1 // SPDX-License-Identifier: GPL-2.0-only
3 * intel_pstate.c: Native P state management for Intel processors
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
30 #include <asm/div64.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 static inline int32_t mul_fp(int32_t x, int32_t y)
60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 static inline int32_t div_fp(s64 x, s64 y)
65 return div64_s64((int64_t)x << FRAC_BITS, y);
68 static inline int ceiling_fp(int32_t x)
73 mask = (1 << FRAC_BITS) - 1;
79 static inline u64 mul_ext_fp(u64 x, u64 y)
81 return (x * y) >> EXT_FRAC_BITS;
84 static inline u64 div_ext_fp(u64 x, u64 y)
86 return div64_u64(x << EXT_FRAC_BITS, y);
90 * struct sample - Store performance sample
91 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
92 * performance during last sample period
93 * @busy_scaled: Scaled busy value which is used to calculate next
94 * P state. This can be different than core_avg_perf
95 * to account for cpu idle period
96 * @aperf: Difference of actual performance frequency clock count
97 * read from APERF MSR between last and current sample
98 * @mperf: Difference of maximum performance frequency clock count
99 * read from MPERF MSR between last and current sample
100 * @tsc: Difference of time stamp counter between last and
102 * @time: Current time from scheduler
104 * This structure is used in the cpudata structure to store performance sample
105 * data for choosing next P State.
108 int32_t core_avg_perf;
117 * struct pstate_data - Store P state data
118 * @current_pstate: Current requested P state
119 * @min_pstate: Min P state possible for this platform
120 * @max_pstate: Max P state possible for this platform
121 * @max_pstate_physical:This is physical Max P state for a processor
122 * This can be higher than the max_pstate which can
123 * be limited by platform thermal design power limits
124 * @scaling: Scaling factor to convert frequency to cpufreq
126 * @turbo_pstate: Max Turbo P state possible for this platform
127 * @max_freq: @max_pstate frequency in cpufreq units
128 * @turbo_freq: @turbo_pstate frequency in cpufreq units
130 * Stores the per cpu model P state limits and current P state.
136 int max_pstate_physical;
139 unsigned int max_freq;
140 unsigned int turbo_freq;
144 * struct vid_data - Stores voltage information data
145 * @min: VID data for this platform corresponding to
147 * @max: VID data corresponding to the highest P State.
148 * @turbo: VID data for turbo P state
149 * @ratio: Ratio of (vid max - vid min) /
150 * (max P state - Min P State)
152 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
153 * This data is used in Atom platforms, where in addition to target P state,
154 * the voltage data needs to be specified to select next P State.
164 * struct global_params - Global parameters, mostly tunable via sysfs.
165 * @no_turbo: Whether or not to use turbo P-states.
166 * @turbo_disabled: Whether or not turbo P-states are available at all,
167 * based on the MSR_IA32_MISC_ENABLE value and whether or
168 * not the maximum reported turbo P-state is different from
169 * the maximum reported non-turbo one.
170 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
171 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
173 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
176 struct global_params {
179 bool turbo_disabled_mf;
185 * struct cpudata - Per CPU instance data storage
186 * @cpu: CPU number for this instance data
187 * @policy: CPUFreq policy value
188 * @update_util: CPUFreq utility callback information
189 * @update_util_set: CPUFreq utility callback is set
190 * @iowait_boost: iowait-related boost fraction
191 * @last_update: Time of the last update.
192 * @pstate: Stores P state limits for this CPU
193 * @vid: Stores VID limits for this CPU
194 * @last_sample_time: Last Sample time
195 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
196 * @prev_aperf: Last APERF value read from APERF MSR
197 * @prev_mperf: Last MPERF value read from MPERF MSR
198 * @prev_tsc: Last timestamp counter (TSC) value
199 * @prev_cummulative_iowait: IO Wait time difference from last and
201 * @sample: Storage for storing last Sample data
202 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
203 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
204 * @acpi_perf_data: Stores ACPI perf information read from _PSS
205 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
206 * @epp_powersave: Last saved HWP energy performance preference
207 * (EPP) or energy performance bias (EPB),
208 * when policy switched to performance
209 * @epp_policy: Last saved policy used to set EPP/EPB
210 * @epp_default: Power on default HWP energy performance
212 * @epp_cached Cached HWP energy-performance preference value
213 * @hwp_req_cached: Cached value of the last HWP Request MSR
214 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
215 * @last_io_update: Last time when IO wake flag was set
216 * @sched_flags: Store scheduler flags for possible cross CPU update
217 * @hwp_boost_min: Last HWP boosted min performance
218 * @suspended: Whether or not the driver has been suspended.
220 * This structure stores per CPU instance data for all CPUs.
226 struct update_util_data update_util;
227 bool update_util_set;
229 struct pstate_data pstate;
233 u64 last_sample_time;
234 u64 aperf_mperf_shift;
238 u64 prev_cummulative_iowait;
239 struct sample sample;
240 int32_t min_perf_ratio;
241 int32_t max_perf_ratio;
243 struct acpi_processor_performance acpi_perf_data;
244 bool valid_pss_table;
246 unsigned int iowait_boost;
254 unsigned int sched_flags;
259 static struct cpudata **all_cpu_data;
262 * struct pstate_funcs - Per CPU model specific callbacks
263 * @get_max: Callback to get maximum non turbo effective P state
264 * @get_max_physical: Callback to get maximum non turbo physical P state
265 * @get_min: Callback to get minimum P state
266 * @get_turbo: Callback to get turbo P state
267 * @get_scaling: Callback to get frequency scaling factor
268 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
269 * @get_val: Callback to convert P state to actual MSR write value
270 * @get_vid: Callback to get VID data for Atom platforms
272 * Core and Atom CPU models have different way to get P State limits. This
273 * structure is used to store those callbacks.
275 struct pstate_funcs {
276 int (*get_max)(void);
277 int (*get_max_physical)(void);
278 int (*get_min)(void);
279 int (*get_turbo)(void);
280 int (*get_scaling)(void);
281 int (*get_aperf_mperf_shift)(void);
282 u64 (*get_val)(struct cpudata*, int pstate);
283 void (*get_vid)(struct cpudata *);
286 static struct pstate_funcs pstate_funcs __read_mostly;
288 static int hwp_active __read_mostly;
289 static int hwp_mode_bdw __read_mostly;
290 static bool per_cpu_limits __read_mostly;
291 static bool hwp_boost __read_mostly;
293 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
296 static bool acpi_ppc;
299 static struct global_params global;
301 static DEFINE_MUTEX(intel_pstate_driver_lock);
302 static DEFINE_MUTEX(intel_pstate_limits_lock);
306 static bool intel_pstate_acpi_pm_profile_server(void)
308 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
309 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
315 static bool intel_pstate_get_ppc_enable_status(void)
317 if (intel_pstate_acpi_pm_profile_server())
323 #ifdef CONFIG_ACPI_CPPC_LIB
325 /* The work item is needed to avoid CPU hotplug locking issues */
326 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
328 sched_set_itmt_support();
331 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
333 static void intel_pstate_set_itmt_prio(int cpu)
335 struct cppc_perf_caps cppc_perf;
336 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
339 ret = cppc_get_perf_caps(cpu, &cppc_perf);
344 * The priorities can be set regardless of whether or not
345 * sched_set_itmt_support(true) has been called and it is valid to
346 * update them at any time after it has been called.
348 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
350 if (max_highest_perf <= min_highest_perf) {
351 if (cppc_perf.highest_perf > max_highest_perf)
352 max_highest_perf = cppc_perf.highest_perf;
354 if (cppc_perf.highest_perf < min_highest_perf)
355 min_highest_perf = cppc_perf.highest_perf;
357 if (max_highest_perf > min_highest_perf) {
359 * This code can be run during CPU online under the
360 * CPU hotplug locks, so sched_set_itmt_support()
361 * cannot be called from here. Queue up a work item
364 schedule_work(&sched_itmt_work);
369 static int intel_pstate_get_cppc_guranteed(int cpu)
371 struct cppc_perf_caps cppc_perf;
374 ret = cppc_get_perf_caps(cpu, &cppc_perf);
378 if (cppc_perf.guaranteed_perf)
379 return cppc_perf.guaranteed_perf;
381 return cppc_perf.nominal_perf;
384 #else /* CONFIG_ACPI_CPPC_LIB */
385 static void intel_pstate_set_itmt_prio(int cpu)
388 #endif /* CONFIG_ACPI_CPPC_LIB */
390 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
397 intel_pstate_set_itmt_prio(policy->cpu);
401 if (!intel_pstate_get_ppc_enable_status())
404 cpu = all_cpu_data[policy->cpu];
406 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
412 * Check if the control value in _PSS is for PERF_CTL MSR, which should
413 * guarantee that the states returned by it map to the states in our
416 if (cpu->acpi_perf_data.control_register.space_id !=
417 ACPI_ADR_SPACE_FIXED_HARDWARE)
421 * If there is only one entry _PSS, simply ignore _PSS and continue as
422 * usual without taking _PSS into account
424 if (cpu->acpi_perf_data.state_count < 2)
427 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
428 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
429 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
430 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
431 (u32) cpu->acpi_perf_data.states[i].core_frequency,
432 (u32) cpu->acpi_perf_data.states[i].power,
433 (u32) cpu->acpi_perf_data.states[i].control);
437 * The _PSS table doesn't contain whole turbo frequency range.
438 * This just contains +1 MHZ above the max non turbo frequency,
439 * with control value corresponding to max turbo ratio. But
440 * when cpufreq set policy is called, it will call with this
441 * max frequency, which will cause a reduced performance as
442 * this driver uses real max turbo frequency as the max
443 * frequency. So correct this frequency in _PSS table to
444 * correct max turbo frequency based on the turbo state.
445 * Also need to convert to MHz as _PSS freq is in MHz.
447 if (!global.turbo_disabled)
448 cpu->acpi_perf_data.states[0].core_frequency =
449 policy->cpuinfo.max_freq / 1000;
450 cpu->valid_pss_table = true;
451 pr_debug("_PPC limits will be enforced\n");
456 cpu->valid_pss_table = false;
457 acpi_processor_unregister_performance(policy->cpu);
460 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
464 cpu = all_cpu_data[policy->cpu];
465 if (!cpu->valid_pss_table)
468 acpi_processor_unregister_performance(policy->cpu);
470 #else /* CONFIG_ACPI */
471 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
475 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
479 static inline bool intel_pstate_acpi_pm_profile_server(void)
483 #endif /* CONFIG_ACPI */
485 #ifndef CONFIG_ACPI_CPPC_LIB
486 static int intel_pstate_get_cppc_guranteed(int cpu)
490 #endif /* CONFIG_ACPI_CPPC_LIB */
492 static inline void update_turbo_state(void)
497 cpu = all_cpu_data[0];
498 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
499 global.turbo_disabled =
500 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
501 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
504 static int min_perf_pct_min(void)
506 struct cpudata *cpu = all_cpu_data[0];
507 int turbo_pstate = cpu->pstate.turbo_pstate;
509 return turbo_pstate ?
510 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
513 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
518 if (!boot_cpu_has(X86_FEATURE_EPB))
521 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
525 return (s16)(epb & 0x0f);
528 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
532 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
534 * When hwp_req_data is 0, means that caller didn't read
535 * MSR_HWP_REQUEST, so need to read and get EPP.
538 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
543 epp = (hwp_req_data >> 24) & 0xff;
545 /* When there is no EPP present, HWP uses EPB settings */
546 epp = intel_pstate_get_epb(cpu_data);
552 static int intel_pstate_set_epb(int cpu, s16 pref)
557 if (!boot_cpu_has(X86_FEATURE_EPB))
560 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
564 epb = (epb & ~0x0f) | pref;
565 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
571 * EPP/EPB display strings corresponding to EPP index in the
572 * energy_perf_strings[]
574 *-------------------------------------
577 * 2 balance_performance
581 static const char * const energy_perf_strings[] = {
584 "balance_performance",
589 static const unsigned int epp_values[] = {
591 HWP_EPP_BALANCE_PERFORMANCE,
592 HWP_EPP_BALANCE_POWERSAVE,
596 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
602 epp = intel_pstate_get_epp(cpu_data, 0);
606 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
607 if (epp == HWP_EPP_PERFORMANCE)
609 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
611 if (epp == HWP_EPP_BALANCE_POWERSAVE)
613 if (epp == HWP_EPP_POWERSAVE)
617 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
620 * 0x00-0x03 : Performance
621 * 0x04-0x07 : Balance performance
622 * 0x08-0x0B : Balance power
624 * The EPB is a 4 bit value, but our ranges restrict the
625 * value which can be set. Here only using top two bits
628 index = (epp >> 2) + 1;
634 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
639 * Use the cached HWP Request MSR value, because in the active mode the
640 * register itself may be updated by intel_pstate_hwp_boost_up() or
641 * intel_pstate_hwp_boost_down() at any time.
643 u64 value = READ_ONCE(cpu->hwp_req_cached);
645 value &= ~GENMASK_ULL(31, 24);
646 value |= (u64)epp << 24;
648 * The only other updater of hwp_req_cached in the active mode,
649 * intel_pstate_hwp_set(), is called under the same lock as this
650 * function, so it cannot run in parallel with the update below.
652 WRITE_ONCE(cpu->hwp_req_cached, value);
653 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
655 cpu->epp_cached = epp;
660 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
661 int pref_index, bool use_raw,
668 epp = cpu_data->epp_default;
670 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
673 else if (epp == -EINVAL)
674 epp = epp_values[pref_index - 1];
677 * To avoid confusion, refuse to set EPP to any values different
678 * from 0 (performance) if the current policy is "performance",
679 * because those values would be overridden.
681 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
684 ret = intel_pstate_set_epp(cpu_data, epp);
687 epp = (pref_index - 1) << 2;
688 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
694 static ssize_t show_energy_performance_available_preferences(
695 struct cpufreq_policy *policy, char *buf)
700 while (energy_perf_strings[i] != NULL)
701 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
703 ret += sprintf(&buf[ret], "\n");
708 cpufreq_freq_attr_ro(energy_performance_available_preferences);
710 static struct cpufreq_driver intel_pstate;
712 static ssize_t store_energy_performance_preference(
713 struct cpufreq_policy *policy, const char *buf, size_t count)
715 struct cpudata *cpu = all_cpu_data[policy->cpu];
716 char str_preference[21];
721 ret = sscanf(buf, "%20s", str_preference);
725 ret = match_string(energy_perf_strings, -1, str_preference);
727 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
730 ret = kstrtouint(buf, 10, &epp);
741 * This function runs with the policy R/W semaphore held, which
742 * guarantees that the driver pointer will not change while it is
745 if (!intel_pstate_driver)
748 mutex_lock(&intel_pstate_limits_lock);
750 if (intel_pstate_driver == &intel_pstate) {
751 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
754 * In the passive mode the governor needs to be stopped on the
755 * target CPU before the EPP update and restarted after it,
756 * which is super-heavy-weight, so make sure it is worth doing
760 epp = ret ? epp_values[ret - 1] : cpu->epp_default;
762 if (cpu->epp_cached != epp) {
765 cpufreq_stop_governor(policy);
766 ret = intel_pstate_set_epp(cpu, epp);
767 err = cpufreq_start_governor(policy);
773 mutex_unlock(&intel_pstate_limits_lock);
778 static ssize_t show_energy_performance_preference(
779 struct cpufreq_policy *policy, char *buf)
781 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
782 int preference, raw_epp;
784 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
789 return sprintf(buf, "%d\n", raw_epp);
791 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
794 cpufreq_freq_attr_rw(energy_performance_preference);
796 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
802 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
804 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
805 ratio = HWP_GUARANTEED_PERF(cap);
808 cpu = all_cpu_data[policy->cpu];
810 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
813 cpufreq_freq_attr_ro(base_frequency);
815 static struct freq_attr *hwp_cpufreq_attrs[] = {
816 &energy_performance_preference,
817 &energy_performance_available_preferences,
822 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
826 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
827 WRITE_ONCE(cpu->hwp_cap_cached, cap);
828 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
829 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
832 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
834 __intel_pstate_get_hwp_cap(cpu);
835 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
836 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
839 static void intel_pstate_hwp_set(unsigned int cpu)
841 struct cpudata *cpu_data = all_cpu_data[cpu];
846 max = cpu_data->max_perf_ratio;
847 min = cpu_data->min_perf_ratio;
849 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
852 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
854 value &= ~HWP_MIN_PERF(~0L);
855 value |= HWP_MIN_PERF(min);
857 value &= ~HWP_MAX_PERF(~0L);
858 value |= HWP_MAX_PERF(max);
860 if (cpu_data->epp_policy == cpu_data->policy)
863 cpu_data->epp_policy = cpu_data->policy;
865 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
866 epp = intel_pstate_get_epp(cpu_data, value);
867 cpu_data->epp_powersave = epp;
868 /* If EPP read was failed, then don't try to write */
874 /* skip setting EPP, when saved value is invalid */
875 if (cpu_data->epp_powersave < 0)
879 * No need to restore EPP when it is not zero. This
881 * - Policy is not changed
882 * - user has manually changed
883 * - Error reading EPB
885 epp = intel_pstate_get_epp(cpu_data, value);
889 epp = cpu_data->epp_powersave;
891 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
892 value &= ~GENMASK_ULL(31, 24);
893 value |= (u64)epp << 24;
895 intel_pstate_set_epb(cpu, epp);
898 WRITE_ONCE(cpu_data->hwp_req_cached, value);
899 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
902 static void intel_pstate_hwp_offline(struct cpudata *cpu)
904 u64 value = READ_ONCE(cpu->hwp_req_cached);
907 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
909 * In case the EPP has been set to "performance" by the
910 * active mode "performance" scaling algorithm, replace that
911 * temporary value with the cached EPP one.
913 value &= ~GENMASK_ULL(31, 24);
914 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
915 WRITE_ONCE(cpu->hwp_req_cached, value);
918 value &= ~GENMASK_ULL(31, 0);
919 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
921 /* Set hwp_max = hwp_min */
922 value |= HWP_MAX_PERF(min_perf);
923 value |= HWP_MIN_PERF(min_perf);
926 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
927 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
929 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
932 #define POWER_CTL_EE_ENABLE 1
933 #define POWER_CTL_EE_DISABLE 2
935 static int power_ctl_ee_state;
937 static void set_power_ctl_ee_state(bool input)
941 mutex_lock(&intel_pstate_driver_lock);
942 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
944 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
945 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
947 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
948 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
950 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
951 mutex_unlock(&intel_pstate_driver_lock);
954 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
956 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
958 intel_pstate_hwp_enable(cpu);
959 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
962 static int intel_pstate_suspend(struct cpufreq_policy *policy)
964 struct cpudata *cpu = all_cpu_data[policy->cpu];
966 pr_debug("CPU %d suspending\n", cpu->cpu);
968 cpu->suspended = true;
973 static int intel_pstate_resume(struct cpufreq_policy *policy)
975 struct cpudata *cpu = all_cpu_data[policy->cpu];
977 pr_debug("CPU %d resuming\n", cpu->cpu);
979 /* Only restore if the system default is changed */
980 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
981 set_power_ctl_ee_state(true);
982 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
983 set_power_ctl_ee_state(false);
985 if (cpu->suspended && hwp_active) {
986 mutex_lock(&intel_pstate_limits_lock);
988 /* Re-enable HWP, because "online" has not done that. */
989 intel_pstate_hwp_reenable(cpu);
991 mutex_unlock(&intel_pstate_limits_lock);
994 cpu->suspended = false;
999 static void intel_pstate_update_policies(void)
1003 for_each_possible_cpu(cpu)
1004 cpufreq_update_policy(cpu);
1007 static void intel_pstate_update_max_freq(unsigned int cpu)
1009 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1010 struct cpudata *cpudata;
1015 cpudata = all_cpu_data[cpu];
1016 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1017 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1019 refresh_frequency_limits(policy);
1021 cpufreq_cpu_release(policy);
1024 static void intel_pstate_update_limits(unsigned int cpu)
1026 mutex_lock(&intel_pstate_driver_lock);
1028 update_turbo_state();
1030 * If turbo has been turned on or off globally, policy limits for
1031 * all CPUs need to be updated to reflect that.
1033 if (global.turbo_disabled_mf != global.turbo_disabled) {
1034 global.turbo_disabled_mf = global.turbo_disabled;
1035 arch_set_max_freq_ratio(global.turbo_disabled);
1036 for_each_possible_cpu(cpu)
1037 intel_pstate_update_max_freq(cpu);
1039 cpufreq_update_policy(cpu);
1042 mutex_unlock(&intel_pstate_driver_lock);
1045 /************************** sysfs begin ************************/
1046 #define show_one(file_name, object) \
1047 static ssize_t show_##file_name \
1048 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1050 return sprintf(buf, "%u\n", global.object); \
1053 static ssize_t intel_pstate_show_status(char *buf);
1054 static int intel_pstate_update_status(const char *buf, size_t size);
1056 static ssize_t show_status(struct kobject *kobj,
1057 struct kobj_attribute *attr, char *buf)
1061 mutex_lock(&intel_pstate_driver_lock);
1062 ret = intel_pstate_show_status(buf);
1063 mutex_unlock(&intel_pstate_driver_lock);
1068 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1069 const char *buf, size_t count)
1071 char *p = memchr(buf, '\n', count);
1074 mutex_lock(&intel_pstate_driver_lock);
1075 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1076 mutex_unlock(&intel_pstate_driver_lock);
1078 return ret < 0 ? ret : count;
1081 static ssize_t show_turbo_pct(struct kobject *kobj,
1082 struct kobj_attribute *attr, char *buf)
1084 struct cpudata *cpu;
1085 int total, no_turbo, turbo_pct;
1088 mutex_lock(&intel_pstate_driver_lock);
1090 if (!intel_pstate_driver) {
1091 mutex_unlock(&intel_pstate_driver_lock);
1095 cpu = all_cpu_data[0];
1097 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1098 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1099 turbo_fp = div_fp(no_turbo, total);
1100 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1102 mutex_unlock(&intel_pstate_driver_lock);
1104 return sprintf(buf, "%u\n", turbo_pct);
1107 static ssize_t show_num_pstates(struct kobject *kobj,
1108 struct kobj_attribute *attr, char *buf)
1110 struct cpudata *cpu;
1113 mutex_lock(&intel_pstate_driver_lock);
1115 if (!intel_pstate_driver) {
1116 mutex_unlock(&intel_pstate_driver_lock);
1120 cpu = all_cpu_data[0];
1121 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1123 mutex_unlock(&intel_pstate_driver_lock);
1125 return sprintf(buf, "%u\n", total);
1128 static ssize_t show_no_turbo(struct kobject *kobj,
1129 struct kobj_attribute *attr, char *buf)
1133 mutex_lock(&intel_pstate_driver_lock);
1135 if (!intel_pstate_driver) {
1136 mutex_unlock(&intel_pstate_driver_lock);
1140 update_turbo_state();
1141 if (global.turbo_disabled)
1142 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1144 ret = sprintf(buf, "%u\n", global.no_turbo);
1146 mutex_unlock(&intel_pstate_driver_lock);
1151 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1152 const char *buf, size_t count)
1157 ret = sscanf(buf, "%u", &input);
1161 mutex_lock(&intel_pstate_driver_lock);
1163 if (!intel_pstate_driver) {
1164 mutex_unlock(&intel_pstate_driver_lock);
1168 mutex_lock(&intel_pstate_limits_lock);
1170 update_turbo_state();
1171 if (global.turbo_disabled) {
1172 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1173 mutex_unlock(&intel_pstate_limits_lock);
1174 mutex_unlock(&intel_pstate_driver_lock);
1178 global.no_turbo = clamp_t(int, input, 0, 1);
1180 if (global.no_turbo) {
1181 struct cpudata *cpu = all_cpu_data[0];
1182 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1184 /* Squash the global minimum into the permitted range. */
1185 if (global.min_perf_pct > pct)
1186 global.min_perf_pct = pct;
1189 mutex_unlock(&intel_pstate_limits_lock);
1191 intel_pstate_update_policies();
1193 mutex_unlock(&intel_pstate_driver_lock);
1198 static void update_qos_request(enum freq_qos_req_type type)
1200 struct freq_qos_request *req;
1201 struct cpufreq_policy *policy;
1204 for_each_possible_cpu(i) {
1205 struct cpudata *cpu = all_cpu_data[i];
1206 unsigned int freq, perf_pct;
1208 policy = cpufreq_cpu_get(i);
1212 req = policy->driver_data;
1213 cpufreq_cpu_put(policy);
1219 intel_pstate_get_hwp_cap(cpu);
1221 if (type == FREQ_QOS_MIN) {
1222 perf_pct = global.min_perf_pct;
1225 perf_pct = global.max_perf_pct;
1228 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1230 if (freq_qos_update_request(req, freq) < 0)
1231 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1235 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1236 const char *buf, size_t count)
1241 ret = sscanf(buf, "%u", &input);
1245 mutex_lock(&intel_pstate_driver_lock);
1247 if (!intel_pstate_driver) {
1248 mutex_unlock(&intel_pstate_driver_lock);
1252 mutex_lock(&intel_pstate_limits_lock);
1254 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1256 mutex_unlock(&intel_pstate_limits_lock);
1258 if (intel_pstate_driver == &intel_pstate)
1259 intel_pstate_update_policies();
1261 update_qos_request(FREQ_QOS_MAX);
1263 mutex_unlock(&intel_pstate_driver_lock);
1268 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1269 const char *buf, size_t count)
1274 ret = sscanf(buf, "%u", &input);
1278 mutex_lock(&intel_pstate_driver_lock);
1280 if (!intel_pstate_driver) {
1281 mutex_unlock(&intel_pstate_driver_lock);
1285 mutex_lock(&intel_pstate_limits_lock);
1287 global.min_perf_pct = clamp_t(int, input,
1288 min_perf_pct_min(), global.max_perf_pct);
1290 mutex_unlock(&intel_pstate_limits_lock);
1292 if (intel_pstate_driver == &intel_pstate)
1293 intel_pstate_update_policies();
1295 update_qos_request(FREQ_QOS_MIN);
1297 mutex_unlock(&intel_pstate_driver_lock);
1302 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1303 struct kobj_attribute *attr, char *buf)
1305 return sprintf(buf, "%u\n", hwp_boost);
1308 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1309 struct kobj_attribute *b,
1310 const char *buf, size_t count)
1315 ret = kstrtouint(buf, 10, &input);
1319 mutex_lock(&intel_pstate_driver_lock);
1320 hwp_boost = !!input;
1321 intel_pstate_update_policies();
1322 mutex_unlock(&intel_pstate_driver_lock);
1327 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1333 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1334 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1335 return sprintf(buf, "%d\n", !enable);
1338 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1339 const char *buf, size_t count)
1344 ret = kstrtobool(buf, &input);
1348 set_power_ctl_ee_state(input);
1353 show_one(max_perf_pct, max_perf_pct);
1354 show_one(min_perf_pct, min_perf_pct);
1356 define_one_global_rw(status);
1357 define_one_global_rw(no_turbo);
1358 define_one_global_rw(max_perf_pct);
1359 define_one_global_rw(min_perf_pct);
1360 define_one_global_ro(turbo_pct);
1361 define_one_global_ro(num_pstates);
1362 define_one_global_rw(hwp_dynamic_boost);
1363 define_one_global_rw(energy_efficiency);
1365 static struct attribute *intel_pstate_attributes[] = {
1373 static const struct attribute_group intel_pstate_attr_group = {
1374 .attrs = intel_pstate_attributes,
1377 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1379 static struct kobject *intel_pstate_kobject;
1381 static void __init intel_pstate_sysfs_expose_params(void)
1385 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1386 &cpu_subsys.dev_root->kobj);
1387 if (WARN_ON(!intel_pstate_kobject))
1390 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1395 * If per cpu limits are enforced there are no global limits, so
1396 * return without creating max/min_perf_pct attributes
1401 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1404 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1407 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1408 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1413 static void __init intel_pstate_sysfs_remove(void)
1415 if (!intel_pstate_kobject)
1418 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1420 if (!per_cpu_limits) {
1421 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1422 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1424 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1425 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1428 kobject_put(intel_pstate_kobject);
1431 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1438 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1442 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1447 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1450 /************************** sysfs end ************************/
1452 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1454 /* First disable HWP notification interrupt as we don't process them */
1455 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1456 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1458 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1459 if (cpudata->epp_default == -EINVAL)
1460 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1463 static int atom_get_min_pstate(void)
1467 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1468 return (value >> 8) & 0x7F;
1471 static int atom_get_max_pstate(void)
1475 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1476 return (value >> 16) & 0x7F;
1479 static int atom_get_turbo_pstate(void)
1483 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1484 return value & 0x7F;
1487 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1493 val = (u64)pstate << 8;
1494 if (global.no_turbo && !global.turbo_disabled)
1495 val |= (u64)1 << 32;
1497 vid_fp = cpudata->vid.min + mul_fp(
1498 int_tofp(pstate - cpudata->pstate.min_pstate),
1499 cpudata->vid.ratio);
1501 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1502 vid = ceiling_fp(vid_fp);
1504 if (pstate > cpudata->pstate.max_pstate)
1505 vid = cpudata->vid.turbo;
1510 static int silvermont_get_scaling(void)
1514 /* Defined in Table 35-6 from SDM (Sept 2015) */
1515 static int silvermont_freq_table[] = {
1516 83300, 100000, 133300, 116700, 80000};
1518 rdmsrl(MSR_FSB_FREQ, value);
1522 return silvermont_freq_table[i];
1525 static int airmont_get_scaling(void)
1529 /* Defined in Table 35-10 from SDM (Sept 2015) */
1530 static int airmont_freq_table[] = {
1531 83300, 100000, 133300, 116700, 80000,
1532 93300, 90000, 88900, 87500};
1534 rdmsrl(MSR_FSB_FREQ, value);
1538 return airmont_freq_table[i];
1541 static void atom_get_vid(struct cpudata *cpudata)
1545 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1546 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1547 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1548 cpudata->vid.ratio = div_fp(
1549 cpudata->vid.max - cpudata->vid.min,
1550 int_tofp(cpudata->pstate.max_pstate -
1551 cpudata->pstate.min_pstate));
1553 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1554 cpudata->vid.turbo = value & 0x7f;
1557 static int core_get_min_pstate(void)
1561 rdmsrl(MSR_PLATFORM_INFO, value);
1562 return (value >> 40) & 0xFF;
1565 static int core_get_max_pstate_physical(void)
1569 rdmsrl(MSR_PLATFORM_INFO, value);
1570 return (value >> 8) & 0xFF;
1573 static int core_get_tdp_ratio(u64 plat_info)
1575 /* Check how many TDP levels present */
1576 if (plat_info & 0x600000000) {
1582 /* Get the TDP level (0, 1, 2) to get ratios */
1583 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1587 /* TDP MSR are continuous starting at 0x648 */
1588 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1589 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1593 /* For level 1 and 2, bits[23:16] contain the ratio */
1594 if (tdp_ctrl & 0x03)
1597 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1598 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1600 return (int)tdp_ratio;
1606 static int core_get_max_pstate(void)
1614 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1615 max_pstate = (plat_info >> 8) & 0xFF;
1617 tdp_ratio = core_get_tdp_ratio(plat_info);
1622 /* Turbo activation ratio is not used on HWP platforms */
1626 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1630 /* Do some sanity checking for safety */
1631 tar_levels = tar & 0xff;
1632 if (tdp_ratio - 1 == tar_levels) {
1633 max_pstate = tar_levels;
1634 pr_debug("max_pstate=TAC %x\n", max_pstate);
1641 static int core_get_turbo_pstate(void)
1646 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1647 nont = core_get_max_pstate();
1648 ret = (value) & 255;
1654 static inline int core_get_scaling(void)
1659 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1663 val = (u64)pstate << 8;
1664 if (global.no_turbo && !global.turbo_disabled)
1665 val |= (u64)1 << 32;
1670 static int knl_get_aperf_mperf_shift(void)
1675 static int knl_get_turbo_pstate(void)
1680 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1681 nont = core_get_max_pstate();
1682 ret = (((value) >> 8) & 0xFF);
1688 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1690 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1691 cpu->pstate.current_pstate = pstate;
1693 * Generally, there is no guarantee that this code will always run on
1694 * the CPU being updated, so force the register update to run on the
1697 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1698 pstate_funcs.get_val(cpu, pstate));
1701 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1703 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1706 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1708 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1710 update_turbo_state();
1711 intel_pstate_set_pstate(cpu, pstate);
1714 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1716 cpu->pstate.min_pstate = pstate_funcs.get_min();
1717 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1718 cpu->pstate.scaling = pstate_funcs.get_scaling();
1720 if (hwp_active && !hwp_mode_bdw) {
1721 __intel_pstate_get_hwp_cap(cpu);
1723 cpu->pstate.max_pstate = pstate_funcs.get_max();
1724 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1727 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1728 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1730 if (pstate_funcs.get_aperf_mperf_shift)
1731 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1733 if (pstate_funcs.get_vid)
1734 pstate_funcs.get_vid(cpu);
1736 intel_pstate_set_min_pstate(cpu);
1740 * Long hold time will keep high perf limits for long time,
1741 * which negatively impacts perf/watt for some workloads,
1742 * like specpower. 3ms is based on experiements on some
1745 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1747 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1749 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1750 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1751 u32 max_limit = (hwp_req & 0xff00) >> 8;
1752 u32 min_limit = (hwp_req & 0xff);
1756 * Cases to consider (User changes via sysfs or boot time):
1757 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1759 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1760 * Should result in one level boost only for P0.
1761 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1762 * Should result in two level boost:
1763 * (min + p1)/2 and P1.
1764 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1765 * Should result in three level boost:
1766 * (min + p1)/2, P1 and P0.
1769 /* If max and min are equal or already at max, nothing to boost */
1770 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1773 if (!cpu->hwp_boost_min)
1774 cpu->hwp_boost_min = min_limit;
1776 /* level at half way mark between min and guranteed */
1777 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
1779 if (cpu->hwp_boost_min < boost_level1)
1780 cpu->hwp_boost_min = boost_level1;
1781 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
1782 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
1783 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
1784 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
1785 cpu->hwp_boost_min = max_limit;
1789 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1790 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1791 cpu->last_update = cpu->sample.time;
1794 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1796 if (cpu->hwp_boost_min) {
1799 /* Check if we are idle for hold time to boost down */
1800 expired = time_after64(cpu->sample.time, cpu->last_update +
1801 hwp_boost_hold_time_ns);
1803 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1804 cpu->hwp_boost_min = 0;
1807 cpu->last_update = cpu->sample.time;
1810 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1813 cpu->sample.time = time;
1815 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1818 cpu->sched_flags = 0;
1820 * Set iowait_boost flag and update time. Since IO WAIT flag
1821 * is set all the time, we can't just conclude that there is
1822 * some IO bound activity is scheduled on this CPU with just
1823 * one occurrence. If we receive at least two in two
1824 * consecutive ticks, then we treat as boost candidate.
1826 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1829 cpu->last_io_update = time;
1832 intel_pstate_hwp_boost_up(cpu);
1835 intel_pstate_hwp_boost_down(cpu);
1839 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1840 u64 time, unsigned int flags)
1842 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1844 cpu->sched_flags |= flags;
1846 if (smp_processor_id() == cpu->cpu)
1847 intel_pstate_update_util_hwp_local(cpu, time);
1850 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1852 struct sample *sample = &cpu->sample;
1854 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1857 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1860 unsigned long flags;
1863 local_irq_save(flags);
1864 rdmsrl(MSR_IA32_APERF, aperf);
1865 rdmsrl(MSR_IA32_MPERF, mperf);
1867 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1868 local_irq_restore(flags);
1871 local_irq_restore(flags);
1873 cpu->last_sample_time = cpu->sample.time;
1874 cpu->sample.time = time;
1875 cpu->sample.aperf = aperf;
1876 cpu->sample.mperf = mperf;
1877 cpu->sample.tsc = tsc;
1878 cpu->sample.aperf -= cpu->prev_aperf;
1879 cpu->sample.mperf -= cpu->prev_mperf;
1880 cpu->sample.tsc -= cpu->prev_tsc;
1882 cpu->prev_aperf = aperf;
1883 cpu->prev_mperf = mperf;
1884 cpu->prev_tsc = tsc;
1886 * First time this function is invoked in a given cycle, all of the
1887 * previous sample data fields are equal to zero or stale and they must
1888 * be populated with meaningful numbers for things to work, so assume
1889 * that sample.time will always be reset before setting the utilization
1890 * update hook and make the caller skip the sample then.
1892 if (cpu->last_sample_time) {
1893 intel_pstate_calc_avg_perf(cpu);
1899 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1901 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1904 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1906 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1907 cpu->sample.core_avg_perf);
1910 static inline int32_t get_target_pstate(struct cpudata *cpu)
1912 struct sample *sample = &cpu->sample;
1914 int target, avg_pstate;
1916 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1919 if (busy_frac < cpu->iowait_boost)
1920 busy_frac = cpu->iowait_boost;
1922 sample->busy_scaled = busy_frac * 100;
1924 target = global.no_turbo || global.turbo_disabled ?
1925 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1926 target += target >> 2;
1927 target = mul_fp(target, busy_frac);
1928 if (target < cpu->pstate.min_pstate)
1929 target = cpu->pstate.min_pstate;
1932 * If the average P-state during the previous cycle was higher than the
1933 * current target, add 50% of the difference to the target to reduce
1934 * possible performance oscillations and offset possible performance
1935 * loss related to moving the workload from one CPU to another within
1938 avg_pstate = get_avg_pstate(cpu);
1939 if (avg_pstate > target)
1940 target += (avg_pstate - target) >> 1;
1945 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1947 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1948 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1950 return clamp_t(int, pstate, min_pstate, max_pstate);
1953 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1955 if (pstate == cpu->pstate.current_pstate)
1958 cpu->pstate.current_pstate = pstate;
1959 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1962 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1964 int from = cpu->pstate.current_pstate;
1965 struct sample *sample;
1968 update_turbo_state();
1970 target_pstate = get_target_pstate(cpu);
1971 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1972 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1973 intel_pstate_update_pstate(cpu, target_pstate);
1975 sample = &cpu->sample;
1976 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1977 fp_toint(sample->busy_scaled),
1979 cpu->pstate.current_pstate,
1983 get_avg_frequency(cpu),
1984 fp_toint(cpu->iowait_boost * 100));
1987 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1990 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1993 /* Don't allow remote callbacks */
1994 if (smp_processor_id() != cpu->cpu)
1997 delta_ns = time - cpu->last_update;
1998 if (flags & SCHED_CPUFREQ_IOWAIT) {
1999 /* Start over if the CPU may have been idle. */
2000 if (delta_ns > TICK_NSEC) {
2001 cpu->iowait_boost = ONE_EIGHTH_FP;
2002 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2003 cpu->iowait_boost <<= 1;
2004 if (cpu->iowait_boost > int_tofp(1))
2005 cpu->iowait_boost = int_tofp(1);
2007 cpu->iowait_boost = ONE_EIGHTH_FP;
2009 } else if (cpu->iowait_boost) {
2010 /* Clear iowait_boost if the CPU may have been idle. */
2011 if (delta_ns > TICK_NSEC)
2012 cpu->iowait_boost = 0;
2014 cpu->iowait_boost >>= 1;
2016 cpu->last_update = time;
2017 delta_ns = time - cpu->sample.time;
2018 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2021 if (intel_pstate_sample(cpu, time))
2022 intel_pstate_adjust_pstate(cpu);
2025 static struct pstate_funcs core_funcs = {
2026 .get_max = core_get_max_pstate,
2027 .get_max_physical = core_get_max_pstate_physical,
2028 .get_min = core_get_min_pstate,
2029 .get_turbo = core_get_turbo_pstate,
2030 .get_scaling = core_get_scaling,
2031 .get_val = core_get_val,
2034 static const struct pstate_funcs silvermont_funcs = {
2035 .get_max = atom_get_max_pstate,
2036 .get_max_physical = atom_get_max_pstate,
2037 .get_min = atom_get_min_pstate,
2038 .get_turbo = atom_get_turbo_pstate,
2039 .get_val = atom_get_val,
2040 .get_scaling = silvermont_get_scaling,
2041 .get_vid = atom_get_vid,
2044 static const struct pstate_funcs airmont_funcs = {
2045 .get_max = atom_get_max_pstate,
2046 .get_max_physical = atom_get_max_pstate,
2047 .get_min = atom_get_min_pstate,
2048 .get_turbo = atom_get_turbo_pstate,
2049 .get_val = atom_get_val,
2050 .get_scaling = airmont_get_scaling,
2051 .get_vid = atom_get_vid,
2054 static const struct pstate_funcs knl_funcs = {
2055 .get_max = core_get_max_pstate,
2056 .get_max_physical = core_get_max_pstate_physical,
2057 .get_min = core_get_min_pstate,
2058 .get_turbo = knl_get_turbo_pstate,
2059 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2060 .get_scaling = core_get_scaling,
2061 .get_val = core_get_val,
2064 #define X86_MATCH(model, policy) \
2065 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2066 X86_FEATURE_APERFMPERF, &policy)
2068 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2069 X86_MATCH(SANDYBRIDGE, core_funcs),
2070 X86_MATCH(SANDYBRIDGE_X, core_funcs),
2071 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
2072 X86_MATCH(IVYBRIDGE, core_funcs),
2073 X86_MATCH(HASWELL, core_funcs),
2074 X86_MATCH(BROADWELL, core_funcs),
2075 X86_MATCH(IVYBRIDGE_X, core_funcs),
2076 X86_MATCH(HASWELL_X, core_funcs),
2077 X86_MATCH(HASWELL_L, core_funcs),
2078 X86_MATCH(HASWELL_G, core_funcs),
2079 X86_MATCH(BROADWELL_G, core_funcs),
2080 X86_MATCH(ATOM_AIRMONT, airmont_funcs),
2081 X86_MATCH(SKYLAKE_L, core_funcs),
2082 X86_MATCH(BROADWELL_X, core_funcs),
2083 X86_MATCH(SKYLAKE, core_funcs),
2084 X86_MATCH(BROADWELL_D, core_funcs),
2085 X86_MATCH(XEON_PHI_KNL, knl_funcs),
2086 X86_MATCH(XEON_PHI_KNM, knl_funcs),
2087 X86_MATCH(ATOM_GOLDMONT, core_funcs),
2088 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
2089 X86_MATCH(SKYLAKE_X, core_funcs),
2092 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2094 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2095 X86_MATCH(BROADWELL_D, core_funcs),
2096 X86_MATCH(BROADWELL_X, core_funcs),
2097 X86_MATCH(SKYLAKE_X, core_funcs),
2101 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2102 X86_MATCH(KABYLAKE, core_funcs),
2106 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2107 X86_MATCH(SKYLAKE_X, core_funcs),
2108 X86_MATCH(SKYLAKE, core_funcs),
2112 static int intel_pstate_init_cpu(unsigned int cpunum)
2114 struct cpudata *cpu;
2116 cpu = all_cpu_data[cpunum];
2119 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2123 all_cpu_data[cpunum] = cpu;
2127 cpu->epp_default = -EINVAL;
2130 const struct x86_cpu_id *id;
2132 intel_pstate_hwp_enable(cpu);
2134 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2135 if (id && intel_pstate_acpi_pm_profile_server())
2138 } else if (hwp_active) {
2140 * Re-enable HWP in case this happens after a resume from ACPI
2141 * S3 if the CPU was offline during the whole system/resume
2144 intel_pstate_hwp_reenable(cpu);
2147 cpu->epp_powersave = -EINVAL;
2148 cpu->epp_policy = 0;
2150 intel_pstate_get_cpu_pstates(cpu);
2152 pr_debug("controlling: cpu %d\n", cpunum);
2157 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2159 struct cpudata *cpu = all_cpu_data[cpu_num];
2161 if (hwp_active && !hwp_boost)
2164 if (cpu->update_util_set)
2167 /* Prevent intel_pstate_update_util() from using stale data. */
2168 cpu->sample.time = 0;
2169 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2171 intel_pstate_update_util_hwp :
2172 intel_pstate_update_util));
2173 cpu->update_util_set = true;
2176 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2178 struct cpudata *cpu_data = all_cpu_data[cpu];
2180 if (!cpu_data->update_util_set)
2183 cpufreq_remove_update_util_hook(cpu);
2184 cpu_data->update_util_set = false;
2188 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2190 return global.turbo_disabled || global.no_turbo ?
2191 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2194 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2195 unsigned int policy_min,
2196 unsigned int policy_max)
2198 int scaling = cpu->pstate.scaling;
2199 int32_t max_policy_perf, min_policy_perf;
2202 * HWP needs some special consideration, because HWP_REQUEST uses
2203 * abstract values to represent performance rather than pure ratios.
2206 intel_pstate_get_hwp_cap(cpu);
2208 max_policy_perf = policy_max / scaling;
2209 if (policy_max == policy_min) {
2210 min_policy_perf = max_policy_perf;
2212 min_policy_perf = policy_min / scaling;
2213 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2214 0, max_policy_perf);
2217 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2218 cpu->cpu, min_policy_perf, max_policy_perf);
2220 /* Normalize user input to [min_perf, max_perf] */
2221 if (per_cpu_limits) {
2222 cpu->min_perf_ratio = min_policy_perf;
2223 cpu->max_perf_ratio = max_policy_perf;
2225 int turbo_max = cpu->pstate.turbo_pstate;
2226 int32_t global_min, global_max;
2228 /* Global limits are in percent of the maximum turbo P-state. */
2229 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2230 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2231 global_min = clamp_t(int32_t, global_min, 0, global_max);
2233 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2234 global_min, global_max);
2236 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2237 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2238 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2239 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2241 /* Make sure min_perf <= max_perf */
2242 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2243 cpu->max_perf_ratio);
2246 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2247 cpu->max_perf_ratio,
2248 cpu->min_perf_ratio);
2251 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2253 struct cpudata *cpu;
2255 if (!policy->cpuinfo.max_freq)
2258 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2259 policy->cpuinfo.max_freq, policy->max);
2261 cpu = all_cpu_data[policy->cpu];
2262 cpu->policy = policy->policy;
2264 mutex_lock(&intel_pstate_limits_lock);
2266 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2268 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2270 * NOHZ_FULL CPUs need this as the governor callback may not
2271 * be invoked on them.
2273 intel_pstate_clear_update_util_hook(policy->cpu);
2274 intel_pstate_max_within_limits(cpu);
2276 intel_pstate_set_update_util_hook(policy->cpu);
2281 * When hwp_boost was active before and dynamically it
2282 * was turned off, in that case we need to clear the
2286 intel_pstate_clear_update_util_hook(policy->cpu);
2287 intel_pstate_hwp_set(policy->cpu);
2290 mutex_unlock(&intel_pstate_limits_lock);
2295 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2296 struct cpufreq_policy_data *policy)
2299 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2300 policy->max < policy->cpuinfo.max_freq &&
2301 policy->max > cpu->pstate.max_freq) {
2302 pr_debug("policy->max > max non turbo frequency\n");
2303 policy->max = policy->cpuinfo.max_freq;
2307 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2308 struct cpufreq_policy_data *policy)
2312 update_turbo_state();
2314 intel_pstate_get_hwp_cap(cpu);
2315 max_freq = global.no_turbo || global.turbo_disabled ?
2316 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2318 max_freq = intel_pstate_get_max_freq(cpu);
2320 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2322 intel_pstate_adjust_policy_max(cpu, policy);
2325 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2327 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2332 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2334 struct cpudata *cpu = all_cpu_data[policy->cpu];
2336 pr_debug("CPU %d going offline\n", cpu->cpu);
2342 * If the CPU is an SMT thread and it goes offline with the performance
2343 * settings different from the minimum, it will prevent its sibling
2344 * from getting to lower performance levels, so force the minimum
2345 * performance on CPU offline to prevent that from happening.
2348 intel_pstate_hwp_offline(cpu);
2350 intel_pstate_set_min_pstate(cpu);
2352 intel_pstate_exit_perf_limits(policy);
2357 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2359 struct cpudata *cpu = all_cpu_data[policy->cpu];
2361 pr_debug("CPU %d going online\n", cpu->cpu);
2363 intel_pstate_init_acpi_perf_limits(policy);
2367 * Re-enable HWP and clear the "suspended" flag to let "resume"
2368 * know that it need not do that.
2370 intel_pstate_hwp_reenable(cpu);
2371 cpu->suspended = false;
2377 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2379 pr_debug("CPU %d stopping\n", policy->cpu);
2381 intel_pstate_clear_update_util_hook(policy->cpu);
2384 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2386 pr_debug("CPU %d exiting\n", policy->cpu);
2388 policy->fast_switch_possible = false;
2393 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2395 struct cpudata *cpu;
2398 rc = intel_pstate_init_cpu(policy->cpu);
2402 cpu = all_cpu_data[policy->cpu];
2404 cpu->max_perf_ratio = 0xFF;
2405 cpu->min_perf_ratio = 0;
2407 /* cpuinfo and default policy values */
2408 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2409 update_turbo_state();
2410 global.turbo_disabled_mf = global.turbo_disabled;
2411 policy->cpuinfo.max_freq = global.turbo_disabled ?
2412 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2414 policy->min = policy->cpuinfo.min_freq;
2415 policy->max = policy->cpuinfo.max_freq;
2417 intel_pstate_init_acpi_perf_limits(policy);
2419 policy->fast_switch_possible = true;
2424 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2426 int ret = __intel_pstate_cpu_init(policy);
2432 * Set the policy to powersave to provide a valid fallback value in case
2433 * the default cpufreq governor is neither powersave nor performance.
2435 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2438 struct cpudata *cpu = all_cpu_data[policy->cpu];
2440 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2446 static struct cpufreq_driver intel_pstate = {
2447 .flags = CPUFREQ_CONST_LOOPS,
2448 .verify = intel_pstate_verify_policy,
2449 .setpolicy = intel_pstate_set_policy,
2450 .suspend = intel_pstate_suspend,
2451 .resume = intel_pstate_resume,
2452 .init = intel_pstate_cpu_init,
2453 .exit = intel_pstate_cpu_exit,
2454 .stop_cpu = intel_pstate_stop_cpu,
2455 .offline = intel_pstate_cpu_offline,
2456 .online = intel_pstate_cpu_online,
2457 .update_limits = intel_pstate_update_limits,
2458 .name = "intel_pstate",
2461 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2463 struct cpudata *cpu = all_cpu_data[policy->cpu];
2465 intel_pstate_verify_cpu_policy(cpu, policy);
2466 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2471 /* Use of trace in passive mode:
2473 * In passive mode the trace core_busy field (also known as the
2474 * performance field, and lablelled as such on the graphs; also known as
2475 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2476 * driver call was via the normal or fast switch path. Various graphs
2477 * output from the intel_pstate_tracer.py utility that include core_busy
2478 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2479 * so we use 10 to indicate the normal path through the driver, and
2480 * 90 to indicate the fast switch path through the driver.
2481 * The scaled_busy field is not used, and is set to 0.
2484 #define INTEL_PSTATE_TRACE_TARGET 10
2485 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2487 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2489 struct sample *sample;
2491 if (!trace_pstate_sample_enabled())
2494 if (!intel_pstate_sample(cpu, ktime_get()))
2497 sample = &cpu->sample;
2498 trace_pstate_sample(trace_type,
2501 cpu->pstate.current_pstate,
2505 get_avg_frequency(cpu),
2506 fp_toint(cpu->iowait_boost * 100));
2509 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2510 u32 desired, bool fast_switch)
2512 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2514 value &= ~HWP_MIN_PERF(~0L);
2515 value |= HWP_MIN_PERF(min);
2517 value &= ~HWP_MAX_PERF(~0L);
2518 value |= HWP_MAX_PERF(max);
2520 value &= ~HWP_DESIRED_PERF(~0L);
2521 value |= HWP_DESIRED_PERF(desired);
2526 WRITE_ONCE(cpu->hwp_req_cached, value);
2528 wrmsrl(MSR_HWP_REQUEST, value);
2530 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2533 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2534 u32 target_pstate, bool fast_switch)
2537 wrmsrl(MSR_IA32_PERF_CTL,
2538 pstate_funcs.get_val(cpu, target_pstate));
2540 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2541 pstate_funcs.get_val(cpu, target_pstate));
2544 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2545 int target_pstate, bool fast_switch)
2547 struct cpudata *cpu = all_cpu_data[policy->cpu];
2548 int old_pstate = cpu->pstate.current_pstate;
2550 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2552 int max_pstate = policy->strict_target ?
2553 target_pstate : cpu->max_perf_ratio;
2555 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2557 } else if (target_pstate != old_pstate) {
2558 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2561 cpu->pstate.current_pstate = target_pstate;
2563 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2564 INTEL_PSTATE_TRACE_TARGET, old_pstate);
2566 return target_pstate;
2569 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2570 unsigned int target_freq,
2571 unsigned int relation)
2573 struct cpudata *cpu = all_cpu_data[policy->cpu];
2574 struct cpufreq_freqs freqs;
2577 update_turbo_state();
2579 freqs.old = policy->cur;
2580 freqs.new = target_freq;
2582 cpufreq_freq_transition_begin(policy, &freqs);
2585 case CPUFREQ_RELATION_L:
2586 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2588 case CPUFREQ_RELATION_H:
2589 target_pstate = freqs.new / cpu->pstate.scaling;
2592 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2596 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2598 freqs.new = target_pstate * cpu->pstate.scaling;
2600 cpufreq_freq_transition_end(policy, &freqs, false);
2605 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2606 unsigned int target_freq)
2608 struct cpudata *cpu = all_cpu_data[policy->cpu];
2611 update_turbo_state();
2613 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2615 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2617 return target_pstate * cpu->pstate.scaling;
2620 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2621 unsigned long min_perf,
2622 unsigned long target_perf,
2623 unsigned long capacity)
2625 struct cpudata *cpu = all_cpu_data[cpunum];
2626 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2627 int old_pstate = cpu->pstate.current_pstate;
2628 int cap_pstate, min_pstate, max_pstate, target_pstate;
2630 update_turbo_state();
2631 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2632 HWP_HIGHEST_PERF(hwp_cap);
2634 /* Optimization: Avoid unnecessary divisions. */
2636 target_pstate = cap_pstate;
2637 if (target_perf < capacity)
2638 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2640 min_pstate = cap_pstate;
2641 if (min_perf < capacity)
2642 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2644 if (min_pstate < cpu->pstate.min_pstate)
2645 min_pstate = cpu->pstate.min_pstate;
2647 if (min_pstate < cpu->min_perf_ratio)
2648 min_pstate = cpu->min_perf_ratio;
2650 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2651 if (max_pstate < min_pstate)
2652 max_pstate = min_pstate;
2654 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2656 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2658 cpu->pstate.current_pstate = target_pstate;
2659 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2662 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2664 struct freq_qos_request *req;
2665 struct cpudata *cpu;
2669 dev = get_cpu_device(policy->cpu);
2673 ret = __intel_pstate_cpu_init(policy);
2677 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2678 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2679 policy->cur = policy->cpuinfo.min_freq;
2681 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2687 cpu = all_cpu_data[policy->cpu];
2692 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2694 intel_pstate_get_hwp_cap(cpu);
2696 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2697 WRITE_ONCE(cpu->hwp_req_cached, value);
2699 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2701 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2704 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2706 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2709 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2713 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2715 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2718 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2719 goto remove_min_req;
2722 policy->driver_data = req;
2727 freq_qos_remove_request(req);
2731 intel_pstate_exit_perf_limits(policy);
2736 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2738 struct freq_qos_request *req;
2740 req = policy->driver_data;
2742 freq_qos_remove_request(req + 1);
2743 freq_qos_remove_request(req);
2746 return intel_pstate_cpu_exit(policy);
2749 static struct cpufreq_driver intel_cpufreq = {
2750 .flags = CPUFREQ_CONST_LOOPS,
2751 .verify = intel_cpufreq_verify_policy,
2752 .target = intel_cpufreq_target,
2753 .fast_switch = intel_cpufreq_fast_switch,
2754 .init = intel_cpufreq_cpu_init,
2755 .exit = intel_cpufreq_cpu_exit,
2756 .offline = intel_pstate_cpu_offline,
2757 .online = intel_pstate_cpu_online,
2758 .suspend = intel_pstate_suspend,
2759 .resume = intel_pstate_resume,
2760 .update_limits = intel_pstate_update_limits,
2761 .name = "intel_cpufreq",
2764 static struct cpufreq_driver *default_driver;
2766 static void intel_pstate_driver_cleanup(void)
2771 for_each_online_cpu(cpu) {
2772 if (all_cpu_data[cpu]) {
2773 if (intel_pstate_driver == &intel_pstate)
2774 intel_pstate_clear_update_util_hook(cpu);
2776 kfree(all_cpu_data[cpu]);
2777 all_cpu_data[cpu] = NULL;
2782 intel_pstate_driver = NULL;
2785 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2789 if (driver == &intel_pstate)
2790 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2792 memset(&global, 0, sizeof(global));
2793 global.max_perf_pct = 100;
2795 intel_pstate_driver = driver;
2796 ret = cpufreq_register_driver(intel_pstate_driver);
2798 intel_pstate_driver_cleanup();
2802 global.min_perf_pct = min_perf_pct_min();
2807 static ssize_t intel_pstate_show_status(char *buf)
2809 if (!intel_pstate_driver)
2810 return sprintf(buf, "off\n");
2812 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2813 "active" : "passive");
2816 static int intel_pstate_update_status(const char *buf, size_t size)
2818 if (size == 3 && !strncmp(buf, "off", size)) {
2819 if (!intel_pstate_driver)
2825 cpufreq_unregister_driver(intel_pstate_driver);
2826 intel_pstate_driver_cleanup();
2830 if (size == 6 && !strncmp(buf, "active", size)) {
2831 if (intel_pstate_driver) {
2832 if (intel_pstate_driver == &intel_pstate)
2835 cpufreq_unregister_driver(intel_pstate_driver);
2838 return intel_pstate_register_driver(&intel_pstate);
2841 if (size == 7 && !strncmp(buf, "passive", size)) {
2842 if (intel_pstate_driver) {
2843 if (intel_pstate_driver == &intel_cpufreq)
2846 cpufreq_unregister_driver(intel_pstate_driver);
2847 intel_pstate_sysfs_hide_hwp_dynamic_boost();
2850 return intel_pstate_register_driver(&intel_cpufreq);
2856 static int no_load __initdata;
2857 static int no_hwp __initdata;
2858 static int hwp_only __initdata;
2859 static unsigned int force_load __initdata;
2861 static int __init intel_pstate_msrs_not_valid(void)
2863 if (!pstate_funcs.get_max() ||
2864 !pstate_funcs.get_min() ||
2865 !pstate_funcs.get_turbo())
2871 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2873 pstate_funcs.get_max = funcs->get_max;
2874 pstate_funcs.get_max_physical = funcs->get_max_physical;
2875 pstate_funcs.get_min = funcs->get_min;
2876 pstate_funcs.get_turbo = funcs->get_turbo;
2877 pstate_funcs.get_scaling = funcs->get_scaling;
2878 pstate_funcs.get_val = funcs->get_val;
2879 pstate_funcs.get_vid = funcs->get_vid;
2880 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2885 static bool __init intel_pstate_no_acpi_pss(void)
2889 for_each_possible_cpu(i) {
2891 union acpi_object *pss;
2892 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2893 struct acpi_processor *pr = per_cpu(processors, i);
2898 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2899 if (ACPI_FAILURE(status))
2902 pss = buffer.pointer;
2903 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2911 pr_debug("ACPI _PSS not found\n");
2915 static bool __init intel_pstate_no_acpi_pcch(void)
2920 status = acpi_get_handle(NULL, "\\_SB", &handle);
2921 if (ACPI_FAILURE(status))
2924 if (acpi_has_method(handle, "PCCH"))
2928 pr_debug("ACPI PCCH not found\n");
2932 static bool __init intel_pstate_has_acpi_ppc(void)
2936 for_each_possible_cpu(i) {
2937 struct acpi_processor *pr = per_cpu(processors, i);
2941 if (acpi_has_method(pr->handle, "_PPC"))
2944 pr_debug("ACPI _PPC not found\n");
2953 /* Hardware vendor-specific info that has its own power management modes */
2954 static struct acpi_platform_list plat_info[] __initdata = {
2955 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2956 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2957 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2958 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2959 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2960 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2961 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2962 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2963 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2964 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2965 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2966 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2967 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2968 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2969 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2973 #define BITMASK_OOB (BIT(8) | BIT(18))
2975 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2977 const struct x86_cpu_id *id;
2981 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2983 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2984 if (misc_pwr & BITMASK_OOB) {
2985 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2986 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2991 idx = acpi_match_platform_list(plat_info);
2995 switch (plat_info[idx].data) {
2997 if (!intel_pstate_no_acpi_pss())
3000 return intel_pstate_no_acpi_pcch();
3002 return intel_pstate_has_acpi_ppc() && !force_load;
3008 static void intel_pstate_request_control_from_smm(void)
3011 * It may be unsafe to request P-states control from SMM if _PPC support
3012 * has not been enabled.
3015 acpi_processor_pstate_control();
3017 #else /* CONFIG_ACPI not enabled */
3018 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3019 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3020 static inline void intel_pstate_request_control_from_smm(void) {}
3021 #endif /* CONFIG_ACPI */
3023 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3025 #define X86_MATCH_HWP(model, hwp_mode) \
3026 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3027 X86_FEATURE_HWP, hwp_mode)
3029 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3030 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3031 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3032 X86_MATCH_HWP(ANY, 0),
3036 static bool intel_pstate_hwp_is_enabled(void)
3040 rdmsrl(MSR_PM_ENABLE, value);
3041 return !!(value & 0x1);
3044 static int __init intel_pstate_init(void)
3046 const struct x86_cpu_id *id;
3049 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3055 id = x86_match_cpu(hwp_support_ids);
3057 copy_cpu_funcs(&core_funcs);
3059 * Avoid enabling HWP for processors without EPP support,
3060 * because that means incomplete HWP implementation which is a
3061 * corner case and supporting it is generally problematic.
3063 * If HWP is enabled already, though, there is no choice but to
3066 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) ||
3067 intel_pstate_hwp_is_enabled()) {
3069 hwp_mode_bdw = id->driver_data;
3070 intel_pstate.attr = hwp_cpufreq_attrs;
3071 intel_cpufreq.attr = hwp_cpufreq_attrs;
3072 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3073 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3074 if (!default_driver)
3075 default_driver = &intel_pstate;
3077 goto hwp_cpu_matched;
3080 id = x86_match_cpu(intel_pstate_cpu_ids);
3082 pr_info("CPU model not supported\n");
3086 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3089 if (intel_pstate_msrs_not_valid()) {
3090 pr_info("Invalid MSRs\n");
3093 /* Without HWP start in the passive mode. */
3094 if (!default_driver)
3095 default_driver = &intel_cpufreq;
3099 * The Intel pstate driver will be ignored if the platform
3100 * firmware has its own power management modes.
3102 if (intel_pstate_platform_pwr_mgmt_exists()) {
3103 pr_info("P-states controlled by the platform\n");
3107 if (!hwp_active && hwp_only)
3110 pr_info("Intel P-state driver initializing\n");
3112 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3116 intel_pstate_request_control_from_smm();
3118 intel_pstate_sysfs_expose_params();
3120 mutex_lock(&intel_pstate_driver_lock);
3121 rc = intel_pstate_register_driver(default_driver);
3122 mutex_unlock(&intel_pstate_driver_lock);
3124 intel_pstate_sysfs_remove();
3129 const struct x86_cpu_id *id;
3131 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3133 set_power_ctl_ee_state(false);
3134 pr_info("Disabling energy efficiency optimization\n");
3137 pr_info("HWP enabled\n");
3142 device_initcall(intel_pstate_init);
3144 static int __init intel_pstate_setup(char *str)
3149 if (!strcmp(str, "disable"))
3151 else if (!strcmp(str, "active"))
3152 default_driver = &intel_pstate;
3153 else if (!strcmp(str, "passive"))
3154 default_driver = &intel_cpufreq;
3156 if (!strcmp(str, "no_hwp")) {
3157 pr_info("HWP disabled\n");
3160 if (!strcmp(str, "force"))
3162 if (!strcmp(str, "hwp_only"))
3164 if (!strcmp(str, "per_cpu_perf_limits"))
3165 per_cpu_limits = true;
3168 if (!strcmp(str, "support_acpi_ppc"))
3174 early_param("intel_pstate", intel_pstate_setup);
3176 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3177 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3178 MODULE_LICENSE("GPL");