Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
34
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 #define MIN_SAMPLING_RATE_RATIO                 (2)
46
47 static unsigned int min_sampling_rate;
48
49 #define LATENCY_MULTIPLIER                      (1000)
50 #define MIN_LATENCY_MULTIPLIER                  (100)
51 #define DEF_SAMPLING_DOWN_FACTOR                (1)
52 #define MAX_SAMPLING_DOWN_FACTOR                (10)
53 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
54
55 static void do_dbs_timer(struct work_struct *work);
56
57 struct cpu_dbs_info_s {
58         cputime64_t prev_cpu_idle;
59         cputime64_t prev_cpu_wall;
60         cputime64_t prev_cpu_nice;
61         struct cpufreq_policy *cur_policy;
62         struct delayed_work work;
63         unsigned int down_skip;
64         unsigned int requested_freq;
65         int cpu;
66         unsigned int enable:1;
67         /*
68          * percpu mutex that serializes governor limit change with
69          * do_dbs_timer invocation. We do not want do_dbs_timer to run
70          * when user is changing the governor or limits.
71          */
72         struct mutex timer_mutex;
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
77
78 /*
79  * dbs_mutex protects dbs_enable in governor start/stop.
80  */
81 static DEFINE_MUTEX(dbs_mutex);
82
83 static struct dbs_tuners {
84         unsigned int sampling_rate;
85         unsigned int sampling_down_factor;
86         unsigned int up_threshold;
87         unsigned int down_threshold;
88         unsigned int ignore_nice;
89         unsigned int freq_step;
90 } dbs_tuners_ins = {
91         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92         .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94         .ignore_nice = 0,
95         .freq_step = 5,
96 };
97
98 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
99 {
100         u64 idle_time;
101         u64 cur_wall_time;
102         u64 busy_time;
103
104         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
105
106         busy_time  = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
107         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
108         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
109         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
110         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
111         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
112
113         idle_time = cur_wall_time - busy_time;
114         if (wall)
115                 *wall = jiffies_to_usecs(cur_wall_time);
116
117         return jiffies_to_usecs(idle_time);
118 }
119
120 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
121 {
122         u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
123
124         if (idle_time == -1ULL)
125                 return get_cpu_idle_time_jiffy(cpu, wall);
126         else
127                 idle_time += get_cpu_iowait_time_us(cpu, wall);
128
129         return idle_time;
130 }
131
132 /* keep track of frequency transitions */
133 static int
134 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
135                      void *data)
136 {
137         struct cpufreq_freqs *freq = data;
138         struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
139                                                         freq->cpu);
140
141         struct cpufreq_policy *policy;
142
143         if (!this_dbs_info->enable)
144                 return 0;
145
146         policy = this_dbs_info->cur_policy;
147
148         /*
149          * we only care if our internally tracked freq moves outside
150          * the 'valid' ranges of freqency available to us otherwise
151          * we do not change it
152         */
153         if (this_dbs_info->requested_freq > policy->max
154                         || this_dbs_info->requested_freq < policy->min)
155                 this_dbs_info->requested_freq = freq->new;
156
157         return 0;
158 }
159
160 static struct notifier_block dbs_cpufreq_notifier_block = {
161         .notifier_call = dbs_cpufreq_notifier
162 };
163
164 /************************** sysfs interface ************************/
165 static ssize_t show_sampling_rate_min(struct kobject *kobj,
166                                       struct attribute *attr, char *buf)
167 {
168         return sprintf(buf, "%u\n", min_sampling_rate);
169 }
170
171 define_one_global_ro(sampling_rate_min);
172
173 /* cpufreq_conservative Governor Tunables */
174 #define show_one(file_name, object)                                     \
175 static ssize_t show_##file_name                                         \
176 (struct kobject *kobj, struct attribute *attr, char *buf)               \
177 {                                                                       \
178         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
179 }
180 show_one(sampling_rate, sampling_rate);
181 show_one(sampling_down_factor, sampling_down_factor);
182 show_one(up_threshold, up_threshold);
183 show_one(down_threshold, down_threshold);
184 show_one(ignore_nice_load, ignore_nice);
185 show_one(freq_step, freq_step);
186
187 static ssize_t store_sampling_down_factor(struct kobject *a,
188                                           struct attribute *b,
189                                           const char *buf, size_t count)
190 {
191         unsigned int input;
192         int ret;
193         ret = sscanf(buf, "%u", &input);
194
195         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
196                 return -EINVAL;
197
198         dbs_tuners_ins.sampling_down_factor = input;
199         return count;
200 }
201
202 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
203                                    const char *buf, size_t count)
204 {
205         unsigned int input;
206         int ret;
207         ret = sscanf(buf, "%u", &input);
208
209         if (ret != 1)
210                 return -EINVAL;
211
212         dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
213         return count;
214 }
215
216 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
217                                   const char *buf, size_t count)
218 {
219         unsigned int input;
220         int ret;
221         ret = sscanf(buf, "%u", &input);
222
223         if (ret != 1 || input > 100 ||
224                         input <= dbs_tuners_ins.down_threshold)
225                 return -EINVAL;
226
227         dbs_tuners_ins.up_threshold = input;
228         return count;
229 }
230
231 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
232                                     const char *buf, size_t count)
233 {
234         unsigned int input;
235         int ret;
236         ret = sscanf(buf, "%u", &input);
237
238         /* cannot be lower than 11 otherwise freq will not fall */
239         if (ret != 1 || input < 11 || input > 100 ||
240                         input >= dbs_tuners_ins.up_threshold)
241                 return -EINVAL;
242
243         dbs_tuners_ins.down_threshold = input;
244         return count;
245 }
246
247 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
248                                       const char *buf, size_t count)
249 {
250         unsigned int input;
251         int ret;
252
253         unsigned int j;
254
255         ret = sscanf(buf, "%u", &input);
256         if (ret != 1)
257                 return -EINVAL;
258
259         if (input > 1)
260                 input = 1;
261
262         if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
263                 return count;
264
265         dbs_tuners_ins.ignore_nice = input;
266
267         /* we need to re-evaluate prev_cpu_idle */
268         for_each_online_cpu(j) {
269                 struct cpu_dbs_info_s *dbs_info;
270                 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
271                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
272                                                 &dbs_info->prev_cpu_wall);
273                 if (dbs_tuners_ins.ignore_nice)
274                         dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
275         }
276         return count;
277 }
278
279 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
280                                const char *buf, size_t count)
281 {
282         unsigned int input;
283         int ret;
284         ret = sscanf(buf, "%u", &input);
285
286         if (ret != 1)
287                 return -EINVAL;
288
289         if (input > 100)
290                 input = 100;
291
292         /* no need to test here if freq_step is zero as the user might actually
293          * want this, they would be crazy though :) */
294         dbs_tuners_ins.freq_step = input;
295         return count;
296 }
297
298 define_one_global_rw(sampling_rate);
299 define_one_global_rw(sampling_down_factor);
300 define_one_global_rw(up_threshold);
301 define_one_global_rw(down_threshold);
302 define_one_global_rw(ignore_nice_load);
303 define_one_global_rw(freq_step);
304
305 static struct attribute *dbs_attributes[] = {
306         &sampling_rate_min.attr,
307         &sampling_rate.attr,
308         &sampling_down_factor.attr,
309         &up_threshold.attr,
310         &down_threshold.attr,
311         &ignore_nice_load.attr,
312         &freq_step.attr,
313         NULL
314 };
315
316 static struct attribute_group dbs_attr_group = {
317         .attrs = dbs_attributes,
318         .name = "conservative",
319 };
320
321 /************************** sysfs end ************************/
322
323 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
324 {
325         unsigned int load = 0;
326         unsigned int max_load = 0;
327         unsigned int freq_target;
328
329         struct cpufreq_policy *policy;
330         unsigned int j;
331
332         policy = this_dbs_info->cur_policy;
333
334         /*
335          * Every sampling_rate, we check, if current idle time is less
336          * than 20% (default), then we try to increase frequency
337          * Every sampling_rate*sampling_down_factor, we check, if current
338          * idle time is more than 80%, then we try to decrease frequency
339          *
340          * Any frequency increase takes it to the maximum frequency.
341          * Frequency reduction happens at minimum steps of
342          * 5% (default) of maximum frequency
343          */
344
345         /* Get Absolute Load */
346         for_each_cpu(j, policy->cpus) {
347                 struct cpu_dbs_info_s *j_dbs_info;
348                 cputime64_t cur_wall_time, cur_idle_time;
349                 unsigned int idle_time, wall_time;
350
351                 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
352
353                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
354
355                 wall_time = (unsigned int)
356                         (cur_wall_time - j_dbs_info->prev_cpu_wall);
357                 j_dbs_info->prev_cpu_wall = cur_wall_time;
358
359                 idle_time = (unsigned int)
360                         (cur_idle_time - j_dbs_info->prev_cpu_idle);
361                 j_dbs_info->prev_cpu_idle = cur_idle_time;
362
363                 if (dbs_tuners_ins.ignore_nice) {
364                         u64 cur_nice;
365                         unsigned long cur_nice_jiffies;
366
367                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
368                                          j_dbs_info->prev_cpu_nice;
369                         /*
370                          * Assumption: nice time between sampling periods will
371                          * be less than 2^32 jiffies for 32 bit sys
372                          */
373                         cur_nice_jiffies = (unsigned long)
374                                         cputime64_to_jiffies64(cur_nice);
375
376                         j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
377                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
378                 }
379
380                 if (unlikely(!wall_time || wall_time < idle_time))
381                         continue;
382
383                 load = 100 * (wall_time - idle_time) / wall_time;
384
385                 if (load > max_load)
386                         max_load = load;
387         }
388
389         /*
390          * break out if we 'cannot' reduce the speed as the user might
391          * want freq_step to be zero
392          */
393         if (dbs_tuners_ins.freq_step == 0)
394                 return;
395
396         /* Check for frequency increase */
397         if (max_load > dbs_tuners_ins.up_threshold) {
398                 this_dbs_info->down_skip = 0;
399
400                 /* if we are already at full speed then break out early */
401                 if (this_dbs_info->requested_freq == policy->max)
402                         return;
403
404                 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
405
406                 /* max freq cannot be less than 100. But who knows.... */
407                 if (unlikely(freq_target == 0))
408                         freq_target = 5;
409
410                 this_dbs_info->requested_freq += freq_target;
411                 if (this_dbs_info->requested_freq > policy->max)
412                         this_dbs_info->requested_freq = policy->max;
413
414                 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
415                         CPUFREQ_RELATION_H);
416                 return;
417         }
418
419         /*
420          * The optimal frequency is the frequency that is the lowest that
421          * can support the current CPU usage without triggering the up
422          * policy. To be safe, we focus 10 points under the threshold.
423          */
424         if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
425                 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
426
427                 this_dbs_info->requested_freq -= freq_target;
428                 if (this_dbs_info->requested_freq < policy->min)
429                         this_dbs_info->requested_freq = policy->min;
430
431                 /*
432                  * if we cannot reduce the frequency anymore, break out early
433                  */
434                 if (policy->cur == policy->min)
435                         return;
436
437                 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
438                                 CPUFREQ_RELATION_H);
439                 return;
440         }
441 }
442
443 static void do_dbs_timer(struct work_struct *work)
444 {
445         struct cpu_dbs_info_s *dbs_info =
446                 container_of(work, struct cpu_dbs_info_s, work.work);
447         unsigned int cpu = dbs_info->cpu;
448
449         /* We want all CPUs to do sampling nearly on same jiffy */
450         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
451
452         delay -= jiffies % delay;
453
454         mutex_lock(&dbs_info->timer_mutex);
455
456         dbs_check_cpu(dbs_info);
457
458         schedule_delayed_work_on(cpu, &dbs_info->work, delay);
459         mutex_unlock(&dbs_info->timer_mutex);
460 }
461
462 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
463 {
464         /* We want all CPUs to do sampling nearly on same jiffy */
465         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
466         delay -= jiffies % delay;
467
468         dbs_info->enable = 1;
469         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
470         schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
471 }
472
473 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
474 {
475         dbs_info->enable = 0;
476         cancel_delayed_work_sync(&dbs_info->work);
477 }
478
479 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
480                                    unsigned int event)
481 {
482         unsigned int cpu = policy->cpu;
483         struct cpu_dbs_info_s *this_dbs_info;
484         unsigned int j;
485         int rc;
486
487         this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
488
489         switch (event) {
490         case CPUFREQ_GOV_START:
491                 if ((!cpu_online(cpu)) || (!policy->cur))
492                         return -EINVAL;
493
494                 mutex_lock(&dbs_mutex);
495
496                 for_each_cpu(j, policy->cpus) {
497                         struct cpu_dbs_info_s *j_dbs_info;
498                         j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
499                         j_dbs_info->cur_policy = policy;
500
501                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
502                                                 &j_dbs_info->prev_cpu_wall);
503                         if (dbs_tuners_ins.ignore_nice)
504                                 j_dbs_info->prev_cpu_nice =
505                                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
506                 }
507                 this_dbs_info->down_skip = 0;
508                 this_dbs_info->requested_freq = policy->cur;
509
510                 mutex_init(&this_dbs_info->timer_mutex);
511                 dbs_enable++;
512                 /*
513                  * Start the timerschedule work, when this governor
514                  * is used for first time
515                  */
516                 if (dbs_enable == 1) {
517                         unsigned int latency;
518                         /* policy latency is in nS. Convert it to uS first */
519                         latency = policy->cpuinfo.transition_latency / 1000;
520                         if (latency == 0)
521                                 latency = 1;
522
523                         rc = sysfs_create_group(cpufreq_global_kobject,
524                                                 &dbs_attr_group);
525                         if (rc) {
526                                 mutex_unlock(&dbs_mutex);
527                                 return rc;
528                         }
529
530                         /*
531                          * conservative does not implement micro like ondemand
532                          * governor, thus we are bound to jiffes/HZ
533                          */
534                         min_sampling_rate =
535                                 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
536                         /* Bring kernel and HW constraints together */
537                         min_sampling_rate = max(min_sampling_rate,
538                                         MIN_LATENCY_MULTIPLIER * latency);
539                         dbs_tuners_ins.sampling_rate =
540                                 max(min_sampling_rate,
541                                     latency * LATENCY_MULTIPLIER);
542
543                         cpufreq_register_notifier(
544                                         &dbs_cpufreq_notifier_block,
545                                         CPUFREQ_TRANSITION_NOTIFIER);
546                 }
547                 mutex_unlock(&dbs_mutex);
548
549                 dbs_timer_init(this_dbs_info);
550
551                 break;
552
553         case CPUFREQ_GOV_STOP:
554                 dbs_timer_exit(this_dbs_info);
555
556                 mutex_lock(&dbs_mutex);
557                 dbs_enable--;
558                 mutex_destroy(&this_dbs_info->timer_mutex);
559
560                 /*
561                  * Stop the timerschedule work, when this governor
562                  * is used for first time
563                  */
564                 if (dbs_enable == 0)
565                         cpufreq_unregister_notifier(
566                                         &dbs_cpufreq_notifier_block,
567                                         CPUFREQ_TRANSITION_NOTIFIER);
568
569                 mutex_unlock(&dbs_mutex);
570                 if (!dbs_enable)
571                         sysfs_remove_group(cpufreq_global_kobject,
572                                            &dbs_attr_group);
573
574                 break;
575
576         case CPUFREQ_GOV_LIMITS:
577                 mutex_lock(&this_dbs_info->timer_mutex);
578                 if (policy->max < this_dbs_info->cur_policy->cur)
579                         __cpufreq_driver_target(
580                                         this_dbs_info->cur_policy,
581                                         policy->max, CPUFREQ_RELATION_H);
582                 else if (policy->min > this_dbs_info->cur_policy->cur)
583                         __cpufreq_driver_target(
584                                         this_dbs_info->cur_policy,
585                                         policy->min, CPUFREQ_RELATION_L);
586                 mutex_unlock(&this_dbs_info->timer_mutex);
587
588                 break;
589         }
590         return 0;
591 }
592
593 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
594 static
595 #endif
596 struct cpufreq_governor cpufreq_gov_conservative = {
597         .name                   = "conservative",
598         .governor               = cpufreq_governor_dbs,
599         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
600         .owner                  = THIS_MODULE,
601 };
602
603 static int __init cpufreq_gov_dbs_init(void)
604 {
605         return cpufreq_register_governor(&cpufreq_gov_conservative);
606 }
607
608 static void __exit cpufreq_gov_dbs_exit(void)
609 {
610         cpufreq_unregister_governor(&cpufreq_gov_conservative);
611 }
612
613
614 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
615 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
616                 "Low Latency Frequency Transition capable processors "
617                 "optimised for use in a battery environment");
618 MODULE_LICENSE("GPL");
619
620 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
621 fs_initcall(cpufreq_gov_dbs_init);
622 #else
623 module_init(cpufreq_gov_dbs_init);
624 #endif
625 module_exit(cpufreq_gov_dbs_exit);