staging: bcm2835-camera: fix overflow warnings
[platform/kernel/linux-rpi.git] / drivers / cpufreq / cpufreq_governor.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/cpufreq/cpufreq_governor.c
4  *
5  * CPUFREQ governors common code
6  *
7  * Copyright    (C) 2001 Russell King
8  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
9  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
10  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
11  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12  */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/export.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/slab.h>
19
20 #include "cpufreq_governor.h"
21
22 #define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL       (2 * TICK_NSEC / NSEC_PER_USEC)
23
24 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
25
26 static DEFINE_MUTEX(gov_dbs_data_mutex);
27
28 /* Common sysfs tunables */
29 /*
30  * store_sampling_rate - update sampling rate effective immediately if needed.
31  *
32  * If new rate is smaller than the old, simply updating
33  * dbs.sampling_rate might not be appropriate. For example, if the
34  * original sampling_rate was 1 second and the requested new sampling rate is 10
35  * ms because the user needs immediate reaction from ondemand governor, but not
36  * sure if higher frequency will be required or not, then, the governor may
37  * change the sampling rate too late; up to 1 second later. Thus, if we are
38  * reducing the sampling rate, we need to make the new value effective
39  * immediately.
40  *
41  * This must be called with dbs_data->mutex held, otherwise traversing
42  * policy_dbs_list isn't safe.
43  */
44 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
45                             size_t count)
46 {
47         struct dbs_data *dbs_data = to_dbs_data(attr_set);
48         struct policy_dbs_info *policy_dbs;
49         unsigned int sampling_interval;
50         int ret;
51
52         ret = sscanf(buf, "%u", &sampling_interval);
53         if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL)
54                 return -EINVAL;
55
56         dbs_data->sampling_rate = sampling_interval;
57
58         /*
59          * We are operating under dbs_data->mutex and so the list and its
60          * entries can't be freed concurrently.
61          */
62         list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
63                 mutex_lock(&policy_dbs->update_mutex);
64                 /*
65                  * On 32-bit architectures this may race with the
66                  * sample_delay_ns read in dbs_update_util_handler(), but that
67                  * really doesn't matter.  If the read returns a value that's
68                  * too big, the sample will be skipped, but the next invocation
69                  * of dbs_update_util_handler() (when the update has been
70                  * completed) will take a sample.
71                  *
72                  * If this runs in parallel with dbs_work_handler(), we may end
73                  * up overwriting the sample_delay_ns value that it has just
74                  * written, but it will be corrected next time a sample is
75                  * taken, so it shouldn't be significant.
76                  */
77                 gov_update_sample_delay(policy_dbs, 0);
78                 mutex_unlock(&policy_dbs->update_mutex);
79         }
80
81         return count;
82 }
83 EXPORT_SYMBOL_GPL(store_sampling_rate);
84
85 /**
86  * gov_update_cpu_data - Update CPU load data.
87  * @dbs_data: Top-level governor data pointer.
88  *
89  * Update CPU load data for all CPUs in the domain governed by @dbs_data
90  * (that may be a single policy or a bunch of them if governor tunables are
91  * system-wide).
92  *
93  * Call under the @dbs_data mutex.
94  */
95 void gov_update_cpu_data(struct dbs_data *dbs_data)
96 {
97         struct policy_dbs_info *policy_dbs;
98
99         list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
100                 unsigned int j;
101
102                 for_each_cpu(j, policy_dbs->policy->cpus) {
103                         struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
104
105                         j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
106                                                                   dbs_data->io_is_busy);
107                         if (dbs_data->ignore_nice_load)
108                                 j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
109                 }
110         }
111 }
112 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
113
114 unsigned int dbs_update(struct cpufreq_policy *policy)
115 {
116         struct policy_dbs_info *policy_dbs = policy->governor_data;
117         struct dbs_data *dbs_data = policy_dbs->dbs_data;
118         unsigned int ignore_nice = dbs_data->ignore_nice_load;
119         unsigned int max_load = 0, idle_periods = UINT_MAX;
120         unsigned int sampling_rate, io_busy, j;
121
122         /*
123          * Sometimes governors may use an additional multiplier to increase
124          * sample delays temporarily.  Apply that multiplier to sampling_rate
125          * so as to keep the wake-up-from-idle detection logic a bit
126          * conservative.
127          */
128         sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
129         /*
130          * For the purpose of ondemand, waiting for disk IO is an indication
131          * that you're performance critical, and not that the system is actually
132          * idle, so do not add the iowait time to the CPU idle time then.
133          */
134         io_busy = dbs_data->io_is_busy;
135
136         /* Get Absolute Load */
137         for_each_cpu(j, policy->cpus) {
138                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
139                 u64 update_time, cur_idle_time;
140                 unsigned int idle_time, time_elapsed;
141                 unsigned int load;
142
143                 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
144
145                 time_elapsed = update_time - j_cdbs->prev_update_time;
146                 j_cdbs->prev_update_time = update_time;
147
148                 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
149                 j_cdbs->prev_cpu_idle = cur_idle_time;
150
151                 if (ignore_nice) {
152                         u64 cur_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
153
154                         idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
155                         j_cdbs->prev_cpu_nice = cur_nice;
156                 }
157
158                 if (unlikely(!time_elapsed)) {
159                         /*
160                          * That can only happen when this function is called
161                          * twice in a row with a very short interval between the
162                          * calls, so the previous load value can be used then.
163                          */
164                         load = j_cdbs->prev_load;
165                 } else if (unlikely((int)idle_time > 2 * sampling_rate &&
166                                     j_cdbs->prev_load)) {
167                         /*
168                          * If the CPU had gone completely idle and a task has
169                          * just woken up on this CPU now, it would be unfair to
170                          * calculate 'load' the usual way for this elapsed
171                          * time-window, because it would show near-zero load,
172                          * irrespective of how CPU intensive that task actually
173                          * was. This is undesirable for latency-sensitive bursty
174                          * workloads.
175                          *
176                          * To avoid this, reuse the 'load' from the previous
177                          * time-window and give this task a chance to start with
178                          * a reasonably high CPU frequency. However, that
179                          * shouldn't be over-done, lest we get stuck at a high
180                          * load (high frequency) for too long, even when the
181                          * current system load has actually dropped down, so
182                          * clear prev_load to guarantee that the load will be
183                          * computed again next time.
184                          *
185                          * Detecting this situation is easy: an unusually large
186                          * 'idle_time' (as compared to the sampling rate)
187                          * indicates this scenario.
188                          */
189                         load = j_cdbs->prev_load;
190                         j_cdbs->prev_load = 0;
191                 } else {
192                         if (time_elapsed >= idle_time) {
193                                 load = 100 * (time_elapsed - idle_time) / time_elapsed;
194                         } else {
195                                 /*
196                                  * That can happen if idle_time is returned by
197                                  * get_cpu_idle_time_jiffy().  In that case
198                                  * idle_time is roughly equal to the difference
199                                  * between time_elapsed and "busy time" obtained
200                                  * from CPU statistics.  Then, the "busy time"
201                                  * can end up being greater than time_elapsed
202                                  * (for example, if jiffies_64 and the CPU
203                                  * statistics are updated by different CPUs),
204                                  * so idle_time may in fact be negative.  That
205                                  * means, though, that the CPU was busy all
206                                  * the time (on the rough average) during the
207                                  * last sampling interval and 100 can be
208                                  * returned as the load.
209                                  */
210                                 load = (int)idle_time < 0 ? 100 : 0;
211                         }
212                         j_cdbs->prev_load = load;
213                 }
214
215                 if (unlikely((int)idle_time > 2 * sampling_rate)) {
216                         unsigned int periods = idle_time / sampling_rate;
217
218                         if (periods < idle_periods)
219                                 idle_periods = periods;
220                 }
221
222                 if (load > max_load)
223                         max_load = load;
224         }
225
226         policy_dbs->idle_periods = idle_periods;
227
228         return max_load;
229 }
230 EXPORT_SYMBOL_GPL(dbs_update);
231
232 static void dbs_work_handler(struct work_struct *work)
233 {
234         struct policy_dbs_info *policy_dbs;
235         struct cpufreq_policy *policy;
236         struct dbs_governor *gov;
237
238         policy_dbs = container_of(work, struct policy_dbs_info, work);
239         policy = policy_dbs->policy;
240         gov = dbs_governor_of(policy);
241
242         /*
243          * Make sure cpufreq_governor_limits() isn't evaluating load or the
244          * ondemand governor isn't updating the sampling rate in parallel.
245          */
246         mutex_lock(&policy_dbs->update_mutex);
247         gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
248         mutex_unlock(&policy_dbs->update_mutex);
249
250         /* Allow the utilization update handler to queue up more work. */
251         atomic_set(&policy_dbs->work_count, 0);
252         /*
253          * If the update below is reordered with respect to the sample delay
254          * modification, the utilization update handler may end up using a stale
255          * sample delay value.
256          */
257         smp_wmb();
258         policy_dbs->work_in_progress = false;
259 }
260
261 static void dbs_irq_work(struct irq_work *irq_work)
262 {
263         struct policy_dbs_info *policy_dbs;
264
265         policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
266         schedule_work_on(smp_processor_id(), &policy_dbs->work);
267 }
268
269 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
270                                     unsigned int flags)
271 {
272         struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
273         struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
274         u64 delta_ns, lst;
275
276         if (!cpufreq_this_cpu_can_update(policy_dbs->policy))
277                 return;
278
279         /*
280          * The work may not be allowed to be queued up right now.
281          * Possible reasons:
282          * - Work has already been queued up or is in progress.
283          * - It is too early (too little time from the previous sample).
284          */
285         if (policy_dbs->work_in_progress)
286                 return;
287
288         /*
289          * If the reads below are reordered before the check above, the value
290          * of sample_delay_ns used in the computation may be stale.
291          */
292         smp_rmb();
293         lst = READ_ONCE(policy_dbs->last_sample_time);
294         delta_ns = time - lst;
295         if ((s64)delta_ns < policy_dbs->sample_delay_ns)
296                 return;
297
298         /*
299          * If the policy is not shared, the irq_work may be queued up right away
300          * at this point.  Otherwise, we need to ensure that only one of the
301          * CPUs sharing the policy will do that.
302          */
303         if (policy_dbs->is_shared) {
304                 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
305                         return;
306
307                 /*
308                  * If another CPU updated last_sample_time in the meantime, we
309                  * shouldn't be here, so clear the work counter and bail out.
310                  */
311                 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
312                         atomic_set(&policy_dbs->work_count, 0);
313                         return;
314                 }
315         }
316
317         policy_dbs->last_sample_time = time;
318         policy_dbs->work_in_progress = true;
319         irq_work_queue(&policy_dbs->irq_work);
320 }
321
322 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
323                                 unsigned int delay_us)
324 {
325         struct cpufreq_policy *policy = policy_dbs->policy;
326         int cpu;
327
328         gov_update_sample_delay(policy_dbs, delay_us);
329         policy_dbs->last_sample_time = 0;
330
331         for_each_cpu(cpu, policy->cpus) {
332                 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
333
334                 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
335                                              dbs_update_util_handler);
336         }
337 }
338
339 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
340 {
341         int i;
342
343         for_each_cpu(i, policy->cpus)
344                 cpufreq_remove_update_util_hook(i);
345
346         synchronize_rcu();
347 }
348
349 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
350                                                      struct dbs_governor *gov)
351 {
352         struct policy_dbs_info *policy_dbs;
353         int j;
354
355         /* Allocate memory for per-policy governor data. */
356         policy_dbs = gov->alloc();
357         if (!policy_dbs)
358                 return NULL;
359
360         policy_dbs->policy = policy;
361         mutex_init(&policy_dbs->update_mutex);
362         atomic_set(&policy_dbs->work_count, 0);
363         init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
364         INIT_WORK(&policy_dbs->work, dbs_work_handler);
365
366         /* Set policy_dbs for all CPUs, online+offline */
367         for_each_cpu(j, policy->related_cpus) {
368                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
369
370                 j_cdbs->policy_dbs = policy_dbs;
371         }
372         return policy_dbs;
373 }
374
375 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
376                                  struct dbs_governor *gov)
377 {
378         int j;
379
380         mutex_destroy(&policy_dbs->update_mutex);
381
382         for_each_cpu(j, policy_dbs->policy->related_cpus) {
383                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
384
385                 j_cdbs->policy_dbs = NULL;
386                 j_cdbs->update_util.func = NULL;
387         }
388         gov->free(policy_dbs);
389 }
390
391 static void cpufreq_dbs_data_release(struct kobject *kobj)
392 {
393         struct dbs_data *dbs_data = to_dbs_data(to_gov_attr_set(kobj));
394         struct dbs_governor *gov = dbs_data->gov;
395
396         gov->exit(dbs_data);
397         kfree(dbs_data);
398 }
399
400 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
401 {
402         struct dbs_governor *gov = dbs_governor_of(policy);
403         struct dbs_data *dbs_data;
404         struct policy_dbs_info *policy_dbs;
405         int ret = 0;
406
407         /* State should be equivalent to EXIT */
408         if (policy->governor_data)
409                 return -EBUSY;
410
411         policy_dbs = alloc_policy_dbs_info(policy, gov);
412         if (!policy_dbs)
413                 return -ENOMEM;
414
415         /* Protect gov->gdbs_data against concurrent updates. */
416         mutex_lock(&gov_dbs_data_mutex);
417
418         dbs_data = gov->gdbs_data;
419         if (dbs_data) {
420                 if (WARN_ON(have_governor_per_policy())) {
421                         ret = -EINVAL;
422                         goto free_policy_dbs_info;
423                 }
424                 policy_dbs->dbs_data = dbs_data;
425                 policy->governor_data = policy_dbs;
426
427                 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
428                 goto out;
429         }
430
431         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
432         if (!dbs_data) {
433                 ret = -ENOMEM;
434                 goto free_policy_dbs_info;
435         }
436
437         dbs_data->gov = gov;
438         gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
439
440         ret = gov->init(dbs_data);
441         if (ret)
442                 goto free_policy_dbs_info;
443
444         /*
445          * The sampling interval should not be less than the transition latency
446          * of the CPU and it also cannot be too small for dbs_update() to work
447          * correctly.
448          */
449         dbs_data->sampling_rate = max_t(unsigned int,
450                                         CPUFREQ_DBS_MIN_SAMPLING_INTERVAL,
451                                         cpufreq_policy_transition_delay_us(policy));
452
453         if (!have_governor_per_policy())
454                 gov->gdbs_data = dbs_data;
455
456         policy_dbs->dbs_data = dbs_data;
457         policy->governor_data = policy_dbs;
458
459         gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
460         gov->kobj_type.release = cpufreq_dbs_data_release;
461         ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
462                                    get_governor_parent_kobj(policy),
463                                    "%s", gov->gov.name);
464         if (!ret)
465                 goto out;
466
467         /* Failure, so roll back. */
468         pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
469
470         kobject_put(&dbs_data->attr_set.kobj);
471
472         policy->governor_data = NULL;
473
474         if (!have_governor_per_policy())
475                 gov->gdbs_data = NULL;
476         gov->exit(dbs_data);
477         kfree(dbs_data);
478
479 free_policy_dbs_info:
480         free_policy_dbs_info(policy_dbs, gov);
481
482 out:
483         mutex_unlock(&gov_dbs_data_mutex);
484         return ret;
485 }
486 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
487
488 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
489 {
490         struct dbs_governor *gov = dbs_governor_of(policy);
491         struct policy_dbs_info *policy_dbs = policy->governor_data;
492         struct dbs_data *dbs_data = policy_dbs->dbs_data;
493         unsigned int count;
494
495         /* Protect gov->gdbs_data against concurrent updates. */
496         mutex_lock(&gov_dbs_data_mutex);
497
498         count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
499
500         policy->governor_data = NULL;
501
502         if (!count && !have_governor_per_policy())
503                 gov->gdbs_data = NULL;
504
505         free_policy_dbs_info(policy_dbs, gov);
506
507         mutex_unlock(&gov_dbs_data_mutex);
508 }
509 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
510
511 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
512 {
513         struct dbs_governor *gov = dbs_governor_of(policy);
514         struct policy_dbs_info *policy_dbs = policy->governor_data;
515         struct dbs_data *dbs_data = policy_dbs->dbs_data;
516         unsigned int sampling_rate, ignore_nice, j;
517         unsigned int io_busy;
518
519         if (!policy->cur)
520                 return -EINVAL;
521
522         policy_dbs->is_shared = policy_is_shared(policy);
523         policy_dbs->rate_mult = 1;
524
525         sampling_rate = dbs_data->sampling_rate;
526         ignore_nice = dbs_data->ignore_nice_load;
527         io_busy = dbs_data->io_is_busy;
528
529         for_each_cpu(j, policy->cpus) {
530                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
531
532                 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
533                 /*
534                  * Make the first invocation of dbs_update() compute the load.
535                  */
536                 j_cdbs->prev_load = 0;
537
538                 if (ignore_nice)
539                         j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
540         }
541
542         gov->start(policy);
543
544         gov_set_update_util(policy_dbs, sampling_rate);
545         return 0;
546 }
547 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
548
549 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
550 {
551         struct policy_dbs_info *policy_dbs = policy->governor_data;
552
553         gov_clear_update_util(policy_dbs->policy);
554         irq_work_sync(&policy_dbs->irq_work);
555         cancel_work_sync(&policy_dbs->work);
556         atomic_set(&policy_dbs->work_count, 0);
557         policy_dbs->work_in_progress = false;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
560
561 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
562 {
563         struct policy_dbs_info *policy_dbs;
564
565         /* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */
566         mutex_lock(&gov_dbs_data_mutex);
567         policy_dbs = policy->governor_data;
568         if (!policy_dbs)
569                 goto out;
570
571         mutex_lock(&policy_dbs->update_mutex);
572         cpufreq_policy_apply_limits(policy);
573         gov_update_sample_delay(policy_dbs, 0);
574         mutex_unlock(&policy_dbs->update_mutex);
575
576 out:
577         mutex_unlock(&gov_dbs_data_mutex);
578 }
579 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);