cpufreq: ondemand: Don't update sample_type if we don't evaluate load again
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
25 #include <linux/tick.h>
26 #include <linux/types.h>
27
28 #include "cpufreq_governor.h"
29
30 /* On-demand governor macros */
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define DEF_SAMPLING_DOWN_FACTOR                (1)
34 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
40
41 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
42
43 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44 static struct cpufreq_governor cpufreq_gov_ondemand;
45 #endif
46
47 static void ondemand_powersave_bias_init_cpu(int cpu)
48 {
49         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
50
51         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
52         dbs_info->freq_lo = 0;
53 }
54
55 /*
56  * Not all CPUs want IO time to be accounted as busy; this depends on how
57  * efficient idling at a higher frequency/voltage is.
58  * Pavel Machek says this is not so for various generations of AMD and old
59  * Intel systems.
60  * Mike Chan (android.com) claims this is also not true for ARM.
61  * Because of this, whitelist specific known (series) of CPUs by default, and
62  * leave all others up to the user.
63  */
64 static int should_io_be_busy(void)
65 {
66 #if defined(CONFIG_X86)
67         /*
68          * For Intel, Core 2 (model 15) and later have an efficient idle.
69          */
70         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
71                         boot_cpu_data.x86 == 6 &&
72                         boot_cpu_data.x86_model >= 15)
73                 return 1;
74 #endif
75         return 0;
76 }
77
78 /*
79  * Find right freq to be set now with powersave_bias on.
80  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
81  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
82  */
83 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
84                 unsigned int freq_next, unsigned int relation)
85 {
86         unsigned int freq_req, freq_reduc, freq_avg;
87         unsigned int freq_hi, freq_lo;
88         unsigned int index = 0;
89         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
90         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
91                                                    policy->cpu);
92         struct dbs_data *dbs_data = policy->governor_data;
93         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
94
95         if (!dbs_info->freq_table) {
96                 dbs_info->freq_lo = 0;
97                 dbs_info->freq_lo_jiffies = 0;
98                 return freq_next;
99         }
100
101         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
102                         relation, &index);
103         freq_req = dbs_info->freq_table[index].frequency;
104         freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
105         freq_avg = freq_req - freq_reduc;
106
107         /* Find freq bounds for freq_avg in freq_table */
108         index = 0;
109         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
110                         CPUFREQ_RELATION_H, &index);
111         freq_lo = dbs_info->freq_table[index].frequency;
112         index = 0;
113         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
114                         CPUFREQ_RELATION_L, &index);
115         freq_hi = dbs_info->freq_table[index].frequency;
116
117         /* Find out how long we have to be in hi and lo freqs */
118         if (freq_hi == freq_lo) {
119                 dbs_info->freq_lo = 0;
120                 dbs_info->freq_lo_jiffies = 0;
121                 return freq_lo;
122         }
123         jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
124         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
125         jiffies_hi += ((freq_hi - freq_lo) / 2);
126         jiffies_hi /= (freq_hi - freq_lo);
127         jiffies_lo = jiffies_total - jiffies_hi;
128         dbs_info->freq_lo = freq_lo;
129         dbs_info->freq_lo_jiffies = jiffies_lo;
130         dbs_info->freq_hi_jiffies = jiffies_hi;
131         return freq_hi;
132 }
133
134 static void ondemand_powersave_bias_init(void)
135 {
136         int i;
137         for_each_online_cpu(i) {
138                 ondemand_powersave_bias_init_cpu(i);
139         }
140 }
141
142 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
143 {
144         struct dbs_data *dbs_data = p->governor_data;
145         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
146
147         if (od_tuners->powersave_bias)
148                 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
149         else if (p->cur == p->max)
150                 return;
151
152         __cpufreq_driver_target(p, freq, od_tuners->powersave_bias ?
153                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
154 }
155
156 /*
157  * Every sampling_rate, we check, if current idle time is less than 20%
158  * (default), then we try to increase frequency. Every sampling_rate, we look
159  * for the lowest frequency which can sustain the load while keeping idle time
160  * over 30%. If such a frequency exist, we try to decrease to this frequency.
161  *
162  * Any frequency increase takes it to the maximum frequency. Frequency reduction
163  * happens at minimum steps of 5% (default) of current frequency
164  */
165 static void od_check_cpu(int cpu, unsigned int load_freq)
166 {
167         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
168         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
169         struct dbs_data *dbs_data = policy->governor_data;
170         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
171
172         dbs_info->freq_lo = 0;
173
174         /* Check for frequency increase */
175         if (load_freq > od_tuners->up_threshold * policy->cur) {
176                 /* If switching to max speed, apply sampling_down_factor */
177                 if (policy->cur < policy->max)
178                         dbs_info->rate_mult =
179                                 od_tuners->sampling_down_factor;
180                 dbs_freq_increase(policy, policy->max);
181                 return;
182         }
183
184         /* Check for frequency decrease */
185         /* if we cannot reduce the frequency anymore, break out early */
186         if (policy->cur == policy->min)
187                 return;
188
189         /*
190          * The optimal frequency is the frequency that is the lowest that can
191          * support the current CPU usage without triggering the up policy. To be
192          * safe, we focus 10 points under the threshold.
193          */
194         if (load_freq < od_tuners->adj_up_threshold
195                         * policy->cur) {
196                 unsigned int freq_next;
197                 freq_next = load_freq / od_tuners->adj_up_threshold;
198
199                 /* No longer fully busy, reset rate_mult */
200                 dbs_info->rate_mult = 1;
201
202                 if (freq_next < policy->min)
203                         freq_next = policy->min;
204
205                 if (!od_tuners->powersave_bias) {
206                         __cpufreq_driver_target(policy, freq_next,
207                                         CPUFREQ_RELATION_L);
208                 } else {
209                         int freq = powersave_bias_target(policy, freq_next,
210                                         CPUFREQ_RELATION_L);
211                         __cpufreq_driver_target(policy, freq,
212                                         CPUFREQ_RELATION_L);
213                 }
214         }
215 }
216
217 static void od_dbs_timer(struct work_struct *work)
218 {
219         struct delayed_work *dw = to_delayed_work(work);
220         struct od_cpu_dbs_info_s *dbs_info =
221                 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
222         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
223         struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
224                         cpu);
225         struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
226         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
227         int delay = 0, sample_type = core_dbs_info->sample_type;
228
229         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
230         if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate))
231                 goto max_delay;
232
233         /* Common NORMAL_SAMPLE setup */
234         core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
235         if (sample_type == OD_SUB_SAMPLE) {
236                 delay = core_dbs_info->freq_lo_jiffies;
237                 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
238                                 core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
239         } else {
240                 dbs_check_cpu(dbs_data, cpu);
241                 if (core_dbs_info->freq_lo) {
242                         /* Setup timer for SUB_SAMPLE */
243                         core_dbs_info->sample_type = OD_SUB_SAMPLE;
244                         delay = core_dbs_info->freq_hi_jiffies;
245                 }
246         }
247
248 max_delay:
249         if (!delay)
250                 delay = delay_for_sampling_rate(od_tuners->sampling_rate
251                                 * core_dbs_info->rate_mult);
252
253         schedule_delayed_work_on(smp_processor_id(), dw, delay);
254         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
255 }
256
257 /************************** sysfs interface ************************/
258 static struct common_dbs_data od_dbs_cdata;
259
260 /**
261  * update_sampling_rate - update sampling rate effective immediately if needed.
262  * @new_rate: new sampling rate
263  *
264  * If new rate is smaller than the old, simply updating
265  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
266  * original sampling_rate was 1 second and the requested new sampling rate is 10
267  * ms because the user needs immediate reaction from ondemand governor, but not
268  * sure if higher frequency will be required or not, then, the governor may
269  * change the sampling rate too late; up to 1 second later. Thus, if we are
270  * reducing the sampling rate, we need to make the new value effective
271  * immediately.
272  */
273 static void update_sampling_rate(struct dbs_data *dbs_data,
274                 unsigned int new_rate)
275 {
276         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
277         int cpu;
278
279         od_tuners->sampling_rate = new_rate = max(new_rate,
280                         dbs_data->min_sampling_rate);
281
282         for_each_online_cpu(cpu) {
283                 struct cpufreq_policy *policy;
284                 struct od_cpu_dbs_info_s *dbs_info;
285                 unsigned long next_sampling, appointed_at;
286
287                 policy = cpufreq_cpu_get(cpu);
288                 if (!policy)
289                         continue;
290                 if (policy->governor != &cpufreq_gov_ondemand) {
291                         cpufreq_cpu_put(policy);
292                         continue;
293                 }
294                 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
295                 cpufreq_cpu_put(policy);
296
297                 mutex_lock(&dbs_info->cdbs.timer_mutex);
298
299                 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
300                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
301                         continue;
302                 }
303
304                 next_sampling = jiffies + usecs_to_jiffies(new_rate);
305                 appointed_at = dbs_info->cdbs.work.timer.expires;
306
307                 if (time_before(next_sampling, appointed_at)) {
308
309                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
310                         cancel_delayed_work_sync(&dbs_info->cdbs.work);
311                         mutex_lock(&dbs_info->cdbs.timer_mutex);
312
313                         schedule_delayed_work_on(cpu, &dbs_info->cdbs.work,
314                                         usecs_to_jiffies(new_rate));
315
316                 }
317                 mutex_unlock(&dbs_info->cdbs.timer_mutex);
318         }
319 }
320
321 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
322                 size_t count)
323 {
324         unsigned int input;
325         int ret;
326         ret = sscanf(buf, "%u", &input);
327         if (ret != 1)
328                 return -EINVAL;
329
330         update_sampling_rate(dbs_data, input);
331         return count;
332 }
333
334 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
335                 size_t count)
336 {
337         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
338         unsigned int input;
339         int ret;
340
341         ret = sscanf(buf, "%u", &input);
342         if (ret != 1)
343                 return -EINVAL;
344         od_tuners->io_is_busy = !!input;
345         return count;
346 }
347
348 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
349                 size_t count)
350 {
351         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
352         unsigned int input;
353         int ret;
354         ret = sscanf(buf, "%u", &input);
355
356         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
357                         input < MIN_FREQUENCY_UP_THRESHOLD) {
358                 return -EINVAL;
359         }
360         /* Calculate the new adj_up_threshold */
361         od_tuners->adj_up_threshold += input;
362         od_tuners->adj_up_threshold -= od_tuners->up_threshold;
363
364         od_tuners->up_threshold = input;
365         return count;
366 }
367
368 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
369                 const char *buf, size_t count)
370 {
371         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
372         unsigned int input, j;
373         int ret;
374         ret = sscanf(buf, "%u", &input);
375
376         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
377                 return -EINVAL;
378         od_tuners->sampling_down_factor = input;
379
380         /* Reset down sampling multiplier in case it was active */
381         for_each_online_cpu(j) {
382                 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
383                                 j);
384                 dbs_info->rate_mult = 1;
385         }
386         return count;
387 }
388
389 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
390                 size_t count)
391 {
392         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
393         unsigned int input;
394         int ret;
395
396         unsigned int j;
397
398         ret = sscanf(buf, "%u", &input);
399         if (ret != 1)
400                 return -EINVAL;
401
402         if (input > 1)
403                 input = 1;
404
405         if (input == od_tuners->ignore_nice) { /* nothing to do */
406                 return count;
407         }
408         od_tuners->ignore_nice = input;
409
410         /* we need to re-evaluate prev_cpu_idle */
411         for_each_online_cpu(j) {
412                 struct od_cpu_dbs_info_s *dbs_info;
413                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
414                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
415                                                 &dbs_info->cdbs.prev_cpu_wall);
416                 if (od_tuners->ignore_nice)
417                         dbs_info->cdbs.prev_cpu_nice =
418                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
419
420         }
421         return count;
422 }
423
424 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
425                 size_t count)
426 {
427         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
428         unsigned int input;
429         int ret;
430         ret = sscanf(buf, "%u", &input);
431
432         if (ret != 1)
433                 return -EINVAL;
434
435         if (input > 1000)
436                 input = 1000;
437
438         od_tuners->powersave_bias = input;
439         ondemand_powersave_bias_init();
440         return count;
441 }
442
443 show_store_one(od, sampling_rate);
444 show_store_one(od, io_is_busy);
445 show_store_one(od, up_threshold);
446 show_store_one(od, sampling_down_factor);
447 show_store_one(od, ignore_nice);
448 show_store_one(od, powersave_bias);
449 declare_show_sampling_rate_min(od);
450
451 gov_sys_pol_attr_rw(sampling_rate);
452 gov_sys_pol_attr_rw(io_is_busy);
453 gov_sys_pol_attr_rw(up_threshold);
454 gov_sys_pol_attr_rw(sampling_down_factor);
455 gov_sys_pol_attr_rw(ignore_nice);
456 gov_sys_pol_attr_rw(powersave_bias);
457 gov_sys_pol_attr_ro(sampling_rate_min);
458
459 static struct attribute *dbs_attributes_gov_sys[] = {
460         &sampling_rate_min_gov_sys.attr,
461         &sampling_rate_gov_sys.attr,
462         &up_threshold_gov_sys.attr,
463         &sampling_down_factor_gov_sys.attr,
464         &ignore_nice_gov_sys.attr,
465         &powersave_bias_gov_sys.attr,
466         &io_is_busy_gov_sys.attr,
467         NULL
468 };
469
470 static struct attribute_group od_attr_group_gov_sys = {
471         .attrs = dbs_attributes_gov_sys,
472         .name = "ondemand",
473 };
474
475 static struct attribute *dbs_attributes_gov_pol[] = {
476         &sampling_rate_min_gov_pol.attr,
477         &sampling_rate_gov_pol.attr,
478         &up_threshold_gov_pol.attr,
479         &sampling_down_factor_gov_pol.attr,
480         &ignore_nice_gov_pol.attr,
481         &powersave_bias_gov_pol.attr,
482         &io_is_busy_gov_pol.attr,
483         NULL
484 };
485
486 static struct attribute_group od_attr_group_gov_pol = {
487         .attrs = dbs_attributes_gov_pol,
488         .name = "ondemand",
489 };
490
491 /************************** sysfs end ************************/
492
493 static int od_init(struct dbs_data *dbs_data)
494 {
495         struct od_dbs_tuners *tuners;
496         u64 idle_time;
497         int cpu;
498
499         tuners = kzalloc(sizeof(struct od_dbs_tuners), GFP_KERNEL);
500         if (!tuners) {
501                 pr_err("%s: kzalloc failed\n", __func__);
502                 return -ENOMEM;
503         }
504
505         cpu = get_cpu();
506         idle_time = get_cpu_idle_time_us(cpu, NULL);
507         put_cpu();
508         if (idle_time != -1ULL) {
509                 /* Idle micro accounting is supported. Use finer thresholds */
510                 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
511                 tuners->adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
512                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
513                 /*
514                  * In nohz/micro accounting case we set the minimum frequency
515                  * not depending on HZ, but fixed (very low). The deferred
516                  * timer might skip some samples if idle/sleeping as needed.
517                 */
518                 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
519         } else {
520                 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
521                 tuners->adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
522                         DEF_FREQUENCY_DOWN_DIFFERENTIAL;
523
524                 /* For correct statistics, we need 10 ticks for each measure */
525                 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
526                         jiffies_to_usecs(10);
527         }
528
529         tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
530         tuners->ignore_nice = 0;
531         tuners->powersave_bias = 0;
532         tuners->io_is_busy = should_io_be_busy();
533
534         dbs_data->tuners = tuners;
535         pr_info("%s: tuners %p\n", __func__, tuners);
536         mutex_init(&dbs_data->mutex);
537         return 0;
538 }
539
540 static void od_exit(struct dbs_data *dbs_data)
541 {
542         kfree(dbs_data->tuners);
543 }
544
545 define_get_cpu_dbs_routines(od_cpu_dbs_info);
546
547 static struct od_ops od_ops = {
548         .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
549         .powersave_bias_target = powersave_bias_target,
550         .freq_increase = dbs_freq_increase,
551 };
552
553 static struct common_dbs_data od_dbs_cdata = {
554         .governor = GOV_ONDEMAND,
555         .attr_group_gov_sys = &od_attr_group_gov_sys,
556         .attr_group_gov_pol = &od_attr_group_gov_pol,
557         .get_cpu_cdbs = get_cpu_cdbs,
558         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
559         .gov_dbs_timer = od_dbs_timer,
560         .gov_check_cpu = od_check_cpu,
561         .gov_ops = &od_ops,
562         .init = od_init,
563         .exit = od_exit,
564 };
565
566 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
567                 unsigned int event)
568 {
569         return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
570 }
571
572 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
573 static
574 #endif
575 struct cpufreq_governor cpufreq_gov_ondemand = {
576         .name                   = "ondemand",
577         .governor               = od_cpufreq_governor_dbs,
578         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
579         .owner                  = THIS_MODULE,
580 };
581
582 static int __init cpufreq_gov_dbs_init(void)
583 {
584         return cpufreq_register_governor(&cpufreq_gov_ondemand);
585 }
586
587 static void __exit cpufreq_gov_dbs_exit(void)
588 {
589         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
590 }
591
592 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
593 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
594 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
595         "Low Latency Frequency Transition capable processors");
596 MODULE_LICENSE("GPL");
597
598 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
599 fs_initcall(cpufreq_gov_dbs_init);
600 #else
601 module_init(cpufreq_gov_dbs_init);
602 #endif
603 module_exit(cpufreq_gov_dbs_exit);