15e80ee61352d97fdf991950282780734c8ab816
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
25 #include <linux/tick.h>
26 #include <linux/types.h>
27
28 #include "cpufreq_governor.h"
29
30 /* On-demand governor macros */
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define DEF_SAMPLING_DOWN_FACTOR                (1)
34 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
40
41 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
42
43 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44 static struct cpufreq_governor cpufreq_gov_ondemand;
45 #endif
46
47 static void ondemand_powersave_bias_init_cpu(int cpu)
48 {
49         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
50
51         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
52         dbs_info->freq_lo = 0;
53 }
54
55 /*
56  * Not all CPUs want IO time to be accounted as busy; this depends on how
57  * efficient idling at a higher frequency/voltage is.
58  * Pavel Machek says this is not so for various generations of AMD and old
59  * Intel systems.
60  * Mike Chan (android.com) claims this is also not true for ARM.
61  * Because of this, whitelist specific known (series) of CPUs by default, and
62  * leave all others up to the user.
63  */
64 static int should_io_be_busy(void)
65 {
66 #if defined(CONFIG_X86)
67         /*
68          * For Intel, Core 2 (model 15) and later have an efficient idle.
69          */
70         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
71                         boot_cpu_data.x86 == 6 &&
72                         boot_cpu_data.x86_model >= 15)
73                 return 1;
74 #endif
75         return 0;
76 }
77
78 /*
79  * Find right freq to be set now with powersave_bias on.
80  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
81  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
82  */
83 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
84                 unsigned int freq_next, unsigned int relation)
85 {
86         unsigned int freq_req, freq_reduc, freq_avg;
87         unsigned int freq_hi, freq_lo;
88         unsigned int index = 0;
89         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
90         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
91                                                    policy->cpu);
92         struct dbs_data *dbs_data = policy->governor_data;
93         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
94
95         if (!dbs_info->freq_table) {
96                 dbs_info->freq_lo = 0;
97                 dbs_info->freq_lo_jiffies = 0;
98                 return freq_next;
99         }
100
101         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
102                         relation, &index);
103         freq_req = dbs_info->freq_table[index].frequency;
104         freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
105         freq_avg = freq_req - freq_reduc;
106
107         /* Find freq bounds for freq_avg in freq_table */
108         index = 0;
109         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
110                         CPUFREQ_RELATION_H, &index);
111         freq_lo = dbs_info->freq_table[index].frequency;
112         index = 0;
113         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
114                         CPUFREQ_RELATION_L, &index);
115         freq_hi = dbs_info->freq_table[index].frequency;
116
117         /* Find out how long we have to be in hi and lo freqs */
118         if (freq_hi == freq_lo) {
119                 dbs_info->freq_lo = 0;
120                 dbs_info->freq_lo_jiffies = 0;
121                 return freq_lo;
122         }
123         jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
124         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
125         jiffies_hi += ((freq_hi - freq_lo) / 2);
126         jiffies_hi /= (freq_hi - freq_lo);
127         jiffies_lo = jiffies_total - jiffies_hi;
128         dbs_info->freq_lo = freq_lo;
129         dbs_info->freq_lo_jiffies = jiffies_lo;
130         dbs_info->freq_hi_jiffies = jiffies_hi;
131         return freq_hi;
132 }
133
134 static void ondemand_powersave_bias_init(void)
135 {
136         int i;
137         for_each_online_cpu(i) {
138                 ondemand_powersave_bias_init_cpu(i);
139         }
140 }
141
142 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
143 {
144         struct dbs_data *dbs_data = p->governor_data;
145         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
146
147         if (od_tuners->powersave_bias)
148                 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
149         else if (p->cur == p->max)
150                 return;
151
152         __cpufreq_driver_target(p, freq, od_tuners->powersave_bias ?
153                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
154 }
155
156 /*
157  * Every sampling_rate, we check, if current idle time is less than 20%
158  * (default), then we try to increase frequency. Every sampling_rate, we look
159  * for the lowest frequency which can sustain the load while keeping idle time
160  * over 30%. If such a frequency exist, we try to decrease to this frequency.
161  *
162  * Any frequency increase takes it to the maximum frequency. Frequency reduction
163  * happens at minimum steps of 5% (default) of current frequency
164  */
165 static void od_check_cpu(int cpu, unsigned int load_freq)
166 {
167         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
168         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
169         struct dbs_data *dbs_data = policy->governor_data;
170         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
171
172         dbs_info->freq_lo = 0;
173
174         /* Check for frequency increase */
175         if (load_freq > od_tuners->up_threshold * policy->cur) {
176                 /* If switching to max speed, apply sampling_down_factor */
177                 if (policy->cur < policy->max)
178                         dbs_info->rate_mult =
179                                 od_tuners->sampling_down_factor;
180                 dbs_freq_increase(policy, policy->max);
181                 return;
182         }
183
184         /* Check for frequency decrease */
185         /* if we cannot reduce the frequency anymore, break out early */
186         if (policy->cur == policy->min)
187                 return;
188
189         /*
190          * The optimal frequency is the frequency that is the lowest that can
191          * support the current CPU usage without triggering the up policy. To be
192          * safe, we focus 10 points under the threshold.
193          */
194         if (load_freq < od_tuners->adj_up_threshold
195                         * policy->cur) {
196                 unsigned int freq_next;
197                 freq_next = load_freq / od_tuners->adj_up_threshold;
198
199                 /* No longer fully busy, reset rate_mult */
200                 dbs_info->rate_mult = 1;
201
202                 if (freq_next < policy->min)
203                         freq_next = policy->min;
204
205                 if (!od_tuners->powersave_bias) {
206                         __cpufreq_driver_target(policy, freq_next,
207                                         CPUFREQ_RELATION_L);
208                 } else {
209                         int freq = powersave_bias_target(policy, freq_next,
210                                         CPUFREQ_RELATION_L);
211                         __cpufreq_driver_target(policy, freq,
212                                         CPUFREQ_RELATION_L);
213                 }
214         }
215 }
216
217 static void od_dbs_timer(struct work_struct *work)
218 {
219         struct delayed_work *dw = to_delayed_work(work);
220         struct od_cpu_dbs_info_s *dbs_info =
221                 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
222         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
223         struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
224                         cpu);
225         struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
226         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
227         int delay, sample_type = core_dbs_info->sample_type;
228         bool eval_load;
229
230         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
231         eval_load = need_load_eval(&core_dbs_info->cdbs,
232                         od_tuners->sampling_rate);
233
234         /* Common NORMAL_SAMPLE setup */
235         core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
236         if (sample_type == OD_SUB_SAMPLE) {
237                 delay = core_dbs_info->freq_lo_jiffies;
238                 if (eval_load)
239                         __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
240                                                 core_dbs_info->freq_lo,
241                                                 CPUFREQ_RELATION_H);
242         } else {
243                 if (eval_load)
244                         dbs_check_cpu(dbs_data, cpu);
245                 if (core_dbs_info->freq_lo) {
246                         /* Setup timer for SUB_SAMPLE */
247                         core_dbs_info->sample_type = OD_SUB_SAMPLE;
248                         delay = core_dbs_info->freq_hi_jiffies;
249                 } else {
250                         delay = delay_for_sampling_rate(od_tuners->sampling_rate
251                                                 * core_dbs_info->rate_mult);
252                 }
253         }
254
255         schedule_delayed_work_on(smp_processor_id(), dw, delay);
256         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
257 }
258
259 /************************** sysfs interface ************************/
260 static struct common_dbs_data od_dbs_cdata;
261
262 /**
263  * update_sampling_rate - update sampling rate effective immediately if needed.
264  * @new_rate: new sampling rate
265  *
266  * If new rate is smaller than the old, simply updating
267  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
268  * original sampling_rate was 1 second and the requested new sampling rate is 10
269  * ms because the user needs immediate reaction from ondemand governor, but not
270  * sure if higher frequency will be required or not, then, the governor may
271  * change the sampling rate too late; up to 1 second later. Thus, if we are
272  * reducing the sampling rate, we need to make the new value effective
273  * immediately.
274  */
275 static void update_sampling_rate(struct dbs_data *dbs_data,
276                 unsigned int new_rate)
277 {
278         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
279         int cpu;
280
281         od_tuners->sampling_rate = new_rate = max(new_rate,
282                         dbs_data->min_sampling_rate);
283
284         for_each_online_cpu(cpu) {
285                 struct cpufreq_policy *policy;
286                 struct od_cpu_dbs_info_s *dbs_info;
287                 unsigned long next_sampling, appointed_at;
288
289                 policy = cpufreq_cpu_get(cpu);
290                 if (!policy)
291                         continue;
292                 if (policy->governor != &cpufreq_gov_ondemand) {
293                         cpufreq_cpu_put(policy);
294                         continue;
295                 }
296                 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
297                 cpufreq_cpu_put(policy);
298
299                 mutex_lock(&dbs_info->cdbs.timer_mutex);
300
301                 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
302                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
303                         continue;
304                 }
305
306                 next_sampling = jiffies + usecs_to_jiffies(new_rate);
307                 appointed_at = dbs_info->cdbs.work.timer.expires;
308
309                 if (time_before(next_sampling, appointed_at)) {
310
311                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
312                         cancel_delayed_work_sync(&dbs_info->cdbs.work);
313                         mutex_lock(&dbs_info->cdbs.timer_mutex);
314
315                         schedule_delayed_work_on(cpu, &dbs_info->cdbs.work,
316                                         usecs_to_jiffies(new_rate));
317
318                 }
319                 mutex_unlock(&dbs_info->cdbs.timer_mutex);
320         }
321 }
322
323 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
324                 size_t count)
325 {
326         unsigned int input;
327         int ret;
328         ret = sscanf(buf, "%u", &input);
329         if (ret != 1)
330                 return -EINVAL;
331
332         update_sampling_rate(dbs_data, input);
333         return count;
334 }
335
336 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
337                 size_t count)
338 {
339         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
340         unsigned int input;
341         int ret;
342
343         ret = sscanf(buf, "%u", &input);
344         if (ret != 1)
345                 return -EINVAL;
346         od_tuners->io_is_busy = !!input;
347         return count;
348 }
349
350 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
351                 size_t count)
352 {
353         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
354         unsigned int input;
355         int ret;
356         ret = sscanf(buf, "%u", &input);
357
358         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
359                         input < MIN_FREQUENCY_UP_THRESHOLD) {
360                 return -EINVAL;
361         }
362         /* Calculate the new adj_up_threshold */
363         od_tuners->adj_up_threshold += input;
364         od_tuners->adj_up_threshold -= od_tuners->up_threshold;
365
366         od_tuners->up_threshold = input;
367         return count;
368 }
369
370 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
371                 const char *buf, size_t count)
372 {
373         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
374         unsigned int input, j;
375         int ret;
376         ret = sscanf(buf, "%u", &input);
377
378         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
379                 return -EINVAL;
380         od_tuners->sampling_down_factor = input;
381
382         /* Reset down sampling multiplier in case it was active */
383         for_each_online_cpu(j) {
384                 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
385                                 j);
386                 dbs_info->rate_mult = 1;
387         }
388         return count;
389 }
390
391 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
392                 size_t count)
393 {
394         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
395         unsigned int input;
396         int ret;
397
398         unsigned int j;
399
400         ret = sscanf(buf, "%u", &input);
401         if (ret != 1)
402                 return -EINVAL;
403
404         if (input > 1)
405                 input = 1;
406
407         if (input == od_tuners->ignore_nice) { /* nothing to do */
408                 return count;
409         }
410         od_tuners->ignore_nice = input;
411
412         /* we need to re-evaluate prev_cpu_idle */
413         for_each_online_cpu(j) {
414                 struct od_cpu_dbs_info_s *dbs_info;
415                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
416                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
417                                                 &dbs_info->cdbs.prev_cpu_wall);
418                 if (od_tuners->ignore_nice)
419                         dbs_info->cdbs.prev_cpu_nice =
420                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
421
422         }
423         return count;
424 }
425
426 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
427                 size_t count)
428 {
429         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
430         unsigned int input;
431         int ret;
432         ret = sscanf(buf, "%u", &input);
433
434         if (ret != 1)
435                 return -EINVAL;
436
437         if (input > 1000)
438                 input = 1000;
439
440         od_tuners->powersave_bias = input;
441         ondemand_powersave_bias_init();
442         return count;
443 }
444
445 show_store_one(od, sampling_rate);
446 show_store_one(od, io_is_busy);
447 show_store_one(od, up_threshold);
448 show_store_one(od, sampling_down_factor);
449 show_store_one(od, ignore_nice);
450 show_store_one(od, powersave_bias);
451 declare_show_sampling_rate_min(od);
452
453 gov_sys_pol_attr_rw(sampling_rate);
454 gov_sys_pol_attr_rw(io_is_busy);
455 gov_sys_pol_attr_rw(up_threshold);
456 gov_sys_pol_attr_rw(sampling_down_factor);
457 gov_sys_pol_attr_rw(ignore_nice);
458 gov_sys_pol_attr_rw(powersave_bias);
459 gov_sys_pol_attr_ro(sampling_rate_min);
460
461 static struct attribute *dbs_attributes_gov_sys[] = {
462         &sampling_rate_min_gov_sys.attr,
463         &sampling_rate_gov_sys.attr,
464         &up_threshold_gov_sys.attr,
465         &sampling_down_factor_gov_sys.attr,
466         &ignore_nice_gov_sys.attr,
467         &powersave_bias_gov_sys.attr,
468         &io_is_busy_gov_sys.attr,
469         NULL
470 };
471
472 static struct attribute_group od_attr_group_gov_sys = {
473         .attrs = dbs_attributes_gov_sys,
474         .name = "ondemand",
475 };
476
477 static struct attribute *dbs_attributes_gov_pol[] = {
478         &sampling_rate_min_gov_pol.attr,
479         &sampling_rate_gov_pol.attr,
480         &up_threshold_gov_pol.attr,
481         &sampling_down_factor_gov_pol.attr,
482         &ignore_nice_gov_pol.attr,
483         &powersave_bias_gov_pol.attr,
484         &io_is_busy_gov_pol.attr,
485         NULL
486 };
487
488 static struct attribute_group od_attr_group_gov_pol = {
489         .attrs = dbs_attributes_gov_pol,
490         .name = "ondemand",
491 };
492
493 /************************** sysfs end ************************/
494
495 static int od_init(struct dbs_data *dbs_data)
496 {
497         struct od_dbs_tuners *tuners;
498         u64 idle_time;
499         int cpu;
500
501         tuners = kzalloc(sizeof(struct od_dbs_tuners), GFP_KERNEL);
502         if (!tuners) {
503                 pr_err("%s: kzalloc failed\n", __func__);
504                 return -ENOMEM;
505         }
506
507         cpu = get_cpu();
508         idle_time = get_cpu_idle_time_us(cpu, NULL);
509         put_cpu();
510         if (idle_time != -1ULL) {
511                 /* Idle micro accounting is supported. Use finer thresholds */
512                 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
513                 tuners->adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
514                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
515                 /*
516                  * In nohz/micro accounting case we set the minimum frequency
517                  * not depending on HZ, but fixed (very low). The deferred
518                  * timer might skip some samples if idle/sleeping as needed.
519                 */
520                 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
521         } else {
522                 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
523                 tuners->adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
524                         DEF_FREQUENCY_DOWN_DIFFERENTIAL;
525
526                 /* For correct statistics, we need 10 ticks for each measure */
527                 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
528                         jiffies_to_usecs(10);
529         }
530
531         tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
532         tuners->ignore_nice = 0;
533         tuners->powersave_bias = 0;
534         tuners->io_is_busy = should_io_be_busy();
535
536         dbs_data->tuners = tuners;
537         pr_info("%s: tuners %p\n", __func__, tuners);
538         mutex_init(&dbs_data->mutex);
539         return 0;
540 }
541
542 static void od_exit(struct dbs_data *dbs_data)
543 {
544         kfree(dbs_data->tuners);
545 }
546
547 define_get_cpu_dbs_routines(od_cpu_dbs_info);
548
549 static struct od_ops od_ops = {
550         .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
551         .powersave_bias_target = powersave_bias_target,
552         .freq_increase = dbs_freq_increase,
553 };
554
555 static struct common_dbs_data od_dbs_cdata = {
556         .governor = GOV_ONDEMAND,
557         .attr_group_gov_sys = &od_attr_group_gov_sys,
558         .attr_group_gov_pol = &od_attr_group_gov_pol,
559         .get_cpu_cdbs = get_cpu_cdbs,
560         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
561         .gov_dbs_timer = od_dbs_timer,
562         .gov_check_cpu = od_check_cpu,
563         .gov_ops = &od_ops,
564         .init = od_init,
565         .exit = od_exit,
566 };
567
568 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
569                 unsigned int event)
570 {
571         return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
572 }
573
574 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
575 static
576 #endif
577 struct cpufreq_governor cpufreq_gov_ondemand = {
578         .name                   = "ondemand",
579         .governor               = od_cpufreq_governor_dbs,
580         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
581         .owner                  = THIS_MODULE,
582 };
583
584 static int __init cpufreq_gov_dbs_init(void)
585 {
586         return cpufreq_register_governor(&cpufreq_gov_ondemand);
587 }
588
589 static void __exit cpufreq_gov_dbs_exit(void)
590 {
591         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
592 }
593
594 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
595 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
596 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
597         "Low Latency Frequency Transition capable processors");
598 MODULE_LICENSE("GPL");
599
600 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
601 fs_initcall(cpufreq_gov_dbs_init);
602 #else
603 module_init(cpufreq_gov_dbs_init);
604 #endif
605 module_exit(cpufreq_gov_dbs_exit);