Merge tag 'asoc-fix-v5.4-rc6' of https://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / drivers / cpufreq / cpufreq_ondemand.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/cpufreq/cpufreq_ondemand.c
4  *
5  *  Copyright (C)  2001 Russell King
6  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
7  *                      Jun Nakajima <jun.nakajima@intel.com>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/cpu.h>
13 #include <linux/percpu-defs.h>
14 #include <linux/slab.h>
15 #include <linux/tick.h>
16 #include <linux/sched/cpufreq.h>
17
18 #include "cpufreq_ondemand.h"
19
20 /* On-demand governor macros */
21 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
22 #define DEF_SAMPLING_DOWN_FACTOR                (1)
23 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
24 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
25 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
26 #define MIN_FREQUENCY_UP_THRESHOLD              (1)
27 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
28
29 static struct od_ops od_ops;
30
31 static unsigned int default_powersave_bias;
32
33 /*
34  * Not all CPUs want IO time to be accounted as busy; this depends on how
35  * efficient idling at a higher frequency/voltage is.
36  * Pavel Machek says this is not so for various generations of AMD and old
37  * Intel systems.
38  * Mike Chan (android.com) claims this is also not true for ARM.
39  * Because of this, whitelist specific known (series) of CPUs by default, and
40  * leave all others up to the user.
41  */
42 static int should_io_be_busy(void)
43 {
44 #if defined(CONFIG_X86)
45         /*
46          * For Intel, Core 2 (model 15) and later have an efficient idle.
47          */
48         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
49                         boot_cpu_data.x86 == 6 &&
50                         boot_cpu_data.x86_model >= 15)
51                 return 1;
52 #endif
53         return 0;
54 }
55
56 /*
57  * Find right freq to be set now with powersave_bias on.
58  * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
59  * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
60  */
61 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
62                 unsigned int freq_next, unsigned int relation)
63 {
64         unsigned int freq_req, freq_reduc, freq_avg;
65         unsigned int freq_hi, freq_lo;
66         unsigned int index;
67         unsigned int delay_hi_us;
68         struct policy_dbs_info *policy_dbs = policy->governor_data;
69         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
70         struct dbs_data *dbs_data = policy_dbs->dbs_data;
71         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
72         struct cpufreq_frequency_table *freq_table = policy->freq_table;
73
74         if (!freq_table) {
75                 dbs_info->freq_lo = 0;
76                 dbs_info->freq_lo_delay_us = 0;
77                 return freq_next;
78         }
79
80         index = cpufreq_frequency_table_target(policy, freq_next, relation);
81         freq_req = freq_table[index].frequency;
82         freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
83         freq_avg = freq_req - freq_reduc;
84
85         /* Find freq bounds for freq_avg in freq_table */
86         index = cpufreq_table_find_index_h(policy, freq_avg);
87         freq_lo = freq_table[index].frequency;
88         index = cpufreq_table_find_index_l(policy, freq_avg);
89         freq_hi = freq_table[index].frequency;
90
91         /* Find out how long we have to be in hi and lo freqs */
92         if (freq_hi == freq_lo) {
93                 dbs_info->freq_lo = 0;
94                 dbs_info->freq_lo_delay_us = 0;
95                 return freq_lo;
96         }
97         delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
98         delay_hi_us += (freq_hi - freq_lo) / 2;
99         delay_hi_us /= freq_hi - freq_lo;
100         dbs_info->freq_hi_delay_us = delay_hi_us;
101         dbs_info->freq_lo = freq_lo;
102         dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
103         return freq_hi;
104 }
105
106 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
107 {
108         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
109
110         dbs_info->freq_lo = 0;
111 }
112
113 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
114 {
115         struct policy_dbs_info *policy_dbs = policy->governor_data;
116         struct dbs_data *dbs_data = policy_dbs->dbs_data;
117         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
118
119         if (od_tuners->powersave_bias)
120                 freq = od_ops.powersave_bias_target(policy, freq,
121                                 CPUFREQ_RELATION_H);
122         else if (policy->cur == policy->max)
123                 return;
124
125         __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
126                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
127 }
128
129 /*
130  * Every sampling_rate, we check, if current idle time is less than 20%
131  * (default), then we try to increase frequency. Else, we adjust the frequency
132  * proportional to load.
133  */
134 static void od_update(struct cpufreq_policy *policy)
135 {
136         struct policy_dbs_info *policy_dbs = policy->governor_data;
137         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
138         struct dbs_data *dbs_data = policy_dbs->dbs_data;
139         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
140         unsigned int load = dbs_update(policy);
141
142         dbs_info->freq_lo = 0;
143
144         /* Check for frequency increase */
145         if (load > dbs_data->up_threshold) {
146                 /* If switching to max speed, apply sampling_down_factor */
147                 if (policy->cur < policy->max)
148                         policy_dbs->rate_mult = dbs_data->sampling_down_factor;
149                 dbs_freq_increase(policy, policy->max);
150         } else {
151                 /* Calculate the next frequency proportional to load */
152                 unsigned int freq_next, min_f, max_f;
153
154                 min_f = policy->cpuinfo.min_freq;
155                 max_f = policy->cpuinfo.max_freq;
156                 freq_next = min_f + load * (max_f - min_f) / 100;
157
158                 /* No longer fully busy, reset rate_mult */
159                 policy_dbs->rate_mult = 1;
160
161                 if (od_tuners->powersave_bias)
162                         freq_next = od_ops.powersave_bias_target(policy,
163                                                                  freq_next,
164                                                                  CPUFREQ_RELATION_L);
165
166                 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
167         }
168 }
169
170 static unsigned int od_dbs_update(struct cpufreq_policy *policy)
171 {
172         struct policy_dbs_info *policy_dbs = policy->governor_data;
173         struct dbs_data *dbs_data = policy_dbs->dbs_data;
174         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
175         int sample_type = dbs_info->sample_type;
176
177         /* Common NORMAL_SAMPLE setup */
178         dbs_info->sample_type = OD_NORMAL_SAMPLE;
179         /*
180          * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
181          * it then.
182          */
183         if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
184                 __cpufreq_driver_target(policy, dbs_info->freq_lo,
185                                         CPUFREQ_RELATION_H);
186                 return dbs_info->freq_lo_delay_us;
187         }
188
189         od_update(policy);
190
191         if (dbs_info->freq_lo) {
192                 /* Setup SUB_SAMPLE */
193                 dbs_info->sample_type = OD_SUB_SAMPLE;
194                 return dbs_info->freq_hi_delay_us;
195         }
196
197         return dbs_data->sampling_rate * policy_dbs->rate_mult;
198 }
199
200 /************************** sysfs interface ************************/
201 static struct dbs_governor od_dbs_gov;
202
203 static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
204                                 size_t count)
205 {
206         struct dbs_data *dbs_data = to_dbs_data(attr_set);
207         unsigned int input;
208         int ret;
209
210         ret = sscanf(buf, "%u", &input);
211         if (ret != 1)
212                 return -EINVAL;
213         dbs_data->io_is_busy = !!input;
214
215         /* we need to re-evaluate prev_cpu_idle */
216         gov_update_cpu_data(dbs_data);
217
218         return count;
219 }
220
221 static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
222                                   const char *buf, size_t count)
223 {
224         struct dbs_data *dbs_data = to_dbs_data(attr_set);
225         unsigned int input;
226         int ret;
227         ret = sscanf(buf, "%u", &input);
228
229         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
230                         input < MIN_FREQUENCY_UP_THRESHOLD) {
231                 return -EINVAL;
232         }
233
234         dbs_data->up_threshold = input;
235         return count;
236 }
237
238 static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
239                                           const char *buf, size_t count)
240 {
241         struct dbs_data *dbs_data = to_dbs_data(attr_set);
242         struct policy_dbs_info *policy_dbs;
243         unsigned int input;
244         int ret;
245         ret = sscanf(buf, "%u", &input);
246
247         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
248                 return -EINVAL;
249
250         dbs_data->sampling_down_factor = input;
251
252         /* Reset down sampling multiplier in case it was active */
253         list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
254                 /*
255                  * Doing this without locking might lead to using different
256                  * rate_mult values in od_update() and od_dbs_update().
257                  */
258                 mutex_lock(&policy_dbs->update_mutex);
259                 policy_dbs->rate_mult = 1;
260                 mutex_unlock(&policy_dbs->update_mutex);
261         }
262
263         return count;
264 }
265
266 static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
267                                       const char *buf, size_t count)
268 {
269         struct dbs_data *dbs_data = to_dbs_data(attr_set);
270         unsigned int input;
271         int ret;
272
273         ret = sscanf(buf, "%u", &input);
274         if (ret != 1)
275                 return -EINVAL;
276
277         if (input > 1)
278                 input = 1;
279
280         if (input == dbs_data->ignore_nice_load) { /* nothing to do */
281                 return count;
282         }
283         dbs_data->ignore_nice_load = input;
284
285         /* we need to re-evaluate prev_cpu_idle */
286         gov_update_cpu_data(dbs_data);
287
288         return count;
289 }
290
291 static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
292                                     const char *buf, size_t count)
293 {
294         struct dbs_data *dbs_data = to_dbs_data(attr_set);
295         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
296         struct policy_dbs_info *policy_dbs;
297         unsigned int input;
298         int ret;
299         ret = sscanf(buf, "%u", &input);
300
301         if (ret != 1)
302                 return -EINVAL;
303
304         if (input > 1000)
305                 input = 1000;
306
307         od_tuners->powersave_bias = input;
308
309         list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
310                 ondemand_powersave_bias_init(policy_dbs->policy);
311
312         return count;
313 }
314
315 gov_show_one_common(sampling_rate);
316 gov_show_one_common(up_threshold);
317 gov_show_one_common(sampling_down_factor);
318 gov_show_one_common(ignore_nice_load);
319 gov_show_one_common(io_is_busy);
320 gov_show_one(od, powersave_bias);
321
322 gov_attr_rw(sampling_rate);
323 gov_attr_rw(io_is_busy);
324 gov_attr_rw(up_threshold);
325 gov_attr_rw(sampling_down_factor);
326 gov_attr_rw(ignore_nice_load);
327 gov_attr_rw(powersave_bias);
328
329 static struct attribute *od_attributes[] = {
330         &sampling_rate.attr,
331         &up_threshold.attr,
332         &sampling_down_factor.attr,
333         &ignore_nice_load.attr,
334         &powersave_bias.attr,
335         &io_is_busy.attr,
336         NULL
337 };
338
339 /************************** sysfs end ************************/
340
341 static struct policy_dbs_info *od_alloc(void)
342 {
343         struct od_policy_dbs_info *dbs_info;
344
345         dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
346         return dbs_info ? &dbs_info->policy_dbs : NULL;
347 }
348
349 static void od_free(struct policy_dbs_info *policy_dbs)
350 {
351         kfree(to_dbs_info(policy_dbs));
352 }
353
354 static int od_init(struct dbs_data *dbs_data)
355 {
356         struct od_dbs_tuners *tuners;
357         u64 idle_time;
358         int cpu;
359
360         tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
361         if (!tuners)
362                 return -ENOMEM;
363
364         cpu = get_cpu();
365         idle_time = get_cpu_idle_time_us(cpu, NULL);
366         put_cpu();
367         if (idle_time != -1ULL) {
368                 /* Idle micro accounting is supported. Use finer thresholds */
369                 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
370         } else {
371                 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
372         }
373
374         dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
375         dbs_data->ignore_nice_load = 0;
376         tuners->powersave_bias = default_powersave_bias;
377         dbs_data->io_is_busy = should_io_be_busy();
378
379         dbs_data->tuners = tuners;
380         return 0;
381 }
382
383 static void od_exit(struct dbs_data *dbs_data)
384 {
385         kfree(dbs_data->tuners);
386 }
387
388 static void od_start(struct cpufreq_policy *policy)
389 {
390         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
391
392         dbs_info->sample_type = OD_NORMAL_SAMPLE;
393         ondemand_powersave_bias_init(policy);
394 }
395
396 static struct od_ops od_ops = {
397         .powersave_bias_target = generic_powersave_bias_target,
398 };
399
400 static struct dbs_governor od_dbs_gov = {
401         .gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
402         .kobj_type = { .default_attrs = od_attributes },
403         .gov_dbs_update = od_dbs_update,
404         .alloc = od_alloc,
405         .free = od_free,
406         .init = od_init,
407         .exit = od_exit,
408         .start = od_start,
409 };
410
411 #define CPU_FREQ_GOV_ONDEMAND   (&od_dbs_gov.gov)
412
413 static void od_set_powersave_bias(unsigned int powersave_bias)
414 {
415         unsigned int cpu;
416         cpumask_t done;
417
418         default_powersave_bias = powersave_bias;
419         cpumask_clear(&done);
420
421         get_online_cpus();
422         for_each_online_cpu(cpu) {
423                 struct cpufreq_policy *policy;
424                 struct policy_dbs_info *policy_dbs;
425                 struct dbs_data *dbs_data;
426                 struct od_dbs_tuners *od_tuners;
427
428                 if (cpumask_test_cpu(cpu, &done))
429                         continue;
430
431                 policy = cpufreq_cpu_get_raw(cpu);
432                 if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
433                         continue;
434
435                 policy_dbs = policy->governor_data;
436                 if (!policy_dbs)
437                         continue;
438
439                 cpumask_or(&done, &done, policy->cpus);
440
441                 dbs_data = policy_dbs->dbs_data;
442                 od_tuners = dbs_data->tuners;
443                 od_tuners->powersave_bias = default_powersave_bias;
444         }
445         put_online_cpus();
446 }
447
448 void od_register_powersave_bias_handler(unsigned int (*f)
449                 (struct cpufreq_policy *, unsigned int, unsigned int),
450                 unsigned int powersave_bias)
451 {
452         od_ops.powersave_bias_target = f;
453         od_set_powersave_bias(powersave_bias);
454 }
455 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
456
457 void od_unregister_powersave_bias_handler(void)
458 {
459         od_ops.powersave_bias_target = generic_powersave_bias_target;
460         od_set_powersave_bias(0);
461 }
462 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
463
464 static int __init cpufreq_gov_dbs_init(void)
465 {
466         return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
467 }
468
469 static void __exit cpufreq_gov_dbs_exit(void)
470 {
471         cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
472 }
473
474 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
475 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
476 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
477         "Low Latency Frequency Transition capable processors");
478 MODULE_LICENSE("GPL");
479
480 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
481 struct cpufreq_governor *cpufreq_default_governor(void)
482 {
483         return CPU_FREQ_GOV_ONDEMAND;
484 }
485
486 fs_initcall(cpufreq_gov_dbs_init);
487 #else
488 module_init(cpufreq_gov_dbs_init);
489 #endif
490 module_exit(cpufreq_gov_dbs_exit);