staging: bcm2835-camera: fix overflow warnings
[platform/kernel/linux-rpi.git] / drivers / cpufreq / imx6q-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Freescale Semiconductor, Inc.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/cpu.h>
8 #include <linux/cpufreq.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/pm_opp.h>
15 #include <linux/platform_device.h>
16 #include <linux/regulator/consumer.h>
17
18 #define PU_SOC_VOLTAGE_NORMAL   1250000
19 #define PU_SOC_VOLTAGE_HIGH     1275000
20 #define FREQ_1P2_GHZ            1200000000
21
22 static struct regulator *arm_reg;
23 static struct regulator *pu_reg;
24 static struct regulator *soc_reg;
25
26 enum IMX6_CPUFREQ_CLKS {
27         ARM,
28         PLL1_SYS,
29         STEP,
30         PLL1_SW,
31         PLL2_PFD2_396M,
32         /* MX6UL requires two more clks */
33         PLL2_BUS,
34         SECONDARY_SEL,
35 };
36 #define IMX6Q_CPUFREQ_CLK_NUM           5
37 #define IMX6UL_CPUFREQ_CLK_NUM          7
38
39 static int num_clks;
40 static struct clk_bulk_data clks[] = {
41         { .id = "arm" },
42         { .id = "pll1_sys" },
43         { .id = "step" },
44         { .id = "pll1_sw" },
45         { .id = "pll2_pfd2_396m" },
46         { .id = "pll2_bus" },
47         { .id = "secondary_sel" },
48 };
49
50 static struct device *cpu_dev;
51 static struct cpufreq_frequency_table *freq_table;
52 static unsigned int max_freq;
53 static unsigned int transition_latency;
54
55 static u32 *imx6_soc_volt;
56 static u32 soc_opp_count;
57
58 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
59 {
60         struct dev_pm_opp *opp;
61         unsigned long freq_hz, volt, volt_old;
62         unsigned int old_freq, new_freq;
63         bool pll1_sys_temp_enabled = false;
64         int ret;
65
66         new_freq = freq_table[index].frequency;
67         freq_hz = new_freq * 1000;
68         old_freq = clk_get_rate(clks[ARM].clk) / 1000;
69
70         opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
71         if (IS_ERR(opp)) {
72                 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
73                 return PTR_ERR(opp);
74         }
75
76         volt = dev_pm_opp_get_voltage(opp);
77         dev_pm_opp_put(opp);
78
79         volt_old = regulator_get_voltage(arm_reg);
80
81         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
82                 old_freq / 1000, volt_old / 1000,
83                 new_freq / 1000, volt / 1000);
84
85         /* scaling up?  scale voltage before frequency */
86         if (new_freq > old_freq) {
87                 if (!IS_ERR(pu_reg)) {
88                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
89                         if (ret) {
90                                 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
91                                 return ret;
92                         }
93                 }
94                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
95                 if (ret) {
96                         dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
97                         return ret;
98                 }
99                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
100                 if (ret) {
101                         dev_err(cpu_dev,
102                                 "failed to scale vddarm up: %d\n", ret);
103                         return ret;
104                 }
105         }
106
107         /*
108          * The setpoints are selected per PLL/PDF frequencies, so we need to
109          * reprogram PLL for frequency scaling.  The procedure of reprogramming
110          * PLL1 is as below.
111          * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
112          * flow is slightly different from other i.MX6 OSC.
113          * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
114          *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
115          *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
116          *  - Disable pll2_pfd2_396m_clk
117          */
118         if (of_machine_is_compatible("fsl,imx6ul") ||
119             of_machine_is_compatible("fsl,imx6ull")) {
120                 /*
121                  * When changing pll1_sw_clk's parent to pll1_sys_clk,
122                  * CPU may run at higher than 528MHz, this will lead to
123                  * the system unstable if the voltage is lower than the
124                  * voltage of 528MHz, so lower the CPU frequency to one
125                  * half before changing CPU frequency.
126                  */
127                 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
128                 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
129                 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
130                         clk_set_parent(clks[SECONDARY_SEL].clk,
131                                        clks[PLL2_BUS].clk);
132                 else
133                         clk_set_parent(clks[SECONDARY_SEL].clk,
134                                        clks[PLL2_PFD2_396M].clk);
135                 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
136                 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
137                 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
138                         clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
139                         clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
140                 }
141         } else {
142                 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
143                 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
144                 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
145                         clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
146                         clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
147                 } else {
148                         /* pll1_sys needs to be enabled for divider rate change to work. */
149                         pll1_sys_temp_enabled = true;
150                         clk_prepare_enable(clks[PLL1_SYS].clk);
151                 }
152         }
153
154         /* Ensure the arm clock divider is what we expect */
155         ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
156         if (ret) {
157                 int ret1;
158
159                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
160                 ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
161                 if (ret1)
162                         dev_warn(cpu_dev,
163                                  "failed to restore vddarm voltage: %d\n", ret1);
164                 return ret;
165         }
166
167         /* PLL1 is only needed until after ARM-PODF is set. */
168         if (pll1_sys_temp_enabled)
169                 clk_disable_unprepare(clks[PLL1_SYS].clk);
170
171         /* scaling down?  scale voltage after frequency */
172         if (new_freq < old_freq) {
173                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
174                 if (ret)
175                         dev_warn(cpu_dev,
176                                  "failed to scale vddarm down: %d\n", ret);
177                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
178                 if (ret)
179                         dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
180                 if (!IS_ERR(pu_reg)) {
181                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
182                         if (ret)
183                                 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
184                 }
185         }
186
187         return 0;
188 }
189
190 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
191 {
192         policy->clk = clks[ARM].clk;
193         cpufreq_generic_init(policy, freq_table, transition_latency);
194         policy->suspend_freq = max_freq;
195
196         return 0;
197 }
198
199 static struct cpufreq_driver imx6q_cpufreq_driver = {
200         .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
201                  CPUFREQ_IS_COOLING_DEV,
202         .verify = cpufreq_generic_frequency_table_verify,
203         .target_index = imx6q_set_target,
204         .get = cpufreq_generic_get,
205         .init = imx6q_cpufreq_init,
206         .register_em = cpufreq_register_em_with_opp,
207         .name = "imx6q-cpufreq",
208         .attr = cpufreq_generic_attr,
209         .suspend = cpufreq_generic_suspend,
210 };
211
212 #define OCOTP_CFG3                      0x440
213 #define OCOTP_CFG3_SPEED_SHIFT          16
214 #define OCOTP_CFG3_SPEED_1P2GHZ         0x3
215 #define OCOTP_CFG3_SPEED_996MHZ         0x2
216 #define OCOTP_CFG3_SPEED_852MHZ         0x1
217
218 static int imx6q_opp_check_speed_grading(struct device *dev)
219 {
220         struct device_node *np;
221         void __iomem *base;
222         u32 val;
223         int ret;
224
225         if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
226                 ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
227                 if (ret)
228                         return ret;
229         } else {
230                 np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
231                 if (!np)
232                         return -ENOENT;
233
234                 base = of_iomap(np, 0);
235                 of_node_put(np);
236                 if (!base) {
237                         dev_err(dev, "failed to map ocotp\n");
238                         return -EFAULT;
239                 }
240
241                 /*
242                  * SPEED_GRADING[1:0] defines the max speed of ARM:
243                  * 2b'11: 1200000000Hz;
244                  * 2b'10: 996000000Hz;
245                  * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
246                  * 2b'00: 792000000Hz;
247                  * We need to set the max speed of ARM according to fuse map.
248                  */
249                 val = readl_relaxed(base + OCOTP_CFG3);
250                 iounmap(base);
251         }
252
253         val >>= OCOTP_CFG3_SPEED_SHIFT;
254         val &= 0x3;
255
256         if (val < OCOTP_CFG3_SPEED_996MHZ)
257                 if (dev_pm_opp_disable(dev, 996000000))
258                         dev_warn(dev, "failed to disable 996MHz OPP\n");
259
260         if (of_machine_is_compatible("fsl,imx6q") ||
261             of_machine_is_compatible("fsl,imx6qp")) {
262                 if (val != OCOTP_CFG3_SPEED_852MHZ)
263                         if (dev_pm_opp_disable(dev, 852000000))
264                                 dev_warn(dev, "failed to disable 852MHz OPP\n");
265                 if (val != OCOTP_CFG3_SPEED_1P2GHZ)
266                         if (dev_pm_opp_disable(dev, 1200000000))
267                                 dev_warn(dev, "failed to disable 1.2GHz OPP\n");
268         }
269
270         return 0;
271 }
272
273 #define OCOTP_CFG3_6UL_SPEED_696MHZ     0x2
274 #define OCOTP_CFG3_6ULL_SPEED_792MHZ    0x2
275 #define OCOTP_CFG3_6ULL_SPEED_900MHZ    0x3
276
277 static int imx6ul_opp_check_speed_grading(struct device *dev)
278 {
279         u32 val;
280         int ret = 0;
281
282         if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
283                 ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
284                 if (ret)
285                         return ret;
286         } else {
287                 struct device_node *np;
288                 void __iomem *base;
289
290                 np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
291                 if (!np)
292                         np = of_find_compatible_node(NULL, NULL,
293                                                      "fsl,imx6ull-ocotp");
294                 if (!np)
295                         return -ENOENT;
296
297                 base = of_iomap(np, 0);
298                 of_node_put(np);
299                 if (!base) {
300                         dev_err(dev, "failed to map ocotp\n");
301                         return -EFAULT;
302                 }
303
304                 val = readl_relaxed(base + OCOTP_CFG3);
305                 iounmap(base);
306         }
307
308         /*
309          * Speed GRADING[1:0] defines the max speed of ARM:
310          * 2b'00: Reserved;
311          * 2b'01: 528000000Hz;
312          * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
313          * 2b'11: 900000000Hz on i.MX6ULL only;
314          * We need to set the max speed of ARM according to fuse map.
315          */
316         val >>= OCOTP_CFG3_SPEED_SHIFT;
317         val &= 0x3;
318
319         if (of_machine_is_compatible("fsl,imx6ul")) {
320                 if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
321                         if (dev_pm_opp_disable(dev, 696000000))
322                                 dev_warn(dev, "failed to disable 696MHz OPP\n");
323         }
324
325         if (of_machine_is_compatible("fsl,imx6ull")) {
326                 if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
327                         if (dev_pm_opp_disable(dev, 792000000))
328                                 dev_warn(dev, "failed to disable 792MHz OPP\n");
329
330                 if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
331                         if (dev_pm_opp_disable(dev, 900000000))
332                                 dev_warn(dev, "failed to disable 900MHz OPP\n");
333         }
334
335         return ret;
336 }
337
338 static int imx6q_cpufreq_probe(struct platform_device *pdev)
339 {
340         struct device_node *np;
341         struct dev_pm_opp *opp;
342         unsigned long min_volt, max_volt;
343         int num, ret;
344         const struct property *prop;
345         const __be32 *val;
346         u32 nr, i, j;
347
348         cpu_dev = get_cpu_device(0);
349         if (!cpu_dev) {
350                 pr_err("failed to get cpu0 device\n");
351                 return -ENODEV;
352         }
353
354         np = of_node_get(cpu_dev->of_node);
355         if (!np) {
356                 dev_err(cpu_dev, "failed to find cpu0 node\n");
357                 return -ENOENT;
358         }
359
360         if (of_machine_is_compatible("fsl,imx6ul") ||
361             of_machine_is_compatible("fsl,imx6ull"))
362                 num_clks = IMX6UL_CPUFREQ_CLK_NUM;
363         else
364                 num_clks = IMX6Q_CPUFREQ_CLK_NUM;
365
366         ret = clk_bulk_get(cpu_dev, num_clks, clks);
367         if (ret)
368                 goto put_node;
369
370         arm_reg = regulator_get(cpu_dev, "arm");
371         pu_reg = regulator_get_optional(cpu_dev, "pu");
372         soc_reg = regulator_get(cpu_dev, "soc");
373         if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
374                         PTR_ERR(soc_reg) == -EPROBE_DEFER ||
375                         PTR_ERR(pu_reg) == -EPROBE_DEFER) {
376                 ret = -EPROBE_DEFER;
377                 dev_dbg(cpu_dev, "regulators not ready, defer\n");
378                 goto put_reg;
379         }
380         if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
381                 dev_err(cpu_dev, "failed to get regulators\n");
382                 ret = -ENOENT;
383                 goto put_reg;
384         }
385
386         ret = dev_pm_opp_of_add_table(cpu_dev);
387         if (ret < 0) {
388                 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
389                 goto put_reg;
390         }
391
392         if (of_machine_is_compatible("fsl,imx6ul") ||
393             of_machine_is_compatible("fsl,imx6ull")) {
394                 ret = imx6ul_opp_check_speed_grading(cpu_dev);
395         } else {
396                 ret = imx6q_opp_check_speed_grading(cpu_dev);
397         }
398         if (ret) {
399                 if (ret != -EPROBE_DEFER)
400                         dev_err(cpu_dev, "failed to read ocotp: %d\n",
401                                 ret);
402                 goto out_free_opp;
403         }
404
405         num = dev_pm_opp_get_opp_count(cpu_dev);
406         if (num < 0) {
407                 ret = num;
408                 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
409                 goto out_free_opp;
410         }
411
412         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
413         if (ret) {
414                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
415                 goto out_free_opp;
416         }
417
418         /* Make imx6_soc_volt array's size same as arm opp number */
419         imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
420                                      GFP_KERNEL);
421         if (imx6_soc_volt == NULL) {
422                 ret = -ENOMEM;
423                 goto free_freq_table;
424         }
425
426         prop = of_find_property(np, "fsl,soc-operating-points", NULL);
427         if (!prop || !prop->value)
428                 goto soc_opp_out;
429
430         /*
431          * Each OPP is a set of tuples consisting of frequency and
432          * voltage like <freq-kHz vol-uV>.
433          */
434         nr = prop->length / sizeof(u32);
435         if (nr % 2 || (nr / 2) < num)
436                 goto soc_opp_out;
437
438         for (j = 0; j < num; j++) {
439                 val = prop->value;
440                 for (i = 0; i < nr / 2; i++) {
441                         unsigned long freq = be32_to_cpup(val++);
442                         unsigned long volt = be32_to_cpup(val++);
443                         if (freq_table[j].frequency == freq) {
444                                 imx6_soc_volt[soc_opp_count++] = volt;
445                                 break;
446                         }
447                 }
448         }
449
450 soc_opp_out:
451         /* use fixed soc opp volt if no valid soc opp info found in dtb */
452         if (soc_opp_count != num) {
453                 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
454                 for (j = 0; j < num; j++)
455                         imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
456                 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
457                         imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
458         }
459
460         if (of_property_read_u32(np, "clock-latency", &transition_latency))
461                 transition_latency = CPUFREQ_ETERNAL;
462
463         /*
464          * Calculate the ramp time for max voltage change in the
465          * VDDSOC and VDDPU regulators.
466          */
467         ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
468         if (ret > 0)
469                 transition_latency += ret * 1000;
470         if (!IS_ERR(pu_reg)) {
471                 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
472                 if (ret > 0)
473                         transition_latency += ret * 1000;
474         }
475
476         /*
477          * OPP is maintained in order of increasing frequency, and
478          * freq_table initialised from OPP is therefore sorted in the
479          * same order.
480          */
481         max_freq = freq_table[--num].frequency;
482         opp = dev_pm_opp_find_freq_exact(cpu_dev,
483                                   freq_table[0].frequency * 1000, true);
484         min_volt = dev_pm_opp_get_voltage(opp);
485         dev_pm_opp_put(opp);
486         opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
487         max_volt = dev_pm_opp_get_voltage(opp);
488         dev_pm_opp_put(opp);
489
490         ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
491         if (ret > 0)
492                 transition_latency += ret * 1000;
493
494         ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
495         if (ret) {
496                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
497                 goto free_freq_table;
498         }
499
500         of_node_put(np);
501         return 0;
502
503 free_freq_table:
504         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
505 out_free_opp:
506         dev_pm_opp_of_remove_table(cpu_dev);
507 put_reg:
508         if (!IS_ERR(arm_reg))
509                 regulator_put(arm_reg);
510         if (!IS_ERR(pu_reg))
511                 regulator_put(pu_reg);
512         if (!IS_ERR(soc_reg))
513                 regulator_put(soc_reg);
514
515         clk_bulk_put(num_clks, clks);
516 put_node:
517         of_node_put(np);
518
519         return ret;
520 }
521
522 static int imx6q_cpufreq_remove(struct platform_device *pdev)
523 {
524         cpufreq_unregister_driver(&imx6q_cpufreq_driver);
525         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
526         dev_pm_opp_of_remove_table(cpu_dev);
527         regulator_put(arm_reg);
528         if (!IS_ERR(pu_reg))
529                 regulator_put(pu_reg);
530         regulator_put(soc_reg);
531
532         clk_bulk_put(num_clks, clks);
533
534         return 0;
535 }
536
537 static struct platform_driver imx6q_cpufreq_platdrv = {
538         .driver = {
539                 .name   = "imx6q-cpufreq",
540         },
541         .probe          = imx6q_cpufreq_probe,
542         .remove         = imx6q_cpufreq_remove,
543 };
544 module_platform_driver(imx6q_cpufreq_platdrv);
545
546 MODULE_ALIAS("platform:imx6q-cpufreq");
547 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
548 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
549 MODULE_LICENSE("GPL");