Merge tag 'ceph-for-6.6-rc1' of https://github.com/ceph/ceph-client
[platform/kernel/linux-starfive.git] / drivers / cpufreq / cpufreq_ondemand.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/cpufreq/cpufreq_ondemand.c
4  *
5  *  Copyright (C)  2001 Russell King
6  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
7  *                      Jun Nakajima <jun.nakajima@intel.com>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/cpu.h>
13 #include <linux/percpu-defs.h>
14 #include <linux/slab.h>
15 #include <linux/tick.h>
16 #include <linux/sched/cpufreq.h>
17
18 #include "cpufreq_ondemand.h"
19
20 /* On-demand governor macros */
21 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
22 #define DEF_SAMPLING_DOWN_FACTOR                (1)
23 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
24 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
25 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
26 #define MIN_FREQUENCY_UP_THRESHOLD              (1)
27 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
28
29 static struct od_ops od_ops;
30
31 static unsigned int default_powersave_bias;
32
33 /*
34  * Not all CPUs want IO time to be accounted as busy; this depends on how
35  * efficient idling at a higher frequency/voltage is.
36  * Pavel Machek says this is not so for various generations of AMD and old
37  * Intel systems.
38  * Mike Chan (android.com) claims this is also not true for ARM.
39  * Because of this, whitelist specific known (series) of CPUs by default, and
40  * leave all others up to the user.
41  */
42 static int should_io_be_busy(void)
43 {
44 #if defined(CONFIG_X86)
45         /*
46          * For Intel, Core 2 (model 15) and later have an efficient idle.
47          */
48         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
49                         boot_cpu_data.x86 == 6 &&
50                         boot_cpu_data.x86_model >= 15)
51                 return 1;
52 #endif
53         return 0;
54 }
55
56 /*
57  * Find right freq to be set now with powersave_bias on.
58  * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
59  * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
60  */
61 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
62                 unsigned int freq_next, unsigned int relation)
63 {
64         unsigned int freq_req, freq_reduc, freq_avg;
65         unsigned int freq_hi, freq_lo;
66         unsigned int index;
67         unsigned int delay_hi_us;
68         struct policy_dbs_info *policy_dbs = policy->governor_data;
69         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
70         struct dbs_data *dbs_data = policy_dbs->dbs_data;
71         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
72         struct cpufreq_frequency_table *freq_table = policy->freq_table;
73
74         if (!freq_table) {
75                 dbs_info->freq_lo = 0;
76                 dbs_info->freq_lo_delay_us = 0;
77                 return freq_next;
78         }
79
80         index = cpufreq_frequency_table_target(policy, freq_next, relation);
81         freq_req = freq_table[index].frequency;
82         freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
83         freq_avg = freq_req - freq_reduc;
84
85         /* Find freq bounds for freq_avg in freq_table */
86         index = cpufreq_table_find_index_h(policy, freq_avg,
87                                            relation & CPUFREQ_RELATION_E);
88         freq_lo = freq_table[index].frequency;
89         index = cpufreq_table_find_index_l(policy, freq_avg,
90                                            relation & CPUFREQ_RELATION_E);
91         freq_hi = freq_table[index].frequency;
92
93         /* Find out how long we have to be in hi and lo freqs */
94         if (freq_hi == freq_lo) {
95                 dbs_info->freq_lo = 0;
96                 dbs_info->freq_lo_delay_us = 0;
97                 return freq_lo;
98         }
99         delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
100         delay_hi_us += (freq_hi - freq_lo) / 2;
101         delay_hi_us /= freq_hi - freq_lo;
102         dbs_info->freq_hi_delay_us = delay_hi_us;
103         dbs_info->freq_lo = freq_lo;
104         dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
105         return freq_hi;
106 }
107
108 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
109 {
110         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
111
112         dbs_info->freq_lo = 0;
113 }
114
115 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
116 {
117         struct policy_dbs_info *policy_dbs = policy->governor_data;
118         struct dbs_data *dbs_data = policy_dbs->dbs_data;
119         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
120
121         if (od_tuners->powersave_bias)
122                 freq = od_ops.powersave_bias_target(policy, freq,
123                                                     CPUFREQ_RELATION_HE);
124         else if (policy->cur == policy->max)
125                 return;
126
127         __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
128                         CPUFREQ_RELATION_LE : CPUFREQ_RELATION_HE);
129 }
130
131 /*
132  * Every sampling_rate, we check, if current idle time is less than 20%
133  * (default), then we try to increase frequency. Else, we adjust the frequency
134  * proportional to load.
135  */
136 static void od_update(struct cpufreq_policy *policy)
137 {
138         struct policy_dbs_info *policy_dbs = policy->governor_data;
139         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
140         struct dbs_data *dbs_data = policy_dbs->dbs_data;
141         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
142         unsigned int load = dbs_update(policy);
143
144         dbs_info->freq_lo = 0;
145
146         /* Check for frequency increase */
147         if (load > dbs_data->up_threshold) {
148                 /* If switching to max speed, apply sampling_down_factor */
149                 if (policy->cur < policy->max)
150                         policy_dbs->rate_mult = dbs_data->sampling_down_factor;
151                 dbs_freq_increase(policy, policy->max);
152         } else {
153                 /* Calculate the next frequency proportional to load */
154                 unsigned int freq_next, min_f, max_f;
155
156                 min_f = policy->cpuinfo.min_freq;
157                 max_f = policy->cpuinfo.max_freq;
158                 freq_next = min_f + load * (max_f - min_f) / 100;
159
160                 /* No longer fully busy, reset rate_mult */
161                 policy_dbs->rate_mult = 1;
162
163                 if (od_tuners->powersave_bias)
164                         freq_next = od_ops.powersave_bias_target(policy,
165                                                                  freq_next,
166                                                                  CPUFREQ_RELATION_LE);
167
168                 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_CE);
169         }
170 }
171
172 static unsigned int od_dbs_update(struct cpufreq_policy *policy)
173 {
174         struct policy_dbs_info *policy_dbs = policy->governor_data;
175         struct dbs_data *dbs_data = policy_dbs->dbs_data;
176         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
177         int sample_type = dbs_info->sample_type;
178
179         /* Common NORMAL_SAMPLE setup */
180         dbs_info->sample_type = OD_NORMAL_SAMPLE;
181         /*
182          * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
183          * it then.
184          */
185         if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
186                 __cpufreq_driver_target(policy, dbs_info->freq_lo,
187                                         CPUFREQ_RELATION_HE);
188                 return dbs_info->freq_lo_delay_us;
189         }
190
191         od_update(policy);
192
193         if (dbs_info->freq_lo) {
194                 /* Setup SUB_SAMPLE */
195                 dbs_info->sample_type = OD_SUB_SAMPLE;
196                 return dbs_info->freq_hi_delay_us;
197         }
198
199         return dbs_data->sampling_rate * policy_dbs->rate_mult;
200 }
201
202 /************************** sysfs interface ************************/
203 static struct dbs_governor od_dbs_gov;
204
205 static ssize_t io_is_busy_store(struct gov_attr_set *attr_set, const char *buf,
206                                 size_t count)
207 {
208         struct dbs_data *dbs_data = to_dbs_data(attr_set);
209         unsigned int input;
210         int ret;
211
212         ret = sscanf(buf, "%u", &input);
213         if (ret != 1)
214                 return -EINVAL;
215         dbs_data->io_is_busy = !!input;
216
217         /* we need to re-evaluate prev_cpu_idle */
218         gov_update_cpu_data(dbs_data);
219
220         return count;
221 }
222
223 static ssize_t up_threshold_store(struct gov_attr_set *attr_set,
224                                   const char *buf, size_t count)
225 {
226         struct dbs_data *dbs_data = to_dbs_data(attr_set);
227         unsigned int input;
228         int ret;
229         ret = sscanf(buf, "%u", &input);
230
231         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
232                         input < MIN_FREQUENCY_UP_THRESHOLD) {
233                 return -EINVAL;
234         }
235
236         dbs_data->up_threshold = input;
237         return count;
238 }
239
240 static ssize_t sampling_down_factor_store(struct gov_attr_set *attr_set,
241                                           const char *buf, size_t count)
242 {
243         struct dbs_data *dbs_data = to_dbs_data(attr_set);
244         struct policy_dbs_info *policy_dbs;
245         unsigned int input;
246         int ret;
247         ret = sscanf(buf, "%u", &input);
248
249         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
250                 return -EINVAL;
251
252         dbs_data->sampling_down_factor = input;
253
254         /* Reset down sampling multiplier in case it was active */
255         list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
256                 /*
257                  * Doing this without locking might lead to using different
258                  * rate_mult values in od_update() and od_dbs_update().
259                  */
260                 mutex_lock(&policy_dbs->update_mutex);
261                 policy_dbs->rate_mult = 1;
262                 mutex_unlock(&policy_dbs->update_mutex);
263         }
264
265         return count;
266 }
267
268 static ssize_t ignore_nice_load_store(struct gov_attr_set *attr_set,
269                                       const char *buf, size_t count)
270 {
271         struct dbs_data *dbs_data = to_dbs_data(attr_set);
272         unsigned int input;
273         int ret;
274
275         ret = sscanf(buf, "%u", &input);
276         if (ret != 1)
277                 return -EINVAL;
278
279         if (input > 1)
280                 input = 1;
281
282         if (input == dbs_data->ignore_nice_load) { /* nothing to do */
283                 return count;
284         }
285         dbs_data->ignore_nice_load = input;
286
287         /* we need to re-evaluate prev_cpu_idle */
288         gov_update_cpu_data(dbs_data);
289
290         return count;
291 }
292
293 static ssize_t powersave_bias_store(struct gov_attr_set *attr_set,
294                                     const char *buf, size_t count)
295 {
296         struct dbs_data *dbs_data = to_dbs_data(attr_set);
297         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
298         struct policy_dbs_info *policy_dbs;
299         unsigned int input;
300         int ret;
301         ret = sscanf(buf, "%u", &input);
302
303         if (ret != 1)
304                 return -EINVAL;
305
306         if (input > 1000)
307                 input = 1000;
308
309         od_tuners->powersave_bias = input;
310
311         list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
312                 ondemand_powersave_bias_init(policy_dbs->policy);
313
314         return count;
315 }
316
317 gov_show_one_common(sampling_rate);
318 gov_show_one_common(up_threshold);
319 gov_show_one_common(sampling_down_factor);
320 gov_show_one_common(ignore_nice_load);
321 gov_show_one_common(io_is_busy);
322 gov_show_one(od, powersave_bias);
323
324 gov_attr_rw(sampling_rate);
325 gov_attr_rw(io_is_busy);
326 gov_attr_rw(up_threshold);
327 gov_attr_rw(sampling_down_factor);
328 gov_attr_rw(ignore_nice_load);
329 gov_attr_rw(powersave_bias);
330
331 static struct attribute *od_attrs[] = {
332         &sampling_rate.attr,
333         &up_threshold.attr,
334         &sampling_down_factor.attr,
335         &ignore_nice_load.attr,
336         &powersave_bias.attr,
337         &io_is_busy.attr,
338         NULL
339 };
340 ATTRIBUTE_GROUPS(od);
341
342 /************************** sysfs end ************************/
343
344 static struct policy_dbs_info *od_alloc(void)
345 {
346         struct od_policy_dbs_info *dbs_info;
347
348         dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
349         return dbs_info ? &dbs_info->policy_dbs : NULL;
350 }
351
352 static void od_free(struct policy_dbs_info *policy_dbs)
353 {
354         kfree(to_dbs_info(policy_dbs));
355 }
356
357 static int od_init(struct dbs_data *dbs_data)
358 {
359         struct od_dbs_tuners *tuners;
360         u64 idle_time;
361         int cpu;
362
363         tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
364         if (!tuners)
365                 return -ENOMEM;
366
367         cpu = get_cpu();
368         idle_time = get_cpu_idle_time_us(cpu, NULL);
369         put_cpu();
370         if (idle_time != -1ULL) {
371                 /* Idle micro accounting is supported. Use finer thresholds */
372                 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
373         } else {
374                 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
375         }
376
377         dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
378         dbs_data->ignore_nice_load = 0;
379         tuners->powersave_bias = default_powersave_bias;
380         dbs_data->io_is_busy = should_io_be_busy();
381
382         dbs_data->tuners = tuners;
383         return 0;
384 }
385
386 static void od_exit(struct dbs_data *dbs_data)
387 {
388         kfree(dbs_data->tuners);
389 }
390
391 static void od_start(struct cpufreq_policy *policy)
392 {
393         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
394
395         dbs_info->sample_type = OD_NORMAL_SAMPLE;
396         ondemand_powersave_bias_init(policy);
397 }
398
399 static struct od_ops od_ops = {
400         .powersave_bias_target = generic_powersave_bias_target,
401 };
402
403 static struct dbs_governor od_dbs_gov = {
404         .gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
405         .kobj_type = { .default_groups = od_groups },
406         .gov_dbs_update = od_dbs_update,
407         .alloc = od_alloc,
408         .free = od_free,
409         .init = od_init,
410         .exit = od_exit,
411         .start = od_start,
412 };
413
414 #define CPU_FREQ_GOV_ONDEMAND   (od_dbs_gov.gov)
415
416 static void od_set_powersave_bias(unsigned int powersave_bias)
417 {
418         unsigned int cpu;
419         cpumask_var_t done;
420
421         if (!alloc_cpumask_var(&done, GFP_KERNEL))
422                 return;
423
424         default_powersave_bias = powersave_bias;
425         cpumask_clear(done);
426
427         cpus_read_lock();
428         for_each_online_cpu(cpu) {
429                 struct cpufreq_policy *policy;
430                 struct policy_dbs_info *policy_dbs;
431                 struct dbs_data *dbs_data;
432                 struct od_dbs_tuners *od_tuners;
433
434                 if (cpumask_test_cpu(cpu, done))
435                         continue;
436
437                 policy = cpufreq_cpu_get_raw(cpu);
438                 if (!policy || policy->governor != &CPU_FREQ_GOV_ONDEMAND)
439                         continue;
440
441                 policy_dbs = policy->governor_data;
442                 if (!policy_dbs)
443                         continue;
444
445                 cpumask_or(done, done, policy->cpus);
446
447                 dbs_data = policy_dbs->dbs_data;
448                 od_tuners = dbs_data->tuners;
449                 od_tuners->powersave_bias = default_powersave_bias;
450         }
451         cpus_read_unlock();
452
453         free_cpumask_var(done);
454 }
455
456 void od_register_powersave_bias_handler(unsigned int (*f)
457                 (struct cpufreq_policy *, unsigned int, unsigned int),
458                 unsigned int powersave_bias)
459 {
460         od_ops.powersave_bias_target = f;
461         od_set_powersave_bias(powersave_bias);
462 }
463 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
464
465 void od_unregister_powersave_bias_handler(void)
466 {
467         od_ops.powersave_bias_target = generic_powersave_bias_target;
468         od_set_powersave_bias(0);
469 }
470 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
471
472 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
473 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
474 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
475         "Low Latency Frequency Transition capable processors");
476 MODULE_LICENSE("GPL");
477
478 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
479 struct cpufreq_governor *cpufreq_default_governor(void)
480 {
481         return &CPU_FREQ_GOV_ONDEMAND;
482 }
483 #endif
484
485 cpufreq_governor_init(CPU_FREQ_GOV_ONDEMAND);
486 cpufreq_governor_exit(CPU_FREQ_GOV_ONDEMAND);