2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct *work);
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
61 struct cpufreq_policy *cur_policy;
62 struct delayed_work work;
63 unsigned int down_skip;
64 unsigned int requested_freq;
66 unsigned int enable:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
79 * dbs_mutex protects dbs_enable in governor start/stop.
81 static DEFINE_MUTEX(dbs_mutex);
83 static struct dbs_tuners {
84 unsigned int sampling_rate;
85 unsigned int sampling_down_factor;
86 unsigned int up_threshold;
87 unsigned int down_threshold;
88 unsigned int ignore_nice;
89 unsigned int freq_step;
91 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
98 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
104 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
106 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
107 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
108 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
109 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
110 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
111 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
113 idle_time = cur_wall_time - busy_time;
115 *wall = jiffies_to_usecs(cur_wall_time);
117 return jiffies_to_usecs(idle_time);
120 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
122 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
124 if (idle_time == -1ULL)
125 return get_cpu_idle_time_jiffy(cpu, wall);
127 idle_time += get_cpu_iowait_time_us(cpu, wall);
132 /* keep track of frequency transitions */
134 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
137 struct cpufreq_freqs *freq = data;
138 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
141 struct cpufreq_policy *policy;
143 if (!this_dbs_info->enable)
146 policy = this_dbs_info->cur_policy;
149 * we only care if our internally tracked freq moves outside
150 * the 'valid' ranges of freqency available to us otherwise
151 * we do not change it
153 if (this_dbs_info->requested_freq > policy->max
154 || this_dbs_info->requested_freq < policy->min)
155 this_dbs_info->requested_freq = freq->new;
160 static struct notifier_block dbs_cpufreq_notifier_block = {
161 .notifier_call = dbs_cpufreq_notifier
164 /************************** sysfs interface ************************/
165 static ssize_t show_sampling_rate_min(struct kobject *kobj,
166 struct attribute *attr, char *buf)
168 return sprintf(buf, "%u\n", min_sampling_rate);
171 define_one_global_ro(sampling_rate_min);
173 /* cpufreq_conservative Governor Tunables */
174 #define show_one(file_name, object) \
175 static ssize_t show_##file_name \
176 (struct kobject *kobj, struct attribute *attr, char *buf) \
178 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
180 show_one(sampling_rate, sampling_rate);
181 show_one(sampling_down_factor, sampling_down_factor);
182 show_one(up_threshold, up_threshold);
183 show_one(down_threshold, down_threshold);
184 show_one(ignore_nice_load, ignore_nice);
185 show_one(freq_step, freq_step);
187 static ssize_t store_sampling_down_factor(struct kobject *a,
189 const char *buf, size_t count)
193 ret = sscanf(buf, "%u", &input);
195 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
198 dbs_tuners_ins.sampling_down_factor = input;
202 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
203 const char *buf, size_t count)
207 ret = sscanf(buf, "%u", &input);
212 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
216 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
217 const char *buf, size_t count)
221 ret = sscanf(buf, "%u", &input);
223 if (ret != 1 || input > 100 ||
224 input <= dbs_tuners_ins.down_threshold)
227 dbs_tuners_ins.up_threshold = input;
231 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
232 const char *buf, size_t count)
236 ret = sscanf(buf, "%u", &input);
238 /* cannot be lower than 11 otherwise freq will not fall */
239 if (ret != 1 || input < 11 || input > 100 ||
240 input >= dbs_tuners_ins.up_threshold)
243 dbs_tuners_ins.down_threshold = input;
247 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
248 const char *buf, size_t count)
255 ret = sscanf(buf, "%u", &input);
262 if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
265 dbs_tuners_ins.ignore_nice = input;
267 /* we need to re-evaluate prev_cpu_idle */
268 for_each_online_cpu(j) {
269 struct cpu_dbs_info_s *dbs_info;
270 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
271 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
272 &dbs_info->prev_cpu_wall);
273 if (dbs_tuners_ins.ignore_nice)
274 dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
279 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
280 const char *buf, size_t count)
284 ret = sscanf(buf, "%u", &input);
292 /* no need to test here if freq_step is zero as the user might actually
293 * want this, they would be crazy though :) */
294 dbs_tuners_ins.freq_step = input;
298 define_one_global_rw(sampling_rate);
299 define_one_global_rw(sampling_down_factor);
300 define_one_global_rw(up_threshold);
301 define_one_global_rw(down_threshold);
302 define_one_global_rw(ignore_nice_load);
303 define_one_global_rw(freq_step);
305 static struct attribute *dbs_attributes[] = {
306 &sampling_rate_min.attr,
308 &sampling_down_factor.attr,
310 &down_threshold.attr,
311 &ignore_nice_load.attr,
316 static struct attribute_group dbs_attr_group = {
317 .attrs = dbs_attributes,
318 .name = "conservative",
321 /************************** sysfs end ************************/
323 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
325 unsigned int load = 0;
326 unsigned int max_load = 0;
327 unsigned int freq_target;
329 struct cpufreq_policy *policy;
332 policy = this_dbs_info->cur_policy;
335 * Every sampling_rate, we check, if current idle time is less
336 * than 20% (default), then we try to increase frequency
337 * Every sampling_rate*sampling_down_factor, we check, if current
338 * idle time is more than 80%, then we try to decrease frequency
340 * Any frequency increase takes it to the maximum frequency.
341 * Frequency reduction happens at minimum steps of
342 * 5% (default) of maximum frequency
345 /* Get Absolute Load */
346 for_each_cpu(j, policy->cpus) {
347 struct cpu_dbs_info_s *j_dbs_info;
348 cputime64_t cur_wall_time, cur_idle_time;
349 unsigned int idle_time, wall_time;
351 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
353 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
355 wall_time = (unsigned int)
356 (cur_wall_time - j_dbs_info->prev_cpu_wall);
357 j_dbs_info->prev_cpu_wall = cur_wall_time;
359 idle_time = (unsigned int)
360 (cur_idle_time - j_dbs_info->prev_cpu_idle);
361 j_dbs_info->prev_cpu_idle = cur_idle_time;
363 if (dbs_tuners_ins.ignore_nice) {
365 unsigned long cur_nice_jiffies;
367 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
368 j_dbs_info->prev_cpu_nice;
370 * Assumption: nice time between sampling periods will
371 * be less than 2^32 jiffies for 32 bit sys
373 cur_nice_jiffies = (unsigned long)
374 cputime64_to_jiffies64(cur_nice);
376 j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
377 idle_time += jiffies_to_usecs(cur_nice_jiffies);
380 if (unlikely(!wall_time || wall_time < idle_time))
383 load = 100 * (wall_time - idle_time) / wall_time;
390 * break out if we 'cannot' reduce the speed as the user might
391 * want freq_step to be zero
393 if (dbs_tuners_ins.freq_step == 0)
396 /* Check for frequency increase */
397 if (max_load > dbs_tuners_ins.up_threshold) {
398 this_dbs_info->down_skip = 0;
400 /* if we are already at full speed then break out early */
401 if (this_dbs_info->requested_freq == policy->max)
404 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
406 /* max freq cannot be less than 100. But who knows.... */
407 if (unlikely(freq_target == 0))
410 this_dbs_info->requested_freq += freq_target;
411 if (this_dbs_info->requested_freq > policy->max)
412 this_dbs_info->requested_freq = policy->max;
414 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
420 * The optimal frequency is the frequency that is the lowest that
421 * can support the current CPU usage without triggering the up
422 * policy. To be safe, we focus 10 points under the threshold.
424 if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
425 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
427 this_dbs_info->requested_freq -= freq_target;
428 if (this_dbs_info->requested_freq < policy->min)
429 this_dbs_info->requested_freq = policy->min;
432 * if we cannot reduce the frequency anymore, break out early
434 if (policy->cur == policy->min)
437 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
443 static void do_dbs_timer(struct work_struct *work)
445 struct cpu_dbs_info_s *dbs_info =
446 container_of(work, struct cpu_dbs_info_s, work.work);
447 unsigned int cpu = dbs_info->cpu;
449 /* We want all CPUs to do sampling nearly on same jiffy */
450 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
452 delay -= jiffies % delay;
454 mutex_lock(&dbs_info->timer_mutex);
456 dbs_check_cpu(dbs_info);
458 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
459 mutex_unlock(&dbs_info->timer_mutex);
462 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
464 /* We want all CPUs to do sampling nearly on same jiffy */
465 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
466 delay -= jiffies % delay;
468 dbs_info->enable = 1;
469 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
470 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
473 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
475 dbs_info->enable = 0;
476 cancel_delayed_work_sync(&dbs_info->work);
479 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
482 unsigned int cpu = policy->cpu;
483 struct cpu_dbs_info_s *this_dbs_info;
487 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
490 case CPUFREQ_GOV_START:
491 if ((!cpu_online(cpu)) || (!policy->cur))
494 mutex_lock(&dbs_mutex);
496 for_each_cpu(j, policy->cpus) {
497 struct cpu_dbs_info_s *j_dbs_info;
498 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
499 j_dbs_info->cur_policy = policy;
501 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
502 &j_dbs_info->prev_cpu_wall);
503 if (dbs_tuners_ins.ignore_nice)
504 j_dbs_info->prev_cpu_nice =
505 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
507 this_dbs_info->down_skip = 0;
508 this_dbs_info->requested_freq = policy->cur;
510 mutex_init(&this_dbs_info->timer_mutex);
513 * Start the timerschedule work, when this governor
514 * is used for first time
516 if (dbs_enable == 1) {
517 unsigned int latency;
518 /* policy latency is in nS. Convert it to uS first */
519 latency = policy->cpuinfo.transition_latency / 1000;
523 rc = sysfs_create_group(cpufreq_global_kobject,
526 mutex_unlock(&dbs_mutex);
531 * conservative does not implement micro like ondemand
532 * governor, thus we are bound to jiffes/HZ
535 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
536 /* Bring kernel and HW constraints together */
537 min_sampling_rate = max(min_sampling_rate,
538 MIN_LATENCY_MULTIPLIER * latency);
539 dbs_tuners_ins.sampling_rate =
540 max(min_sampling_rate,
541 latency * LATENCY_MULTIPLIER);
543 cpufreq_register_notifier(
544 &dbs_cpufreq_notifier_block,
545 CPUFREQ_TRANSITION_NOTIFIER);
547 mutex_unlock(&dbs_mutex);
549 dbs_timer_init(this_dbs_info);
553 case CPUFREQ_GOV_STOP:
554 dbs_timer_exit(this_dbs_info);
556 mutex_lock(&dbs_mutex);
558 mutex_destroy(&this_dbs_info->timer_mutex);
561 * Stop the timerschedule work, when this governor
562 * is used for first time
565 cpufreq_unregister_notifier(
566 &dbs_cpufreq_notifier_block,
567 CPUFREQ_TRANSITION_NOTIFIER);
569 mutex_unlock(&dbs_mutex);
571 sysfs_remove_group(cpufreq_global_kobject,
576 case CPUFREQ_GOV_LIMITS:
577 mutex_lock(&this_dbs_info->timer_mutex);
578 if (policy->max < this_dbs_info->cur_policy->cur)
579 __cpufreq_driver_target(
580 this_dbs_info->cur_policy,
581 policy->max, CPUFREQ_RELATION_H);
582 else if (policy->min > this_dbs_info->cur_policy->cur)
583 __cpufreq_driver_target(
584 this_dbs_info->cur_policy,
585 policy->min, CPUFREQ_RELATION_L);
586 mutex_unlock(&this_dbs_info->timer_mutex);
593 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
596 struct cpufreq_governor cpufreq_gov_conservative = {
597 .name = "conservative",
598 .governor = cpufreq_governor_dbs,
599 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
600 .owner = THIS_MODULE,
603 static int __init cpufreq_gov_dbs_init(void)
605 return cpufreq_register_governor(&cpufreq_gov_conservative);
608 static void __exit cpufreq_gov_dbs_exit(void)
610 cpufreq_unregister_governor(&cpufreq_gov_conservative);
614 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
615 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
616 "Low Latency Frequency Transition capable processors "
617 "optimised for use in a battery environment");
618 MODULE_LICENSE("GPL");
620 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
621 fs_initcall(cpufreq_gov_dbs_init);
623 module_init(cpufreq_gov_dbs_init);
625 module_exit(cpufreq_gov_dbs_exit);