0x0C-0x0F       :       Power
681                  * The EPB is a 4 bit value, but our ranges restrict the
682                  * value which can be set. Here only using top two bits
683                  * effectively.
684                  */
685                 index = (epp >> 2) + 1;
686         }
687
688         return index;
689 }
690
691 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
692 {
693         int ret;
694
695         /*
696          * Use the cached HWP Request MSR value, because in the active mode the
697          * register itself may be updated by intel_pstate_hwp_boost_up() or
698          * intel_pstate_hwp_boost_down() at any time.
699          */
700         u64 value = READ_ONCE(cpu->hwp_req_cached);
701
702         value &= ~GENMASK_ULL(31, 24);
703         value |= (u64)epp << 24;
704         /*
705          * The only other updater of hwp_req_cached in the active mode,
706          * intel_pstate_hwp_set(), is called under the same lock as this
707          * function, so it cannot run in parallel with the update below.
708          */
709         WRITE_ONCE(cpu->hwp_req_cached, value);
710         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
711         if (!ret)
712                 cpu->epp_cached = epp;
713
714         return ret;
715 }
716
717 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
718                                               int pref_index, bool use_raw,
719                                               u32 raw_epp)
720 {
721         int epp = -EINVAL;
722         int ret;
723
724         if (!pref_index)
725                 epp = cpu_data->epp_default;
726
727         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
728                 if (use_raw)
729                         epp = raw_epp;
730                 else if (epp == -EINVAL)
731                         epp = epp_values[pref_index];
732
733                 /*
734                  * To avoid confusion, refuse to set EPP to any values different
735                  * from 0 (performance) if the current policy is "performance",
736                  * because those values would be overridden.
737                  */
738                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
739                         return -EBUSY;
740
741                 ret = intel_pstate_set_epp(cpu_data, epp);
742         } else {
743                 if (epp == -EINVAL)
744                         epp = (pref_index - 1) << 2;
745                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
746         }
747
748         return ret;
749 }
750
751 static ssize_t show_energy_performance_available_preferences(
752                                 struct cpufreq_policy *policy, char *buf)
753 {
754         int i = 0;
755         int ret = 0;
756
757         while (energy_perf_strings[i] != NULL)
758                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
759
760         ret += sprintf(&buf[ret], "\n");
761
762         return ret;
763 }
764
765 cpufreq_freq_attr_ro(energy_performance_available_preferences);
766
767 static struct cpufreq_driver intel_pstate;
768
769 static ssize_t store_energy_performance_preference(
770                 struct cpufreq_policy *policy, const char *buf, size_t count)
771 {
772         struct cpudata *cpu = all_cpu_data[policy->cpu];
773         char str_preference[21];
774         bool raw = false;
775         ssize_t ret;
776         u32 epp = 0;
777
778         ret = sscanf(buf, "%20s", str_preference);
779         if (ret != 1)
780                 return -EINVAL;
781
782         ret = match_string(energy_perf_strings, -1, str_preference);
783         if (ret < 0) {
784                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
785                         return ret;
786
787                 ret = kstrtouint(buf, 10, &epp);
788                 if (ret)
789                         return ret;
790
791                 if (epp > 255)
792                         return -EINVAL;
793
794                 raw = true;
795         }
796
797         /*
798          * This function runs with the policy R/W semaphore held, which
799          * guarantees that the driver pointer will not change while it is
800          * running.
801          */
802         if (!intel_pstate_driver)
803                 return -EAGAIN;
804
805         mutex_lock(&intel_pstate_limits_lock);
806
807         if (intel_pstate_driver == &intel_pstate) {
808                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
809         } else {
810                 /*
811                  * In the passive mode the governor needs to be stopped on the
812                  * target CPU before the EPP update and restarted after it,
813                  * which is super-heavy-weight, so make sure it is worth doing
814                  * upfront.
815                  */
816                 if (!raw)
817                         epp = ret ? epp_values[ret] : cpu->epp_default;
818
819                 if (cpu->epp_cached != epp) {
820                         int err;
821
822                         cpufreq_stop_governor(policy);
823                         ret = intel_pstate_set_epp(cpu, epp);
824                         err = cpufreq_start_governor(policy);
825                         if (!ret)
826                                 ret = err;
827                 }
828         }
829
830         mutex_unlock(&intel_pstate_limits_lock);
831
832         return ret ?: count;
833 }
834
835 static ssize_t show_energy_performance_preference(
836                                 struct cpufreq_policy *policy, char *buf)
837 {
838         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
839         int preference, raw_epp;
840
841         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
842         if (preference < 0)
843                 return preference;
844
845         if (raw_epp)
846                 return  sprintf(buf, "%d\n", raw_epp);
847         else
848                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
849 }
850
851 cpufreq_freq_attr_rw(energy_performance_preference);
852
853 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
854 {
855         struct cpudata *cpu = all_cpu_data[policy->cpu];
856         int ratio, freq;
857
858         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
859         if (ratio <= 0) {
860                 u64 cap;
861
862                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
863                 ratio = HWP_GUARANTEED_PERF(cap);
864         }
865
866         freq = ratio * cpu->pstate.scaling;
867         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
868                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
869
870         return sprintf(buf, "%d\n", freq);
871 }
872
873 cpufreq_freq_attr_ro(base_frequency);
874
875 static struct freq_attr *hwp_cpufreq_attrs[] = {
876         &energy_performance_preference,
877         &energy_performance_available_preferences,
878         &base_frequency,
879         NULL,
880 };
881
882 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
883 {
884         u64 cap;
885
886         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
887         WRITE_ONCE(cpu->hwp_cap_cached, cap);
888         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
889         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
890 }
891
892 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
893 {
894         int scaling = cpu->pstate.scaling;
895
896         __intel_pstate_get_hwp_cap(cpu);
897
898         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
899         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
900         if (scaling != cpu->pstate.perf_ctl_scaling) {
901                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
902
903                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
904                                                  perf_ctl_scaling);
905                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
906                                                    perf_ctl_scaling);
907         }
908 }
909
910 static void intel_pstate_hwp_set(unsigned int cpu)
911 {
912         struct cpudata *cpu_data = all_cpu_data[cpu];
913         int max, min;
914         u64 value;
915         s16 epp;
916
917         max = cpu_data->max_perf_ratio;
918         min = cpu_data->min_perf_ratio;
919
920         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
921                 min = max;
922
923         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
924
925         value &= ~HWP_MIN_PERF(~0L);
926         value |= HWP_MIN_PERF(min);
927
928         value &= ~HWP_MAX_PERF(~0L);
929         value |= HWP_MAX_PERF(max);
930
931         if (cpu_data->epp_policy == cpu_data->policy)
932                 goto skip_epp;
933
934         cpu_data->epp_policy = cpu_data->policy;
935
936         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
937                 epp = intel_pstate_get_epp(cpu_data, value);
938                 cpu_data->epp_powersave = epp;
939                 /* If EPP read was failed, then don't try to write */
940                 if (epp < 0)
941                         goto skip_epp;
942
943                 epp = 0;
944         } else {
945                 /* skip setting EPP, when saved value is invalid */
946                 if (cpu_data->epp_powersave < 0)
947                         goto skip_epp;
948
949                 /*
950                  * No need to restore EPP when it is not zero. This
951                  * means:
952                  *  - Policy is not changed
953                  *  - user has manually changed
954                  *  - Error reading EPB
955                  */
956                 epp = intel_pstate_get_epp(cpu_data, value);
957                 if (epp)
958                         goto skip_epp;
959
960                 epp = cpu_data->epp_powersave;
961         }
962         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
963                 value &= ~GENMASK_ULL(31, 24);
964                 value |= (u64)epp << 24;
965         } else {
966                 intel_pstate_set_epb(cpu, epp);
967         }
968 skip_epp:
969         WRITE_ONCE(cpu_data->hwp_req_cached, value);
970         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
971 }
972
973 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
974
975 static void intel_pstate_hwp_offline(struct cpudata *cpu)
976 {
977         u64 value = READ_ONCE(cpu->hwp_req_cached);
978         int min_perf;
979
980         intel_pstate_disable_hwp_interrupt(cpu);
981
982         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
983                 /*
984                  * In case the EPP has been set to "performance" by the
985                  * active mode "performance" scaling algorithm, replace that
986                  * temporary value with the cached EPP one.
987                  */
988                 value &= ~GENMASK_ULL(31, 24);
989                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
990                 /*
991                  * However, make sure that EPP will be set to "performance" when
992                  * the CPU is brought back online again and the "performance"
993                  * scaling algorithm is still in effect.
994                  */
995                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
996         }
997
998         /*
999          * Clear the desired perf field in the cached HWP request value to
1000          * prevent nonzero desired values from being leaked into the active
1001          * mode.
1002          */
1003         value &= ~HWP_DESIRED_PERF(~0L);
1004         WRITE_ONCE(cpu->hwp_req_cached, value);
1005
1006         value &= ~GENMASK_ULL(31, 0);
1007         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1008
1009         /* Set hwp_max = hwp_min */
1010         value |= HWP_MAX_PERF(min_perf);
1011         value |= HWP_MIN_PERF(min_perf);
1012
1013         /* Set EPP to min */
1014         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1015                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1016
1017         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1018 }
1019
1020 #define POWER_CTL_EE_ENABLE     1
1021 #define POWER_CTL_EE_DISABLE    2
1022
1023 static int power_ctl_ee_state;
1024
1025 static void set_power_ctl_ee_state(bool input)
1026 {
1027         u64 power_ctl;
1028
1029         mutex_lock(&intel_pstate_driver_lock);
1030         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1031         if (input) {
1032                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1033                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1034         } else {
1035                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1036                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1037         }
1038         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1039         mutex_unlock(&intel_pstate_driver_lock);
1040 }
1041
1042 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1043
1044 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1045 {
1046         intel_pstate_hwp_enable(cpu);
1047         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1048 }
1049
1050 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1051 {
1052         struct cpudata *cpu = all_cpu_data[policy->cpu];
1053
1054         pr_debug("CPU %d suspending\n", cpu->cpu);
1055
1056         cpu->suspended = true;
1057
1058         /* disable HWP interrupt and cancel any pending work */
1059         intel_pstate_disable_hwp_interrupt(cpu);
1060
1061         return 0;
1062 }
1063
1064 static int intel_pstate_resume(struct cpufreq_policy *policy)
1065 {
1066         struct cpudata *cpu = all_cpu_data[policy->cpu];
1067
1068         pr_debug("CPU %d resuming\n", cpu->cpu);
1069
1070         /* Only restore if the system default is changed */
1071         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1072                 set_power_ctl_ee_state(true);
1073         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1074                 set_power_ctl_ee_state(false);
1075
1076         if (cpu->suspended && hwp_active) {
1077                 mutex_lock(&intel_pstate_limits_lock);
1078
1079                 /* Re-enable HWP, because "online" has not done that. */
1080                 intel_pstate_hwp_reenable(cpu);
1081
1082                 mutex_unlock(&intel_pstate_limits_lock);
1083         }
1084
1085         cpu->suspended = false;
1086
1087         return 0;
1088 }
1089
1090 static void intel_pstate_update_policies(void)
1091 {
1092         int cpu;
1093
1094         for_each_possible_cpu(cpu)
1095                 cpufreq_update_policy(cpu);
1096 }
1097
1098 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1099                                            struct cpufreq_policy *policy)
1100 {
1101         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1102                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1103         refresh_frequency_limits(policy);
1104 }
1105
1106 static void intel_pstate_update_max_freq(unsigned int cpu)
1107 {
1108         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1109
1110         if (!policy)
1111                 return;
1112
1113         __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1114
1115         cpufreq_cpu_release(policy);
1116 }
1117
1118 static void intel_pstate_update_limits(unsigned int cpu)
1119 {
1120         mutex_lock(&intel_pstate_driver_lock);
1121
1122         update_turbo_state();
1123         /*
1124          * If turbo has been turned on or off globally, policy limits for
1125          * all CPUs need to be updated to reflect that.
1126          */
1127         if (global.turbo_disabled_mf != global.turbo_disabled) {
1128                 global.turbo_disabled_mf = global.turbo_disabled;
1129                 arch_set_max_freq_ratio(global.turbo_disabled);
1130                 for_each_possible_cpu(cpu)
1131                         intel_pstate_update_max_freq(cpu);
1132         } else {
1133                 cpufreq_update_policy(cpu);
1134         }
1135
1136         mutex_unlock(&intel_pstate_driver_lock);
1137 }
1138
1139 /************************** sysfs begin ************************/
1140 #define show_one(file_name, object)                                     \
1141         static ssize_t show_##file_name                                 \
1142         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1143         {                                                               \
1144                 return sprintf(buf, "%u\n", global.object);             \
1145         }
1146
1147 static ssize_t intel_pstate_show_status(char *buf);
1148 static int intel_pstate_update_status(const char *buf, size_t size);
1149
1150 static ssize_t show_status(struct kobject *kobj,
1151                            struct kobj_attribute *attr, char *buf)
1152 {
1153         ssize_t ret;
1154
1155         mutex_lock(&intel_pstate_driver_lock);
1156         ret = intel_pstate_show_status(buf);
1157         mutex_unlock(&intel_pstate_driver_lock);
1158
1159         return ret;
1160 }
1161
1162 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1163                             const char *buf, size_t count)
1164 {
1165         char *p = memchr(buf, '\n', count);
1166         int ret;
1167
1168         mutex_lock(&intel_pstate_driver_lock);
1169         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1170         mutex_unlock(&intel_pstate_driver_lock);
1171
1172         return ret < 0 ? ret : count;
1173 }
1174
1175 static ssize_t show_turbo_pct(struct kobject *kobj,
1176                                 struct kobj_attribute *attr, char *buf)
1177 {
1178         struct cpudata *cpu;
1179         int total, no_turbo, turbo_pct;
1180         uint32_t turbo_fp;
1181
1182         mutex_lock(&intel_pstate_driver_lock);
1183
1184         if (!intel_pstate_driver) {
1185                 mutex_unlock(&intel_pstate_driver_lock);
1186                 return -EAGAIN;
1187         }
1188
1189         cpu = all_cpu_data[0];
1190
1191         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1192         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1193         turbo_fp = div_fp(no_turbo, total);
1194         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1195
1196         mutex_unlock(&intel_pstate_driver_lock);
1197
1198         return sprintf(buf, "%u\n", turbo_pct);
1199 }
1200
1201 static ssize_t show_num_pstates(struct kobject *kobj,
1202                                 struct kobj_attribute *attr, char *buf)
1203 {
1204         struct cpudata *cpu;
1205         int total;
1206
1207         mutex_lock(&intel_pstate_driver_lock);
1208
1209         if (!intel_pstate_driver) {
1210                 mutex_unlock(&intel_pstate_driver_lock);
1211                 return -EAGAIN;
1212         }
1213
1214         cpu = all_cpu_data[0];
1215         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1216
1217         mutex_unlock(&intel_pstate_driver_lock);
1218
1219         return sprintf(buf, "%u\n", total);
1220 }
1221
1222 static ssize_t show_no_turbo(struct kobject *kobj,
1223                              struct kobj_attribute *attr, char *buf)
1224 {
1225         ssize_t ret;
1226
1227         mutex_lock(&intel_pstate_driver_lock);
1228
1229         if (!intel_pstate_driver) {
1230                 mutex_unlock(&intel_pstate_driver_lock);
1231                 return -EAGAIN;
1232         }
1233
1234         update_turbo_state();
1235         if (global.turbo_disabled)
1236                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1237         else
1238                 ret = sprintf(buf, "%u\n", global.no_turbo);
1239
1240         mutex_unlock(&intel_pstate_driver_lock);
1241
1242         return ret;
1243 }
1244
1245 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1246                               const char *buf, size_t count)
1247 {
1248         unsigned int input;
1249         int ret;
1250
1251         ret = sscanf(buf, "%u", &input);
1252         if (ret != 1)
1253                 return -EINVAL;
1254
1255         mutex_lock(&intel_pstate_driver_lock);
1256
1257         if (!intel_pstate_driver) {
1258                 mutex_unlock(&intel_pstate_driver_lock);
1259                 return -EAGAIN;
1260         }
1261
1262         mutex_lock(&intel_pstate_limits_lock);
1263
1264         update_turbo_state();
1265         if (global.turbo_disabled) {
1266                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1267                 mutex_unlock(&intel_pstate_limits_lock);
1268                 mutex_unlock(&intel_pstate_driver_lock);
1269                 return -EPERM;
1270         }
1271
1272         global.no_turbo = clamp_t(int, input, 0, 1);
1273
1274         if (global.no_turbo) {
1275                 struct cpudata *cpu = all_cpu_data[0];
1276                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1277
1278                 /* Squash the global minimum into the permitted range. */
1279                 if (global.min_perf_pct > pct)
1280                         global.min_perf_pct = pct;
1281         }
1282
1283         mutex_unlock(&intel_pstate_limits_lock);
1284
1285         intel_pstate_update_policies();
1286         arch_set_max_freq_ratio(global.no_turbo);
1287
1288         mutex_unlock(&intel_pstate_driver_lock);
1289
1290         return count;
1291 }
1292
1293 static void update_qos_request(enum freq_qos_req_type type)
1294 {
1295         struct freq_qos_request *req;
1296         struct cpufreq_policy *policy;
1297         int i;
1298
1299         for_each_possible_cpu(i) {
1300                 struct cpudata *cpu = all_cpu_data[i];
1301                 unsigned int freq, perf_pct;
1302
1303                 policy = cpufreq_cpu_get(i);
1304                 if (!policy)
1305                         continue;
1306
1307                 req = policy->driver_data;
1308                 cpufreq_cpu_put(policy);
1309
1310                 if (!req)
1311                         continue;
1312
1313                 if (hwp_active)
1314                         intel_pstate_get_hwp_cap(cpu);
1315
1316                 if (type == FREQ_QOS_MIN) {
1317                         perf_pct = global.min_perf_pct;
1318                 } else {
1319                         req++;
1320                         perf_pct = global.max_perf_pct;
1321                 }
1322
1323                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1324
1325                 if (freq_qos_update_request(req, freq) < 0)
1326                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1327         }
1328 }
1329
1330 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1331                                   const char *buf, size_t count)
1332 {
1333         unsigned int input;
1334         int ret;
1335
1336         ret = sscanf(buf, "%u", &input);
1337         if (ret != 1)
1338                 return -EINVAL;
1339
1340         mutex_lock(&intel_pstate_driver_lock);
1341
1342         if (!intel_pstate_driver) {
1343                 mutex_unlock(&intel_pstate_driver_lock);
1344                 return -EAGAIN;
1345         }
1346
1347         mutex_lock(&intel_pstate_limits_lock);
1348
1349         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1350
1351         mutex_unlock(&intel_pstate_limits_lock);
1352
1353         if (intel_pstate_driver == &intel_pstate)
1354                 intel_pstate_update_policies();
1355         else
1356                 update_qos_request(FREQ_QOS_MAX);
1357
1358         mutex_unlock(&intel_pstate_driver_lock);
1359
1360         return count;
1361 }
1362
1363 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1364                                   const char *buf, size_t count)
1365 {
1366         unsigned int input;
1367         int ret;
1368
1369         ret = sscanf(buf, "%u", &input);
1370         if (ret != 1)
1371                 return -EINVAL;
1372
1373         mutex_lock(&intel_pstate_driver_lock);
1374
1375         if (!intel_pstate_driver) {
1376                 mutex_unlock(&intel_pstate_driver_lock);
1377                 return -EAGAIN;
1378         }
1379
1380         mutex_lock(&intel_pstate_limits_lock);
1381
1382         global.min_perf_pct = clamp_t(int, input,
1383                                       min_perf_pct_min(), global.max_perf_pct);
1384
1385         mutex_unlock(&intel_pstate_limits_lock);
1386
1387         if (intel_pstate_driver == &intel_pstate)
1388                 intel_pstate_update_policies();
1389         else
1390                 update_qos_request(FREQ_QOS_MIN);
1391
1392         mutex_unlock(&intel_pstate_driver_lock);
1393
1394         return count;
1395 }
1396
1397 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1398                                 struct kobj_attribute *attr, char *buf)
1399 {
1400         return sprintf(buf, "%u\n", hwp_boost);
1401 }
1402
1403 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1404                                        struct kobj_attribute *b,
1405                                        const char *buf, size_t count)
1406 {
1407         unsigned int input;
1408         int ret;
1409
1410         ret = kstrtouint(buf, 10, &input);
1411         if (ret)
1412                 return ret;
1413
1414         mutex_lock(&intel_pstate_driver_lock);
1415         hwp_boost = !!input;
1416         intel_pstate_update_policies();
1417         mutex_unlock(&intel_pstate_driver_lock);
1418
1419         return count;
1420 }
1421
1422 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1423                                       char *buf)
1424 {
1425         u64 power_ctl;
1426         int enable;
1427
1428         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1429         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1430         return sprintf(buf, "%d\n", !enable);
1431 }
1432
1433 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1434                                        const char *buf, size_t count)
1435 {
1436         bool input;
1437         int ret;
1438
1439         ret = kstrtobool(buf, &input);
1440         if (ret)
1441                 return ret;
1442
1443         set_power_ctl_ee_state(input);
1444
1445         return count;
1446 }
1447
1448 show_one(max_perf_pct, max_perf_pct);
1449 show_one(min_perf_pct, min_perf_pct);
1450
1451 define_one_global_rw(status);
1452 define_one_global_rw(no_turbo);
1453 define_one_global_rw(max_perf_pct);
1454 define_one_global_rw(min_perf_pct);
1455 define_one_global_ro(turbo_pct);
1456 define_one_global_ro(num_pstates);
1457 define_one_global_rw(hwp_dynamic_boost);
1458 define_one_global_rw(energy_efficiency);
1459
1460 static struct attribute *intel_pstate_attributes[] = {
1461         &status.attr,
1462         &no_turbo.attr,
1463         NULL
1464 };
1465
1466 static const struct attribute_group intel_pstate_attr_group = {
1467         .attrs = intel_pstate_attributes,
1468 };
1469
1470 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1471
1472 static struct kobject *intel_pstate_kobject;
1473
1474 static void __init intel_pstate_sysfs_expose_params(void)
1475 {
1476         int rc;
1477
1478         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1479                                                 &cpu_subsys.dev_root->kobj);
1480         if (WARN_ON(!intel_pstate_kobject))
1481                 return;
1482
1483         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1484         if (WARN_ON(rc))
1485                 return;
1486
1487         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1488                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1489                 WARN_ON(rc);
1490
1491                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1492                 WARN_ON(rc);
1493         }
1494
1495         /*
1496          * If per cpu limits are enforced there are no global limits, so
1497          * return without creating max/min_perf_pct attributes
1498          */
1499         if (per_cpu_limits)
1500                 return;
1501
1502         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1503         WARN_ON(rc);
1504
1505         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1506         WARN_ON(rc);
1507
1508         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1509                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1510                 WARN_ON(rc);
1511         }
1512 }
1513
1514 static void __init intel_pstate_sysfs_remove(void)
1515 {
1516         if (!intel_pstate_kobject)
1517                 return;
1518
1519         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1520
1521         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1522                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1523                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1524         }
1525
1526         if (!per_cpu_limits) {
1527                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1528                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1529
1530                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1531                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1532         }
1533
1534         kobject_put(intel_pstate_kobject);
1535 }
1536
1537 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1538 {
1539         int rc;
1540
1541         if (!hwp_active)
1542                 return;
1543
1544         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1545         WARN_ON_ONCE(rc);
1546 }
1547
1548 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1549 {
1550         if (!hwp_active)
1551                 return;
1552
1553         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1554 }
1555
1556 /************************** sysfs end ************************/
1557
1558 static void intel_pstate_notify_work(struct work_struct *work)
1559 {
1560         struct cpudata *cpudata =
1561                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1562         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1563
1564         if (policy) {
1565                 intel_pstate_get_hwp_cap(cpudata);
1566                 __intel_pstate_update_max_freq(cpudata, policy);
1567
1568                 cpufreq_cpu_release(policy);
1569         }
1570
1571         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1572 }
1573
1574 static DEFINE_SPINLOCK(hwp_notify_lock);
1575 static cpumask_t hwp_intr_enable_mask;
1576
1577 void notify_hwp_interrupt(void)
1578 {
1579         unsigned int this_cpu = smp_processor_id();
1580         struct cpudata *cpudata;
1581         unsigned long flags;
1582         u64 value;
1583
1584         if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1585                 return;
1586
1587         rdmsrl_safe(MSR_HWP_STATUS, &value);
1588         if (!(value & 0x01))
1589                 return;
1590
1591         spin_lock_irqsave(&hwp_notify_lock, flags);
1592
1593         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1594                 goto ack_intr;
1595
1596         /*
1597          * Currently we never free all_cpu_data. And we can't reach here
1598          * without this allocated. But for safety for future changes, added
1599          * check.
1600          */
1601         if (unlikely(!READ_ONCE(all_cpu_data)))
1602                 goto ack_intr;
1603
1604         /*
1605          * The free is done during cleanup, when cpufreq registry is failed.
1606          * We wouldn't be here if it fails on init or switch status. But for
1607          * future changes, added check.
1608          */
1609         cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1610         if (unlikely(!cpudata))
1611                 goto ack_intr;
1612
1613         schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1614
1615         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1616
1617         return;
1618
1619 ack_intr:
1620         wrmsrl_safe(MSR_HWP_STATUS, 0);
1621         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1622 }
1623
1624 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1625 {
1626         unsigned long flags;
1627
1628         if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1629                 return;
1630
1631         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1632         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1633
1634         spin_lock_irqsave(&hwp_notify_lock, flags);
1635         if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1636                 cancel_delayed_work(&cpudata->hwp_notify_work);
1637         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1638 }
1639
1640 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1641 {
1642         /* Enable HWP notification interrupt for guaranteed performance change */
1643         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1644                 unsigned long flags;
1645
1646                 spin_lock_irqsave(&hwp_notify_lock, flags);
1647                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1648                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1649                 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1650
1651                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1652                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1653                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1654         }
1655 }
1656
1657 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1658 {
1659         cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1660
1661         /*
1662          * If this CPU gen doesn't call for change in balance_perf
1663          * EPP return.
1664          */
1665         if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1666                 return;
1667
1668         /*
1669          * If the EPP is set by firmware, which means that firmware enabled HWP
1670          * - Is equal or less than 0x80 (default balance_perf EPP)
1671          * - But less performance oriented than performance EPP
1672          *   then use this as new balance_perf EPP.
1673          */
1674         if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1675             cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1676                 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1677                 return;
1678         }
1679
1680         /*
1681          * Use hard coded value per gen to update the balance_perf
1682          * and default EPP.
1683          */
1684         cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1685         intel_pstate_set_epp(cpudata, cpudata->epp_default);
1686 }
1687
1688 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1689 {
1690         /* First disable HWP notification interrupt till we activate again */
1691         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1692                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1693
1694         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1695
1696         intel_pstate_enable_hwp_interrupt(cpudata);
1697
1698         if (cpudata->epp_default >= 0)
1699                 return;
1700
1701         intel_pstate_update_epp_defaults(cpudata);
1702 }
1703
1704 static int atom_get_min_pstate(int not_used)
1705 {
1706         u64 value;
1707
1708         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1709         return (value >> 8) & 0x7F;
1710 }
1711
1712 static int atom_get_max_pstate(int not_used)
1713 {
1714         u64 value;
1715
1716         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1717         return (value >> 16) & 0x7F;
1718 }
1719
1720 static int atom_get_turbo_pstate(int not_used)
1721 {
1722         u64 value;
1723
1724         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1725         return value & 0x7F;
1726 }
1727
1728 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1729 {
1730         u64 val;
1731         int32_t vid_fp;
1732         u32 vid;
1733
1734         val = (u64)pstate << 8;
1735         if (global.no_turbo && !global.turbo_disabled)
1736                 val |= (u64)1 << 32;
1737
1738         vid_fp = cpudata->vid.min + mul_fp(
1739                 int_tofp(pstate - cpudata->pstate.min_pstate),
1740                 cpudata->vid.ratio);
1741
1742         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1743         vid = ceiling_fp(vid_fp);
1744
1745         if (pstate > cpudata->pstate.max_pstate)
1746                 vid = cpudata->vid.turbo;
1747
1748         return val | vid;
1749 }
1750
1751 static int silvermont_get_scaling(void)
1752 {
1753         u64 value;
1754         int i;
1755         /* Defined in Table 35-6 from SDM (Sept 2015) */
1756         static int silvermont_freq_table[] = {
1757                 83300, 100000, 133300, 116700, 80000};
1758
1759         rdmsrl(MSR_FSB_FREQ, value);
1760         i = value & 0x7;
1761         WARN_ON(i > 4);
1762
1763         return silvermont_freq_table[i];
1764 }
1765
1766 static int airmont_get_scaling(void)
1767 {
1768         u64 value;
1769         int i;
1770         /* Defined in Table 35-10 from SDM (Sept 2015) */
1771         static int airmont_freq_table[] = {
1772                 83300, 100000, 133300, 116700, 80000,
1773                 93300, 90000, 88900, 87500};
1774
1775         rdmsrl(MSR_FSB_FREQ, value);
1776         i = value & 0xF;
1777         WARN_ON(i > 8);
1778
1779         return airmont_freq_table[i];
1780 }
1781
1782 static void atom_get_vid(struct cpudata *cpudata)
1783 {
1784         u64 value;
1785
1786         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1787         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1788         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1789         cpudata->vid.ratio = div_fp(
1790                 cpudata->vid.max - cpudata->vid.min,
1791                 int_tofp(cpudata->pstate.max_pstate -
1792                         cpudata->pstate.min_pstate));
1793
1794         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1795         cpudata->vid.turbo = value & 0x7f;
1796 }
1797
1798 static int core_get_min_pstate(int cpu)
1799 {
1800         u64 value;
1801
1802         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1803         return (value >> 40) & 0xFF;
1804 }
1805
1806 static int core_get_max_pstate_physical(int cpu)
1807 {
1808         u64 value;
1809
1810         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1811         return (value >> 8) & 0xFF;
1812 }
1813
1814 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1815 {
1816         /* Check how many TDP levels present */
1817         if (plat_info & 0x600000000) {
1818                 u64 tdp_ctrl;
1819                 u64 tdp_ratio;
1820                 int tdp_msr;
1821                 int err;
1822
1823                 /* Get the TDP level (0, 1, 2) to get ratios */
1824                 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1825                 if (err)
1826                         return err;
1827
1828                 /* TDP MSR are continuous starting at 0x648 */
1829                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1830                 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1831                 if (err)
1832                         return err;
1833
1834                 /* For level 1 and 2, bits[23:16] contain the ratio */
1835                 if (tdp_ctrl & 0x03)
1836                         tdp_ratio >>= 16;
1837
1838                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1839                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1840
1841                 return (int)tdp_ratio;
1842         }
1843
1844         return -ENXIO;
1845 }
1846
1847 static int core_get_max_pstate(int cpu)
1848 {
1849         u64 tar;
1850         u64 plat_info;
1851         int max_pstate;
1852         int tdp_ratio;
1853         int err;
1854
1855         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1856         max_pstate = (plat_info >> 8) & 0xFF;
1857
1858         tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1859         if (tdp_ratio <= 0)
1860                 return max_pstate;
1861
1862         if (hwp_active) {
1863                 /* Turbo activation ratio is not used on HWP platforms */
1864                 return tdp_ratio;
1865         }
1866
1867         err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1868         if (!err) {
1869                 int tar_levels;
1870
1871                 /* Do some sanity checking for safety */
1872                 tar_levels = tar & 0xff;
1873                 if (tdp_ratio - 1 == tar_levels) {
1874                         max_pstate = tar_levels;
1875                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1876                 }
1877         }
1878
1879         return max_pstate;
1880 }
1881
1882 static int core_get_turbo_pstate(int cpu)
1883 {
1884         u64 value;
1885         int nont, ret;
1886
1887         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1888         nont = core_get_max_pstate(cpu);
1889         ret = (value) & 255;
1890         if (ret <= nont)
1891                 ret = nont;
1892         return ret;
1893 }
1894
1895 static inline int core_get_scaling(void)
1896 {
1897         return 100000;
1898 }
1899
1900 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1901 {
1902         u64 val;
1903
1904         val = (u64)pstate << 8;
1905         if (global.no_turbo && !global.turbo_disabled)
1906                 val |= (u64)1 << 32;
1907
1908         return val;
1909 }
1910
1911 static int knl_get_aperf_mperf_shift(void)
1912 {
1913         return 10;
1914 }
1915
1916 static int knl_get_turbo_pstate(int cpu)
1917 {
1918         u64 value;
1919         int nont, ret;
1920
1921         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1922         nont = core_get_max_pstate(cpu);
1923         ret = (((value) >> 8) & 0xFF);
1924         if (ret <= nont)
1925                 ret = nont;
1926         return ret;
1927 }
1928
1929 static void hybrid_get_type(void *data)
1930 {
1931         u8 *cpu_type = data;
1932
1933         *cpu_type = get_this_hybrid_cpu_type();
1934 }
1935
1936 static int hybrid_get_cpu_scaling(int cpu)
1937 {
1938         u8 cpu_type = 0;
1939
1940         smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1941         /* P-cores have a smaller perf level-to-freqency scaling factor. */
1942         if (cpu_type == 0x40)
1943                 return 78741;
1944
1945         return core_get_scaling();
1946 }
1947
1948 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1949 {
1950         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1951         cpu->pstate.current_pstate = pstate;
1952         /*
1953          * Generally, there is no guarantee that this code will always run on
1954          * the CPU being updated, so force the register update to run on the
1955          * right CPU.
1956          */
1957         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1958                       pstate_funcs.get_val(cpu, pstate));
1959 }
1960
1961 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1962 {
1963         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1964 }
1965
1966 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1967 {
1968         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1969
1970         update_turbo_state();
1971         intel_pstate_set_pstate(cpu, pstate);
1972 }
1973
1974 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1975 {
1976         int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
1977         int perf_ctl_scaling = pstate_funcs.get_scaling();
1978
1979         cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
1980         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1981         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1982
1983         if (hwp_active && !hwp_mode_bdw) {
1984                 __intel_pstate_get_hwp_cap(cpu);
1985
1986                 if (pstate_funcs.get_cpu_scaling) {
1987                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1988                         if (cpu->pstate.scaling != perf_ctl_scaling)
1989                                 intel_pstate_hybrid_hwp_adjust(cpu);
1990                 } else {
1991                         cpu->pstate.scaling = perf_ctl_scaling;
1992                 }
1993         } else {
1994                 cpu->pstate.scaling = perf_ctl_scaling;
1995                 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
1996                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
1997         }
1998
1999         if (cpu->pstate.scaling == perf_ctl_scaling) {
2000                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2001                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2002                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2003         }
2004
2005         if (pstate_funcs.get_aperf_mperf_shift)
2006                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2007
2008         if (pstate_funcs.get_vid)
2009                 pstate_funcs.get_vid(cpu);
2010
2011         intel_pstate_set_min_pstate(cpu);
2012 }
2013
2014 /*
2015  * Long hold time will keep high perf limits for long time,
2016  * which negatively impacts perf/watt for some workloads,
2017  * like specpower. 3ms is based on experiements on some
2018  * workoads.
2019  */
2020 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2021
2022 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2023 {
2024         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2025         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2026         u32 max_limit = (hwp_req & 0xff00) >> 8;
2027         u32 min_limit = (hwp_req & 0xff);
2028         u32 boost_level1;
2029
2030         /*
2031          * Cases to consider (User changes via sysfs or boot time):
2032          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2033          *      No boost, return.
2034          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2035          *     Should result in one level boost only for P0.
2036          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2037          *     Should result in two level boost:
2038          *         (min + p1)/2 and P1.
2039          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2040          *     Should result in three level boost:
2041          *        (min + p1)/2, P1 and P0.
2042          */
2043
2044         /* If max and min are equal or already at max, nothing to boost */
2045         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2046                 return;
2047
2048         if (!cpu->hwp_boost_min)
2049                 cpu->hwp_boost_min = min_limit;
2050
2051         /* level at half way mark between min and guranteed */
2052         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2053
2054         if (cpu->hwp_boost_min < boost_level1)
2055                 cpu->hwp_boost_min = boost_level1;
2056         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2057                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2058         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2059                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2060                 cpu->hwp_boost_min = max_limit;
2061         else
2062                 return;
2063
2064         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2065         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2066         cpu->last_update = cpu->sample.time;
2067 }
2068
2069 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2070 {
2071         if (cpu->hwp_boost_min) {
2072                 bool expired;
2073
2074                 /* Check if we are idle for hold time to boost down */
2075                 expired = time_after64(cpu->sample.time, cpu->last_update +
2076                                        hwp_boost_hold_time_ns);
2077                 if (expired) {
2078                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2079                         cpu->hwp_boost_min = 0;
2080                 }
2081         }
2082         cpu->last_update = cpu->sample.time;
2083 }
2084
2085 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2086                                                       u64 time)
2087 {
2088         cpu->sample.time = time;
2089
2090         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2091                 bool do_io = false;
2092
2093                 cpu->sched_flags = 0;
2094                 /*
2095                  * Set iowait_boost flag and update time. Since IO WAIT flag
2096                  * is set all the time, we can't just conclude that there is
2097                  * some IO bound activity is scheduled on this CPU with just
2098                  * one occurrence. If we receive at least two in two
2099                  * consecutive ticks, then we treat as boost candidate.
2100                  */
2101                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2102                         do_io = true;
2103
2104                 cpu->last_io_update = time;
2105
2106                 if (do_io)
2107                         intel_pstate_hwp_boost_up(cpu);
2108
2109         } else {
2110                 intel_pstate_hwp_boost_down(cpu);
2111         }
2112 }
2113
2114 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2115                                                 u64 time, unsigned int flags)
2116 {
2117         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2118
2119         cpu->sched_flags |= flags;
2120
2121         if (smp_processor_id() == cpu->cpu)
2122                 intel_pstate_update_util_hwp_local(cpu, time);
2123 }
2124
2125 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2126 {
2127         struct sample *sample = &cpu->sample;
2128
2129         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2130 }
2131
2132 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2133 {
2134         u64 aperf, mperf;
2135         unsigned long flags;
2136         u64 tsc;
2137
2138         local_irq_save(flags);
2139         rdmsrl(MSR_IA32_APERF, aperf);
2140         rdmsrl(MSR_IA32_MPERF, mperf);
2141         tsc = rdtsc();
2142         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2143                 local_irq_restore(flags);
2144                 return false;
2145         }
2146         local_irq_restore(flags);
2147
2148         cpu->last_sample_time = cpu->sample.time;
2149         cpu->sample.time = time;
2150         cpu->sample.aperf = aperf;
2151         cpu->sample.mperf = mperf;
2152         cpu->sample.tsc =  tsc;
2153         cpu->sample.aperf -= cpu->prev_aperf;
2154         cpu->sample.mperf -= cpu->prev_mperf;
2155         cpu->sample.tsc -= cpu->prev_tsc;
2156
2157         cpu->prev_aperf = aperf;
2158         cpu->prev_mperf = mperf;
2159         cpu->prev_tsc = tsc;
2160         /*
2161          * First time this function is invoked in a given cycle, all of the
2162          * previous sample data fields are equal to zero or stale and they must
2163          * be populated with meaningful numbers for things to work, so assume
2164          * that sample.time will always be reset before setting the utilization
2165          * update hook and make the caller skip the sample then.
2166          */
2167         if (cpu->last_sample_time) {
2168                 intel_pstate_calc_avg_perf(cpu);
2169                 return true;
2170         }
2171         return false;
2172 }
2173
2174 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2175 {
2176         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2177 }
2178
2179 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2180 {
2181         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2182                           cpu->sample.core_avg_perf);
2183 }
2184
2185 static inline int32_t get_target_pstate(struct cpudata *cpu)
2186 {
2187         struct sample *sample = &cpu->sample;
2188         int32_t busy_frac;
2189         int target, avg_pstate;
2190
2191         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2192                            sample->tsc);
2193
2194         if (busy_frac < cpu->iowait_boost)
2195                 busy_frac = cpu->iowait_boost;
2196
2197         sample->busy_scaled = busy_frac * 100;
2198
2199         target = global.no_turbo || global.turbo_disabled ?
2200                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2201         target += target >> 2;
2202         target = mul_fp(target, busy_frac);
2203         if (target < cpu->pstate.min_pstate)
2204                 target = cpu->pstate.min_pstate;
2205
2206         /*
2207          * If the average P-state during the previous cycle was higher than the
2208          * current target, add 50% of the difference to the target to reduce
2209          * possible performance oscillations and offset possible performance
2210          * loss related to moving the workload from one CPU to another within
2211          * a package/module.
2212          */
2213         avg_pstate = get_avg_pstate(cpu);
2214         if (avg_pstate > target)
2215                 target += (avg_pstate - target) >> 1;
2216
2217         return target;
2218 }
2219
2220 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2221 {
2222         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2223         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2224
2225         return clamp_t(int, pstate, min_pstate, max_pstate);
2226 }
2227
2228 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2229 {
2230         if (pstate == cpu->pstate.current_pstate)
2231                 return;
2232
2233         cpu->pstate.current_pstate = pstate;
2234         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2235 }
2236
2237 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2238 {
2239         int from = cpu->pstate.current_pstate;
2240         struct sample *sample;
2241         int target_pstate;
2242
2243         update_turbo_state();
2244
2245         target_pstate = get_target_pstate(cpu);
2246         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2247         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2248         intel_pstate_update_pstate(cpu, target_pstate);
2249
2250         sample = &cpu->sample;
2251         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2252                 fp_toint(sample->busy_scaled),
2253                 from,
2254                 cpu->pstate.current_pstate,
2255                 sample->mperf,
2256                 sample->aperf,
2257                 sample->tsc,
2258                 get_avg_frequency(cpu),
2259                 fp_toint(cpu->iowait_boost * 100));
2260 }
2261
2262 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2263                                      unsigned int flags)
2264 {
2265         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2266         u64 delta_ns;
2267
2268         /* Don't allow remote callbacks */
2269         if (smp_processor_id() != cpu->cpu)
2270                 return;
2271
2272         delta_ns = time - cpu->last_update;
2273         if (flags & SCHED_CPUFREQ_IOWAIT) {
2274                 /* Start over if the CPU may have been idle. */
2275                 if (delta_ns > TICK_NSEC) {
2276                         cpu->iowait_boost = ONE_EIGHTH_FP;
2277                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2278                         cpu->iowait_boost <<= 1;
2279                         if (cpu->iowait_boost > int_tofp(1))
2280                                 cpu->iowait_boost = int_tofp(1);
2281                 } else {
2282                         cpu->iowait_boost = ONE_EIGHTH_FP;
2283                 }
2284         } else if (cpu->iowait_boost) {
2285                 /* Clear iowait_boost if the CPU may have been idle. */
2286                 if (delta_ns > TICK_NSEC)
2287                         cpu->iowait_boost = 0;
2288                 else
2289                         cpu->iowait_boost >>= 1;
2290         }
2291         cpu->last_update = time;
2292         delta_ns = time - cpu->sample.time;
2293         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2294                 return;
2295
2296         if (intel_pstate_sample(cpu, time))
2297                 intel_pstate_adjust_pstate(cpu);
2298 }
2299
2300 static struct pstate_funcs core_funcs = {
2301         .get_max = core_get_max_pstate,
2302         .get_max_physical = core_get_max_pstate_physical,
2303         .get_min = core_get_min_pstate,
2304         .get_turbo = core_get_turbo_pstate,
2305         .get_scaling = core_get_scaling,
2306         .get_val = core_get_val,
2307 };
2308
2309 static const struct pstate_funcs silvermont_funcs = {
2310         .get_max = atom_get_max_pstate,
2311         .get_max_physical = atom_get_max_pstate,
2312         .get_min = atom_get_min_pstate,
2313         .get_turbo = atom_get_turbo_pstate,
2314         .get_val = atom_get_val,
2315         .get_scaling = silvermont_get_scaling,
2316         .get_vid = atom_get_vid,
2317 };
2318
2319 static const struct pstate_funcs airmont_funcs = {
2320         .get_max = atom_get_max_pstate,
2321         .get_max_physical = atom_get_max_pstate,
2322         .get_min = atom_get_min_pstate,
2323         .get_turbo = atom_get_turbo_pstate,
2324         .get_val = atom_get_val,
2325         .get_scaling = airmont_get_scaling,
2326         .get_vid = atom_get_vid,
2327 };
2328
2329 static const struct pstate_funcs knl_funcs = {
2330         .get_max = core_get_max_pstate,
2331         .get_max_physical = core_get_max_pstate_physical,
2332         .get_min = core_get_min_pstate,
2333         .get_turbo = knl_get_turbo_pstate,
2334         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2335         .get_scaling = core_get_scaling,
2336         .get_val = core_get_val,
2337 };
2338
2339 #define X86_MATCH(model, policy)                                         \
2340         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2341                                            X86_FEATURE_APERFMPERF, &policy)
2342
2343 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2344         X86_MATCH(SANDYBRIDGE,          core_funcs),
2345         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2346         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2347         X86_MATCH(IVYBRIDGE,            core_funcs),
2348         X86_MATCH(HASWELL,              core_funcs),
2349         X86_MATCH(BROADWELL,            core_funcs),
2350         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2351         X86_MATCH(HASWELL_X,            core_funcs),
2352         X86_MATCH(HASWELL_L,            core_funcs),
2353         X86_MATCH(HASWELL_G,            core_funcs),
2354         X86_MATCH(BROADWELL_G,          core_funcs),
2355         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2356         X86_MATCH(SKYLAKE_L,            core_funcs),
2357         X86_MATCH(BROADWELL_X,          core_funcs),
2358         X86_MATCH(SKYLAKE,              core_funcs),
2359         X86_MATCH(BROADWELL_D,          core_funcs),
2360         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2361         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2362         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2363         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2364         X86_MATCH(SKYLAKE_X,            core_funcs),
2365         X86_MATCH(COMETLAKE,            core_funcs),
2366         X86_MATCH(ICELAKE_X,            core_funcs),
2367         X86_MATCH(TIGERLAKE,            core_funcs),
2368         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2369         {}
2370 };
2371 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2372
2373 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2374         X86_MATCH(BROADWELL_D,          core_funcs),
2375         X86_MATCH(BROADWELL_X,          core_funcs),
2376         X86_MATCH(SKYLAKE_X,            core_funcs),
2377         X86_MATCH(ICELAKE_X,            core_funcs),
2378         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2379         {}
2380 };
2381
2382 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2383         X86_MATCH(KABYLAKE,             core_funcs),
2384         {}
2385 };
2386
2387 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2388         X86_MATCH(SKYLAKE_X,            core_funcs),
2389         X86_MATCH(SKYLAKE,              core_funcs),
2390         {}
2391 };
2392
2393 static int intel_pstate_init_cpu(unsigned int cpunum)
2394 {
2395         struct cpudata *cpu;
2396
2397         cpu = all_cpu_data[cpunum];
2398
2399         if (!cpu) {
2400                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2401                 if (!cpu)
2402                         return -ENOMEM;
2403
2404                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2405
2406                 cpu->cpu = cpunum;
2407
2408                 cpu->epp_default = -EINVAL;
2409
2410                 if (hwp_active) {
2411                         const struct x86_cpu_id *id;
2412
2413                         intel_pstate_hwp_enable(cpu);
2414
2415                         id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2416                         if (id && intel_pstate_acpi_pm_profile_server())
2417                                 hwp_boost = true;
2418                 }
2419         } else if (hwp_active) {
2420                 /*
2421                  * Re-enable HWP in case this happens after a resume from ACPI
2422                  * S3 if the CPU was offline during the whole system/resume
2423                  * cycle.
2424                  */
2425                 intel_pstate_hwp_reenable(cpu);
2426         }
2427
2428         cpu->epp_powersave = -EINVAL;
2429         cpu->epp_policy = 0;
2430
2431         intel_pstate_get_cpu_pstates(cpu);
2432
2433         pr_debug("controlling: cpu %d\n", cpunum);
2434
2435         return 0;
2436 }
2437
2438 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2439 {
2440         struct cpudata *cpu = all_cpu_data[cpu_num];
2441
2442         if (hwp_active && !hwp_boost)
2443                 return;
2444
2445         if (cpu->update_util_set)
2446                 return;
2447
2448         /* Prevent intel_pstate_update_util() from using stale data. */
2449         cpu->sample.time = 0;
2450         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2451                                      (hwp_active ?
2452                                       intel_pstate_update_util_hwp :
2453                                       intel_pstate_update_util));
2454         cpu->update_util_set = true;
2455 }
2456
2457 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2458 {
2459         struct cpudata *cpu_data = all_cpu_data[cpu];
2460
2461         if (!cpu_data->update_util_set)
2462                 return;
2463
2464         cpufreq_remove_update_util_hook(cpu);
2465         cpu_data->update_util_set = false;
2466         synchronize_rcu();
2467 }
2468
2469 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2470 {
2471         return global.turbo_disabled || global.no_turbo ?
2472                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2473 }
2474
2475 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2476                                             unsigned int policy_min,
2477                                             unsigned int policy_max)
2478 {
2479         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2480         int32_t max_policy_perf, min_policy_perf;
2481
2482         max_policy_perf = policy_max / perf_ctl_scaling;
2483         if (policy_max == policy_min) {
2484                 min_policy_perf = max_policy_perf;
2485         } else {
2486                 min_policy_perf = policy_min / perf_ctl_scaling;
2487                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2488                                           0, max_policy_perf);
2489         }
2490
2491         /*
2492          * HWP needs some special consideration, because HWP_REQUEST uses
2493          * abstract values to represent performance rather than pure ratios.
2494          */
2495         if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2496                 int scaling = cpu->pstate.scaling;
2497                 int freq;
2498
2499                 freq = max_policy_perf * perf_ctl_scaling;
2500                 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2501                 freq = min_policy_perf * perf_ctl_scaling;
2502                 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2503         }
2504
2505         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2506                  cpu->cpu, min_policy_perf, max_policy_perf);
2507
2508         /* Normalize user input to [min_perf, max_perf] */
2509         if (per_cpu_limits) {
2510                 cpu->min_perf_ratio = min_policy_perf;
2511                 cpu->max_perf_ratio = max_policy_perf;
2512         } else {
2513                 int turbo_max = cpu->pstate.turbo_pstate;
2514                 int32_t global_min, global_max;
2515
2516                 /* Global limits are in percent of the maximum turbo P-state. */
2517                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2518                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2519                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2520
2521                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2522                          global_min, global_max);
2523
2524                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2525                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2526                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2527                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2528
2529                 /* Make sure min_perf <= max_perf */
2530                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2531                                           cpu->max_perf_ratio);
2532
2533         }
2534         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2535                  cpu->max_perf_ratio,
2536                  cpu->min_perf_ratio);
2537 }
2538
2539 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2540 {
2541         struct cpudata *cpu;
2542
2543         if (!policy->cpuinfo.max_freq)
2544                 return -ENODEV;
2545
2546         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2547                  policy->cpuinfo.max_freq, policy->max);
2548
2549         cpu = all_cpu_data[policy->cpu];
2550         cpu->policy = policy->policy;
2551
2552         mutex_lock(&intel_pstate_limits_lock);
2553
2554         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2555
2556         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2557                 /*
2558                  * NOHZ_FULL CPUs need this as the governor callback may not
2559                  * be invoked on them.
2560                  */
2561                 intel_pstate_clear_update_util_hook(policy->cpu);
2562                 intel_pstate_max_within_limits(cpu);
2563         } else {
2564                 intel_pstate_set_update_util_hook(policy->cpu);
2565         }
2566
2567         if (hwp_active) {
2568                 /*
2569                  * When hwp_boost was active before and dynamically it
2570                  * was turned off, in that case we need to clear the
2571                  * update util hook.
2572                  */
2573                 if (!hwp_boost)
2574                         intel_pstate_clear_update_util_hook(policy->cpu);
2575                 intel_pstate_hwp_set(policy->cpu);
2576         }
2577
2578         mutex_unlock(&intel_pstate_limits_lock);
2579
2580         return 0;
2581 }
2582
2583 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2584                                            struct cpufreq_policy_data *policy)
2585 {
2586         if (!hwp_active &&
2587             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2588             policy->max < policy->cpuinfo.max_freq &&
2589             policy->max > cpu->pstate.max_freq) {
2590                 pr_debug("policy->max > max non turbo frequency\n");
2591                 policy->max = policy->cpuinfo.max_freq;
2592         }
2593 }
2594
2595 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2596                                            struct cpufreq_policy_data *policy)
2597 {
2598         int max_freq;
2599
2600         update_turbo_state();
2601         if (hwp_active) {
2602                 intel_pstate_get_hwp_cap(cpu);
2603                 max_freq = global.no_turbo || global.turbo_disabled ?
2604                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2605         } else {
2606                 max_freq = intel_pstate_get_max_freq(cpu);
2607         }
2608         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2609
2610         intel_pstate_adjust_policy_max(cpu, policy);
2611 }
2612
2613 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2614 {
2615         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2616
2617         return 0;
2618 }
2619
2620 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2621 {
2622         struct cpudata *cpu = all_cpu_data[policy->cpu];
2623
2624         pr_debug("CPU %d going offline\n", cpu->cpu);
2625
2626         if (cpu->suspended)
2627                 return 0;
2628
2629         /*
2630          * If the CPU is an SMT thread and it goes offline with the performance
2631          * settings different from the minimum, it will prevent its sibling
2632          * from getting to lower performance levels, so force the minimum
2633          * performance on CPU offline to prevent that from happening.
2634          */
2635         if (hwp_active)
2636                 intel_pstate_hwp_offline(cpu);
2637         else
2638                 intel_pstate_set_min_pstate(cpu);
2639
2640         intel_pstate_exit_perf_limits(policy);
2641
2642         return 0;
2643 }
2644
2645 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2646 {
2647         struct cpudata *cpu = all_cpu_data[policy->cpu];
2648
2649         pr_debug("CPU %d going online\n", cpu->cpu);
2650
2651         intel_pstate_init_acpi_perf_limits(policy);
2652
2653         if (hwp_active) {
2654                 /*
2655                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2656                  * know that it need not do that.
2657                  */
2658                 intel_pstate_hwp_reenable(cpu);
2659                 cpu->suspended = false;
2660         }
2661
2662         return 0;
2663 }
2664
2665 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2666 {
2667         intel_pstate_clear_update_util_hook(policy->cpu);
2668
2669         return intel_cpufreq_cpu_offline(policy);
2670 }
2671
2672 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2673 {
2674         pr_debug("CPU %d exiting\n", policy->cpu);
2675
2676         policy->fast_switch_possible = false;
2677
2678         return 0;
2679 }
2680
2681 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2682 {
2683         struct cpudata *cpu;
2684         int rc;
2685
2686         rc = intel_pstate_init_cpu(policy->cpu);
2687         if (rc)
2688                 return rc;
2689
2690         cpu = all_cpu_data[policy->cpu];
2691
2692         cpu->max_perf_ratio = 0xFF;
2693         cpu->min_perf_ratio = 0;
2694
2695         /* cpuinfo and default policy values */
2696         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2697         update_turbo_state();
2698         global.turbo_disabled_mf = global.turbo_disabled;
2699         policy->cpuinfo.max_freq = global.turbo_disabled ?
2700                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2701
2702         policy->min = policy->cpuinfo.min_freq;
2703         policy->max = policy->cpuinfo.max_freq;
2704
2705         intel_pstate_init_acpi_perf_limits(policy);
2706
2707         policy->fast_switch_possible = true;
2708
2709         return 0;
2710 }
2711
2712 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2713 {
2714         int ret = __intel_pstate_cpu_init(policy);
2715
2716         if (ret)
2717                 return ret;
2718
2719         /*
2720          * Set the policy to powersave to provide a valid fallback value in case
2721          * the default cpufreq governor is neither powersave nor performance.
2722          */
2723         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2724
2725         if (hwp_active) {
2726                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2727
2728                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2729         }
2730
2731         return 0;
2732 }
2733
2734 static struct cpufreq_driver intel_pstate = {
2735         .flags          = CPUFREQ_CONST_LOOPS,
2736         .verify         = intel_pstate_verify_policy,
2737         .setpolicy      = intel_pstate_set_policy,
2738         .suspend        = intel_pstate_suspend,
2739         .resume         = intel_pstate_resume,
2740         .init           = intel_pstate_cpu_init,
2741         .exit           = intel_pstate_cpu_exit,
2742         .offline        = intel_pstate_cpu_offline,
2743         .online         = intel_pstate_cpu_online,
2744         .update_limits  = intel_pstate_update_limits,
2745         .name           = "intel_pstate",
2746 };
2747
2748 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2749 {
2750         struct cpudata *cpu = all_cpu_data[policy->cpu];
2751
2752         intel_pstate_verify_cpu_policy(cpu, policy);
2753         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2754
2755         return 0;
2756 }
2757
2758 /* Use of trace in passive mode:
2759  *
2760  * In passive mode the trace core_busy field (also known as the
2761  * performance field, and lablelled as such on the graphs; also known as
2762  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2763  * driver call was via the normal or fast switch path. Various graphs
2764  * output from the intel_pstate_tracer.py utility that include core_busy
2765  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2766  * so we use 10 to indicate the normal path through the driver, and
2767  * 90 to indicate the fast switch path through the driver.
2768  * The scaled_busy field is not used, and is set to 0.
2769  */
2770
2771 #define INTEL_PSTATE_TRACE_TARGET 10
2772 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2773
2774 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2775 {
2776         struct sample *sample;
2777
2778         if (!trace_pstate_sample_enabled())
2779                 return;
2780
2781         if (!intel_pstate_sample(cpu, ktime_get()))
2782                 return;
2783
2784         sample = &cpu->sample;
2785         trace_pstate_sample(trace_type,
2786                 0,
2787                 old_pstate,
2788                 cpu->pstate.current_pstate,
2789                 sample->mperf,
2790                 sample->aperf,
2791                 sample->tsc,
2792                 get_avg_frequency(cpu),
2793                 fp_toint(cpu->iowait_boost * 100));
2794 }
2795
2796 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2797                                      u32 desired, bool fast_switch)
2798 {
2799         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2800
2801         value &= ~HWP_MIN_PERF(~0L);
2802         value |= HWP_MIN_PERF(min);
2803
2804         value &= ~HWP_MAX_PERF(~0L);
2805         value |= HWP_MAX_PERF(max);
2806
2807         value &= ~HWP_DESIRED_PERF(~0L);
2808         value |= HWP_DESIRED_PERF(desired);
2809
2810         if (value == prev)
2811                 return;
2812
2813         WRITE_ONCE(cpu->hwp_req_cached, value);
2814         if (fast_switch)
2815                 wrmsrl(MSR_HWP_REQUEST, value);
2816         else
2817                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2818 }
2819
2820 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2821                                           u32 target_pstate, bool fast_switch)
2822 {
2823         if (fast_switch)
2824                 wrmsrl(MSR_IA32_PERF_CTL,
2825                        pstate_funcs.get_val(cpu, target_pstate));
2826         else
2827                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2828                               pstate_funcs.get_val(cpu, target_pstate));
2829 }
2830
2831 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2832                                        int target_pstate, bool fast_switch)
2833 {
2834         struct cpudata *cpu = all_cpu_data[policy->cpu];
2835         int old_pstate = cpu->pstate.current_pstate;
2836
2837         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2838         if (hwp_active) {
2839                 int max_pstate = policy->strict_target ?
2840                                         target_pstate : cpu->max_perf_ratio;
2841
2842                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2843                                          fast_switch);
2844         } else if (target_pstate != old_pstate) {
2845                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2846         }
2847
2848         cpu->pstate.current_pstate = target_pstate;
2849
2850         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2851                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2852
2853         return target_pstate;
2854 }
2855
2856 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2857                                 unsigned int target_freq,
2858                                 unsigned int relation)
2859 {
2860         struct cpudata *cpu = all_cpu_data[policy->cpu];
2861         struct cpufreq_freqs freqs;
2862         int target_pstate;
2863
2864         update_turbo_state();
2865
2866         freqs.old = policy->cur;
2867         freqs.new = target_freq;
2868
2869         cpufreq_freq_transition_begin(policy, &freqs);
2870
2871         switch (relation) {
2872         case CPUFREQ_RELATION_L:
2873                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2874                 break;
2875         case CPUFREQ_RELATION_H:
2876                 target_pstate = freqs.new / cpu->pstate.scaling;
2877                 break;
2878         default:
2879                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2880                 break;
2881         }
2882
2883         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2884
2885         freqs.new = target_pstate * cpu->pstate.scaling;
2886
2887         cpufreq_freq_transition_end(policy, &freqs, false);
2888
2889         return 0;
2890 }
2891
2892 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2893                                               unsigned int target_freq)
2894 {
2895         struct cpudata *cpu = all_cpu_data[policy->cpu];
2896         int target_pstate;
2897
2898         update_turbo_state();
2899
2900         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2901
2902         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2903
2904         return target_pstate * cpu->pstate.scaling;
2905 }
2906
2907 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2908                                       unsigned long min_perf,
2909                                       unsigned long target_perf,
2910                                       unsigned long capacity)
2911 {
2912         struct cpudata *cpu = all_cpu_data[cpunum];
2913         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2914         int old_pstate = cpu->pstate.current_pstate;
2915         int cap_pstate, min_pstate, max_pstate, target_pstate;
2916
2917         update_turbo_state();
2918         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2919                                              HWP_HIGHEST_PERF(hwp_cap);
2920
2921         /* Optimization: Avoid unnecessary divisions. */
2922
2923         target_pstate = cap_pstate;
2924         if (target_perf < capacity)
2925                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2926
2927         min_pstate = cap_pstate;
2928         if (min_perf < capacity)
2929                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2930
2931         if (min_pstate < cpu->pstate.min_pstate)
2932                 min_pstate = cpu->pstate.min_pstate;
2933
2934         if (min_pstate < cpu->min_perf_ratio)
2935                 min_pstate = cpu->min_perf_ratio;
2936
2937         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2938         if (max_pstate < min_pstate)
2939                 max_pstate = min_pstate;
2940
2941         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2942
2943         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2944
2945         cpu->pstate.current_pstate = target_pstate;
2946         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2947 }
2948
2949 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2950 {
2951         struct freq_qos_request *req;
2952         struct cpudata *cpu;
2953         struct device *dev;
2954         int ret, freq;
2955
2956         dev = get_cpu_device(policy->cpu);
2957         if (!dev)
2958                 return -ENODEV;
2959
2960         ret = __intel_pstate_cpu_init(policy);
2961         if (ret)
2962                 return ret;
2963
2964         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2965         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2966         policy->cur = policy->cpuinfo.min_freq;
2967
2968         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2969         if (!req) {
2970                 ret = -ENOMEM;
2971                 goto pstate_exit;
2972         }
2973
2974         cpu = all_cpu_data[policy->cpu];
2975
2976         if (hwp_active) {
2977                 u64 value;
2978
2979                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2980
2981                 intel_pstate_get_hwp_cap(cpu);
2982
2983                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2984                 WRITE_ONCE(cpu->hwp_req_cached, value);
2985
2986                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2987         } else {
2988                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2989         }
2990
2991         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2992
2993         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2994                                    freq);
2995         if (ret < 0) {
2996                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2997                 goto free_req;
2998         }
2999
3000         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3001
3002         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3003                                    freq);
3004         if (ret < 0) {
3005                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3006                 goto remove_min_req;
3007         }
3008
3009         policy->driver_data = req;
3010
3011         return 0;
3012
3013 remove_min_req:
3014         freq_qos_remove_request(req);
3015 free_req:
3016         kfree(req);
3017 pstate_exit:
3018         intel_pstate_exit_perf_limits(policy);
3019
3020         return ret;
3021 }
3022
3023 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3024 {
3025         struct freq_qos_request *req;
3026
3027         req = policy->driver_data;
3028
3029         freq_qos_remove_request(req + 1);
3030         freq_qos_remove_request(req);
3031         kfree(req);
3032
3033         return intel_pstate_cpu_exit(policy);
3034 }
3035
3036 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3037 {
3038         intel_pstate_suspend(policy);
3039
3040         if (hwp_active) {
3041                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3042                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3043
3044                 /*
3045                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3046                  * intel_cpufreq_adjust_perf() is in use and the last value
3047                  * written by it may not be suitable.
3048                  */
3049                 value &= ~HWP_DESIRED_PERF(~0L);
3050                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3051                 WRITE_ONCE(cpu->hwp_req_cached, value);
3052         }
3053
3054         return 0;
3055 }
3056
3057 static struct cpufreq_driver intel_cpufreq = {
3058         .flags          = CPUFREQ_CONST_LOOPS,
3059         .verify         = intel_cpufreq_verify_policy,
3060         .target         = intel_cpufreq_target,
3061         .fast_switch    = intel_cpufreq_fast_switch,
3062         .init           = intel_cpufreq_cpu_init,
3063         .exit           = intel_cpufreq_cpu_exit,
3064         .offline        = intel_cpufreq_cpu_offline,
3065         .online         = intel_pstate_cpu_online,
3066         .suspend        = intel_cpufreq_suspend,
3067         .resume         = intel_pstate_resume,
3068         .update_limits  = intel_pstate_update_limits,
3069         .name           = "intel_cpufreq",
3070 };
3071
3072 static struct cpufreq_driver *default_driver;
3073
3074 static void intel_pstate_driver_cleanup(void)
3075 {
3076         unsigned int cpu;
3077
3078         cpus_read_lock();
3079         for_each_online_cpu(cpu) {
3080                 if (all_cpu_data[cpu]) {
3081                         if (intel_pstate_driver == &intel_pstate)
3082                                 intel_pstate_clear_update_util_hook(cpu);
3083
3084                         spin_lock(&hwp_notify_lock);
3085                         kfree(all_cpu_data[cpu]);
3086                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3087                         spin_unlock(&hwp_notify_lock);
3088                 }
3089         }
3090         cpus_read_unlock();
3091
3092         intel_pstate_driver = NULL;
3093 }
3094
3095 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3096 {
3097         int ret;
3098
3099         if (driver == &intel_pstate)
3100                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3101
3102         memset(&global, 0, sizeof(global));
3103         global.max_perf_pct = 100;
3104
3105         intel_pstate_driver = driver;
3106         ret = cpufreq_register_driver(intel_pstate_driver);
3107         if (ret) {
3108                 intel_pstate_driver_cleanup();
3109                 return ret;
3110         }
3111
3112         global.min_perf_pct = min_perf_pct_min();
3113
3114         return 0;
3115 }
3116
3117 static ssize_t intel_pstate_show_status(char *buf)
3118 {
3119         if (!intel_pstate_driver)
3120                 return sprintf(buf, "off\n");
3121
3122         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3123                                         "active" : "passive");
3124 }
3125
3126 static int intel_pstate_update_status(const char *buf, size_t size)
3127 {
3128         if (size == 3 && !strncmp(buf, "off", size)) {
3129                 if (!intel_pstate_driver)
3130                         return -EINVAL;
3131
3132                 if (hwp_active)
3133                         return -EBUSY;
3134
3135                 cpufreq_unregister_driver(intel_pstate_driver);
3136                 intel_pstate_driver_cleanup();
3137                 return 0;
3138         }
3139
3140         if (size == 6 && !strncmp(buf, "active", size)) {
3141                 if (intel_pstate_driver) {
3142                         if (intel_pstate_driver == &intel_pstate)
3143                                 return 0;
3144
3145                         cpufreq_unregister_driver(intel_pstate_driver);
3146                 }
3147
3148                 return intel_pstate_register_driver(&intel_pstate);
3149         }
3150
3151         if (size == 7 && !strncmp(buf, "passive", size)) {
3152                 if (intel_pstate_driver) {
3153                         if (intel_pstate_driver == &intel_cpufreq)
3154                                 return 0;
3155
3156                         cpufreq_unregister_driver(intel_pstate_driver);
3157                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3158                 }
3159
3160                 return intel_pstate_register_driver(&intel_cpufreq);
3161         }
3162
3163         return -EINVAL;
3164 }
3165
3166 static int no_load __initdata;
3167 static int no_hwp __initdata;
3168 static int hwp_only __initdata;
3169 static unsigned int force_load __initdata;
3170
3171 static int __init intel_pstate_msrs_not_valid(void)
3172 {
3173         if (!pstate_funcs.get_max(0) ||
3174             !pstate_funcs.get_min(0) ||
3175             !pstate_funcs.get_turbo(0))
3176                 return -ENODEV;
3177
3178         return 0;
3179 }
3180
3181 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3182 {
3183         pstate_funcs.get_max   = funcs->get_max;
3184         pstate_funcs.get_max_physical = funcs->get_max_physical;
3185         pstate_funcs.get_min   = funcs->get_min;
3186         pstate_funcs.get_turbo = funcs->get_turbo;
3187         pstate_funcs.get_scaling = funcs->get_scaling;
3188         pstate_funcs.get_val   = funcs->get_val;
3189         pstate_funcs.get_vid   = funcs->get_vid;
3190         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3191 }
3192
3193 #ifdef CONFIG_ACPI
3194
3195 static bool __init intel_pstate_no_acpi_pss(void)
3196 {
3197         int i;
3198
3199         for_each_possible_cpu(i) {
3200                 acpi_status status;
3201                 union acpi_object *pss;
3202                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3203                 struct acpi_processor *pr = per_cpu(processors, i);
3204
3205                 if (!pr)
3206                         continue;
3207
3208                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3209                 if (ACPI_FAILURE(status))
3210                         continue;
3211
3212                 pss = buffer.pointer;
3213                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3214                         kfree(pss);
3215                         return false;
3216                 }
3217
3218                 kfree(pss);
3219         }
3220
3221         pr_debug("ACPI _PSS not found\n");
3222         return true;
3223 }
3224
3225 static bool __init intel_pstate_no_acpi_pcch(void)
3226 {
3227         acpi_status status;
3228         acpi_handle handle;
3229
3230         status = acpi_get_handle(NULL, "\\_SB", &handle);
3231         if (ACPI_FAILURE(status))
3232                 goto not_found;
3233
3234         if (acpi_has_method(handle, "PCCH"))
3235                 return false;
3236
3237 not_found:
3238         pr_debug("ACPI PCCH not found\n");
3239         return true;
3240 }
3241
3242 static bool __init intel_pstate_has_acpi_ppc(void)
3243 {
3244         int i;
3245
3246         for_each_possible_cpu(i) {
3247                 struct acpi_processor *pr = per_cpu(processors, i);
3248
3249                 if (!pr)
3250                         continue;
3251                 if (acpi_has_method(pr->handle, "_PPC"))
3252                         return true;
3253         }
3254         pr_debug("ACPI _PPC not found\n");
3255         return false;
3256 }
3257
3258 enum {
3259         PSS,
3260         PPC,
3261 };
3262
3263 /* Hardware vendor-specific info that has its own power management modes */
3264 static struct acpi_platform_list plat_info[] __initdata = {
3265         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3266         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3267         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3268         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3269         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3270         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3271         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3272         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3273         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3274         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3275         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3276         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3277         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3278         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3279         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3280         { } /* End */
3281 };
3282
3283 #define BITMASK_OOB     (BIT(8) | BIT(18))
3284
3285 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3286 {
3287         const struct x86_cpu_id *id;
3288         u64 misc_pwr;
3289         int idx;
3290
3291         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3292         if (id) {
3293                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3294                 if (misc_pwr & BITMASK_OOB) {
3295                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3296                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3297                         return true;
3298                 }
3299         }
3300
3301         idx = acpi_match_platform_list(plat_info);
3302         if (idx < 0)
3303                 return false;
3304
3305         switch (plat_info[idx].data) {
3306         case PSS:
3307                 if (!intel_pstate_no_acpi_pss())
3308                         return false;
3309
3310                 return intel_pstate_no_acpi_pcch();
3311         case PPC:
3312                 return intel_pstate_has_acpi_ppc() && !force_load;
3313         }
3314
3315         return false;
3316 }
3317
3318 static void intel_pstate_request_control_from_smm(void)
3319 {
3320         /*
3321          * It may be unsafe to request P-states control from SMM if _PPC support
3322          * has not been enabled.
3323          */
3324         if (acpi_ppc)
3325                 acpi_processor_pstate_control();
3326 }
3327 #else /* CONFIG_ACPI not enabled */
3328 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3329 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3330 static inline void intel_pstate_request_control_from_smm(void) {}
3331 #endif /* CONFIG_ACPI */
3332
3333 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3334
3335 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3336         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3337                                            X86_FEATURE_HWP, hwp_mode)
3338
3339 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3340         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3341         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3342         X86_MATCH_HWP(ANY,              0),
3343         {}
3344 };
3345
3346 static bool intel_pstate_hwp_is_enabled(void)
3347 {
3348         u64 value;
3349
3350         rdmsrl(MSR_PM_ENABLE, value);
3351         return !!(value & 0x1);
3352 }
3353
3354 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3355         /*
3356          * Set EPP value as 102, this is the max suggested EPP
3357          * which can result in one core turbo frequency for
3358          * AlderLake Mobile CPUs.
3359          */
3360         X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3361         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3362         {}
3363 };
3364
3365 static int __init intel_pstate_init(void)
3366 {
3367         static struct cpudata **_all_cpu_data;
3368         const struct x86_cpu_id *id;
3369         int rc;
3370
3371         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3372                 return -ENODEV;
3373
3374         id = x86_match_cpu(hwp_support_ids);
3375         if (id) {
3376                 hwp_forced = intel_pstate_hwp_is_enabled();
3377
3378                 if (hwp_forced)
3379                         pr_info("HWP enabled by BIOS\n");
3380                 else if (no_load)
3381                         return -ENODEV;
3382
3383                 copy_cpu_funcs(&core_funcs);
3384                 /*
3385                  * Avoid enabling HWP for processors without EPP support,
3386                  * because that means incomplete HWP implementation which is a
3387                  * corner case and supporting it is generally problematic.
3388                  *
3389                  * If HWP is enabled already, though, there is no choice but to
3390                  * deal with it.
3391                  */
3392                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3393                         WRITE_ONCE(hwp_active, 1);
3394                         hwp_mode_bdw = id->driver_data;
3395                         intel_pstate.attr = hwp_cpufreq_attrs;
3396                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3397                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3398                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3399                         if (!default_driver)
3400                                 default_driver = &intel_pstate;
3401
3402                         if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3403                                 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
3404
3405                         goto hwp_cpu_matched;
3406                 }
3407                 pr_info("HWP not enabled\n");
3408         } else {
3409                 if (no_load)
3410                         return -ENODEV;
3411
3412                 id = x86_match_cpu(intel_pstate_cpu_ids);
3413                 if (!id) {
3414                         pr_info("CPU model not supported\n");
3415                         return -ENODEV;
3416                 }
3417
3418                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3419         }
3420
3421         if (intel_pstate_msrs_not_valid()) {
3422                 pr_info("Invalid MSRs\n");
3423                 return -ENODEV;
3424         }
3425         /* Without HWP start in the passive mode. */
3426         if (!default_driver)
3427                 default_driver = &intel_cpufreq;
3428
3429 hwp_cpu_matched:
3430         /*
3431          * The Intel pstate driver will be ignored if the platform
3432          * firmware has its own power management modes.
3433          */
3434         if (intel_pstate_platform_pwr_mgmt_exists()) {
3435                 pr_info("P-states controlled by the platform\n");
3436                 return -ENODEV;
3437         }
3438
3439         if (!hwp_active && hwp_only)
3440                 return -ENOTSUPP;
3441
3442         pr_info("Intel P-state driver initializing\n");
3443
3444         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3445         if (!_all_cpu_data)
3446                 return -ENOMEM;
3447
3448         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3449
3450         intel_pstate_request_control_from_smm();
3451
3452         intel_pstate_sysfs_expose_params();
3453
3454         if (hwp_active) {
3455                 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3456
3457                 if (id)
3458                         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3459         }
3460
3461         mutex_lock(&intel_pstate_driver_lock);
3462         rc = intel_pstate_register_driver(default_driver);
3463         mutex_unlock(&intel_pstate_driver_lock);
3464         if (rc) {
3465                 intel_pstate_sysfs_remove();
3466                 return rc;
3467         }
3468
3469         if (hwp_active) {
3470                 const struct x86_cpu_id *id;
3471
3472                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3473                 if (id) {
3474                         set_power_ctl_ee_state(false);
3475                         pr_info("Disabling energy efficiency optimization\n");
3476                 }
3477
3478                 pr_info("HWP enabled\n");
3479         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3480                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3481         }
3482
3483         return 0;
3484 }
3485 device_initcall(intel_pstate_init);
3486
3487 static int __init intel_pstate_setup(char *str)
3488 {
3489         if (!str)
3490                 return -EINVAL;
3491
3492         if (!strcmp(str, "disable"))
3493                 no_load = 1;
3494         else if (!strcmp(str, "active"))
3495                 default_driver = &intel_pstate;
3496         else if (!strcmp(str, "passive"))
3497                 default_driver = &intel_cpufreq;
3498
3499         if (!strcmp(str, "no_hwp"))
3500                 no_hwp = 1;
3501
3502         if (!strcmp(str, "force"))
3503                 force_load = 1;
3504         if (!strcmp(str, "hwp_only"))
3505                 hwp_only = 1;
3506         if (!strcmp(str, "per_cpu_perf_limits"))
3507                 per_cpu_limits = true;
3508
3509 #ifdef CONFIG_ACPI
3510         if (!strcmp(str, "support_acpi_ppc"))
3511                 acpi_ppc = true;
3512 #endif
3513
3514         return 0;
3515 }
3516 early_param("intel_pstate", intel_pstate_setup);
3517
3518 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3519 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");