Merge remote-tracking branch 'stable/linux-5.15.y' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 /* Iterate over governors */
46 static LIST_HEAD(cpufreq_governor_list);
47 #define for_each_governor(__governor)                           \
48         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
49
50 static char default_governor[CPUFREQ_NAME_LEN];
51
52 /*
53  * The "cpufreq driver" - the arch- or hardware-dependent low
54  * level driver of CPUFreq support, and its spinlock. This lock
55  * also protects the cpufreq_cpu_data array.
56  */
57 static struct cpufreq_driver *cpufreq_driver;
58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
59 static DEFINE_RWLOCK(cpufreq_driver_lock);
60
61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
62 bool cpufreq_supports_freq_invariance(void)
63 {
64         return static_branch_likely(&cpufreq_freq_invariance);
65 }
66
67 /* Flag to suspend/resume CPUFreq governors */
68 static bool cpufreq_suspended;
69
70 static inline bool has_target(void)
71 {
72         return cpufreq_driver->target_index || cpufreq_driver->target;
73 }
74
75 /* internal prototypes */
76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
77 static int cpufreq_init_governor(struct cpufreq_policy *policy);
78 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
79 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
80 static int cpufreq_set_policy(struct cpufreq_policy *policy,
81                               struct cpufreq_governor *new_gov,
82                               unsigned int new_pol);
83
84 /*
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97         return off;
98 }
99 void disable_cpufreq(void)
100 {
101         off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104
105 bool have_governor_per_policy(void)
106 {
107         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110
111 static struct kobject *cpufreq_global_kobject;
112
113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
114 {
115         if (have_governor_per_policy())
116                 return &policy->kobj;
117         else
118                 return cpufreq_global_kobject;
119 }
120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
121
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124         struct kernel_cpustat kcpustat;
125         u64 cur_wall_time;
126         u64 idle_time;
127         u64 busy_time;
128
129         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
130
131         kcpustat_cpu_fetch(&kcpustat, cpu);
132
133         busy_time = kcpustat.cpustat[CPUTIME_USER];
134         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
135         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
136         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
137         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
138         busy_time += kcpustat.cpustat[CPUTIME_NICE];
139
140         idle_time = cur_wall_time - busy_time;
141         if (wall)
142                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
143
144         return div_u64(idle_time, NSEC_PER_USEC);
145 }
146
147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
148 {
149         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
150
151         if (idle_time == -1ULL)
152                 return get_cpu_idle_time_jiffy(cpu, wall);
153         else if (!io_busy)
154                 idle_time += get_cpu_iowait_time_us(cpu, wall);
155
156         return idle_time;
157 }
158 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
159
160 /*
161  * This is a generic cpufreq init() routine which can be used by cpufreq
162  * drivers of SMP systems. It will do following:
163  * - validate & show freq table passed
164  * - set policies transition latency
165  * - policy->cpus with all possible CPUs
166  */
167 void cpufreq_generic_init(struct cpufreq_policy *policy,
168                 struct cpufreq_frequency_table *table,
169                 unsigned int transition_latency)
170 {
171         policy->freq_table = table;
172         policy->cpuinfo.transition_latency = transition_latency;
173
174         /*
175          * The driver only supports the SMP configuration where all processors
176          * share the clock and voltage and clock.
177          */
178         cpumask_setall(policy->cpus);
179 }
180 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
181
182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
183 {
184         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
185
186         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
187 }
188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
189
190 unsigned int cpufreq_generic_get(unsigned int cpu)
191 {
192         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
193
194         if (!policy || IS_ERR(policy->clk)) {
195                 pr_err("%s: No %s associated to cpu: %d\n",
196                        __func__, policy ? "clk" : "policy", cpu);
197                 return 0;
198         }
199
200         return clk_get_rate(policy->clk) / 1000;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
203
204 /**
205  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
206  * @cpu: CPU to find the policy for.
207  *
208  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
209  * the kobject reference counter of that policy.  Return a valid policy on
210  * success or NULL on failure.
211  *
212  * The policy returned by this function has to be released with the help of
213  * cpufreq_cpu_put() to balance its kobject reference counter properly.
214  */
215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
216 {
217         struct cpufreq_policy *policy = NULL;
218         unsigned long flags;
219
220         if (WARN_ON(cpu >= nr_cpu_ids))
221                 return NULL;
222
223         /* get the cpufreq driver */
224         read_lock_irqsave(&cpufreq_driver_lock, flags);
225
226         if (cpufreq_driver) {
227                 /* get the CPU */
228                 policy = cpufreq_cpu_get_raw(cpu);
229                 if (policy)
230                         kobject_get(&policy->kobj);
231         }
232
233         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
234
235         return policy;
236 }
237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
238
239 /**
240  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
241  * @policy: cpufreq policy returned by cpufreq_cpu_get().
242  */
243 void cpufreq_cpu_put(struct cpufreq_policy *policy)
244 {
245         kobject_put(&policy->kobj);
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
248
249 /**
250  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
251  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
252  */
253 void cpufreq_cpu_release(struct cpufreq_policy *policy)
254 {
255         if (WARN_ON(!policy))
256                 return;
257
258         lockdep_assert_held(&policy->rwsem);
259
260         up_write(&policy->rwsem);
261
262         cpufreq_cpu_put(policy);
263 }
264
265 /**
266  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
267  * @cpu: CPU to find the policy for.
268  *
269  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
270  * if the policy returned by it is not NULL, acquire its rwsem for writing.
271  * Return the policy if it is active or release it and return NULL otherwise.
272  *
273  * The policy returned by this function has to be released with the help of
274  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
275  * counter properly.
276  */
277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
278 {
279         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
280
281         if (!policy)
282                 return NULL;
283
284         down_write(&policy->rwsem);
285
286         if (policy_is_inactive(policy)) {
287                 cpufreq_cpu_release(policy);
288                 return NULL;
289         }
290
291         return policy;
292 }
293
294 /*********************************************************************
295  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
296  *********************************************************************/
297
298 /**
299  * adjust_jiffies - Adjust the system "loops_per_jiffy".
300  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
301  * @ci: Frequency change information.
302  *
303  * This function alters the system "loops_per_jiffy" for the clock
304  * speed change. Note that loops_per_jiffy cannot be updated on SMP
305  * systems as each CPU might be scaled differently. So, use the arch
306  * per-CPU loops_per_jiffy value wherever possible.
307  */
308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 #ifndef CONFIG_SMP
311         static unsigned long l_p_j_ref;
312         static unsigned int l_p_j_ref_freq;
313
314         if (ci->flags & CPUFREQ_CONST_LOOPS)
315                 return;
316
317         if (!l_p_j_ref_freq) {
318                 l_p_j_ref = loops_per_jiffy;
319                 l_p_j_ref_freq = ci->old;
320                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
321                          l_p_j_ref, l_p_j_ref_freq);
322         }
323         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
324                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
325                                                                 ci->new);
326                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
327                          loops_per_jiffy, ci->new);
328         }
329 #endif
330 }
331
332 /**
333  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
334  * @policy: cpufreq policy to enable fast frequency switching for.
335  * @freqs: contain details of the frequency update.
336  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
337  *
338  * This function calls the transition notifiers and adjust_jiffies().
339  *
340  * It is called twice on all CPU frequency changes that have external effects.
341  */
342 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
343                                       struct cpufreq_freqs *freqs,
344                                       unsigned int state)
345 {
346         int cpu;
347
348         BUG_ON(irqs_disabled());
349
350         if (cpufreq_disabled())
351                 return;
352
353         freqs->policy = policy;
354         freqs->flags = cpufreq_driver->flags;
355         pr_debug("notification %u of frequency transition to %u kHz\n",
356                  state, freqs->new);
357
358         switch (state) {
359         case CPUFREQ_PRECHANGE:
360                 /*
361                  * Detect if the driver reported a value as "old frequency"
362                  * which is not equal to what the cpufreq core thinks is
363                  * "old frequency".
364                  */
365                 if (policy->cur && policy->cur != freqs->old) {
366                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
367                                  freqs->old, policy->cur);
368                         freqs->old = policy->cur;
369                 }
370
371                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
372                                          CPUFREQ_PRECHANGE, freqs);
373
374                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
375                 break;
376
377         case CPUFREQ_POSTCHANGE:
378                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
379                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
380                          cpumask_pr_args(policy->cpus));
381
382                 for_each_cpu(cpu, policy->cpus)
383                         trace_cpu_frequency(freqs->new, cpu);
384
385                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
386                                          CPUFREQ_POSTCHANGE, freqs);
387
388                 cpufreq_stats_record_transition(policy, freqs->new);
389                 policy->cur = freqs->new;
390         }
391 }
392
393 /* Do post notifications when there are chances that transition has failed */
394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
395                 struct cpufreq_freqs *freqs, int transition_failed)
396 {
397         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
398         if (!transition_failed)
399                 return;
400
401         swap(freqs->old, freqs->new);
402         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 }
405
406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
407                 struct cpufreq_freqs *freqs)
408 {
409
410         /*
411          * Catch double invocations of _begin() which lead to self-deadlock.
412          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
413          * doesn't invoke _begin() on their behalf, and hence the chances of
414          * double invocations are very low. Moreover, there are scenarios
415          * where these checks can emit false-positive warnings in these
416          * drivers; so we avoid that by skipping them altogether.
417          */
418         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
419                                 && current == policy->transition_task);
420
421 wait:
422         wait_event(policy->transition_wait, !policy->transition_ongoing);
423
424         spin_lock(&policy->transition_lock);
425
426         if (unlikely(policy->transition_ongoing)) {
427                 spin_unlock(&policy->transition_lock);
428                 goto wait;
429         }
430
431         policy->transition_ongoing = true;
432         policy->transition_task = current;
433
434         spin_unlock(&policy->transition_lock);
435
436         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
437 }
438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
439
440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
441                 struct cpufreq_freqs *freqs, int transition_failed)
442 {
443         if (WARN_ON(!policy->transition_ongoing))
444                 return;
445
446         cpufreq_notify_post_transition(policy, freqs, transition_failed);
447
448         arch_set_freq_scale(policy->related_cpus,
449                             policy->cur,
450                             policy->cpuinfo.max_freq);
451
452         policy->transition_ongoing = false;
453         policy->transition_task = NULL;
454
455         wake_up(&policy->transition_wait);
456 }
457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
458
459 /*
460  * Fast frequency switching status count.  Positive means "enabled", negative
461  * means "disabled" and 0 means "not decided yet".
462  */
463 static int cpufreq_fast_switch_count;
464 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
465
466 static void cpufreq_list_transition_notifiers(void)
467 {
468         struct notifier_block *nb;
469
470         pr_info("Registered transition notifiers:\n");
471
472         mutex_lock(&cpufreq_transition_notifier_list.mutex);
473
474         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
475                 pr_info("%pS\n", nb->notifier_call);
476
477         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
478 }
479
480 /**
481  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
482  * @policy: cpufreq policy to enable fast frequency switching for.
483  *
484  * Try to enable fast frequency switching for @policy.
485  *
486  * The attempt will fail if there is at least one transition notifier registered
487  * at this point, as fast frequency switching is quite fundamentally at odds
488  * with transition notifiers.  Thus if successful, it will make registration of
489  * transition notifiers fail going forward.
490  */
491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
492 {
493         lockdep_assert_held(&policy->rwsem);
494
495         if (!policy->fast_switch_possible)
496                 return;
497
498         mutex_lock(&cpufreq_fast_switch_lock);
499         if (cpufreq_fast_switch_count >= 0) {
500                 cpufreq_fast_switch_count++;
501                 policy->fast_switch_enabled = true;
502         } else {
503                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
504                         policy->cpu);
505                 cpufreq_list_transition_notifiers();
506         }
507         mutex_unlock(&cpufreq_fast_switch_lock);
508 }
509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
510
511 /**
512  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
513  * @policy: cpufreq policy to disable fast frequency switching for.
514  */
515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
516 {
517         mutex_lock(&cpufreq_fast_switch_lock);
518         if (policy->fast_switch_enabled) {
519                 policy->fast_switch_enabled = false;
520                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
521                         cpufreq_fast_switch_count--;
522         }
523         mutex_unlock(&cpufreq_fast_switch_lock);
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
526
527 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
528                 unsigned int target_freq, unsigned int relation)
529 {
530         unsigned int idx;
531
532         target_freq = clamp_val(target_freq, policy->min, policy->max);
533
534         if (!cpufreq_driver->target_index)
535                 return target_freq;
536
537         idx = cpufreq_frequency_table_target(policy, target_freq, relation);
538         policy->cached_resolved_idx = idx;
539         policy->cached_target_freq = target_freq;
540         return policy->freq_table[idx].frequency;
541 }
542
543 /**
544  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
545  * one.
546  * @policy: associated policy to interrogate
547  * @target_freq: target frequency to resolve.
548  *
549  * The target to driver frequency mapping is cached in the policy.
550  *
551  * Return: Lowest driver-supported frequency greater than or equal to the
552  * given target_freq, subject to policy (min/max) and driver limitations.
553  */
554 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
555                                          unsigned int target_freq)
556 {
557         return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_L);
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
560
561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
562 {
563         unsigned int latency;
564
565         if (policy->transition_delay_us)
566                 return policy->transition_delay_us;
567
568         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
569         if (latency) {
570                 /*
571                  * For platforms that can change the frequency very fast (< 10
572                  * us), the above formula gives a decent transition delay. But
573                  * for platforms where transition_latency is in milliseconds, it
574                  * ends up giving unrealistic values.
575                  *
576                  * Cap the default transition delay to 10 ms, which seems to be
577                  * a reasonable amount of time after which we should reevaluate
578                  * the frequency.
579                  */
580                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
581         }
582
583         return LATENCY_MULTIPLIER;
584 }
585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
586
587 /*********************************************************************
588  *                          SYSFS INTERFACE                          *
589  *********************************************************************/
590 static ssize_t show_boost(struct kobject *kobj,
591                           struct kobj_attribute *attr, char *buf)
592 {
593         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
594 }
595
596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
597                            const char *buf, size_t count)
598 {
599         int ret, enable;
600
601         ret = sscanf(buf, "%d", &enable);
602         if (ret != 1 || enable < 0 || enable > 1)
603                 return -EINVAL;
604
605         if (cpufreq_boost_trigger_state(enable)) {
606                 pr_err("%s: Cannot %s BOOST!\n",
607                        __func__, enable ? "enable" : "disable");
608                 return -EINVAL;
609         }
610
611         pr_debug("%s: cpufreq BOOST %s\n",
612                  __func__, enable ? "enabled" : "disabled");
613
614         return count;
615 }
616 define_one_global_rw(boost);
617
618 static struct cpufreq_governor *find_governor(const char *str_governor)
619 {
620         struct cpufreq_governor *t;
621
622         for_each_governor(t)
623                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
624                         return t;
625
626         return NULL;
627 }
628
629 static struct cpufreq_governor *get_governor(const char *str_governor)
630 {
631         struct cpufreq_governor *t;
632
633         mutex_lock(&cpufreq_governor_mutex);
634         t = find_governor(str_governor);
635         if (!t)
636                 goto unlock;
637
638         if (!try_module_get(t->owner))
639                 t = NULL;
640
641 unlock:
642         mutex_unlock(&cpufreq_governor_mutex);
643
644         return t;
645 }
646
647 static unsigned int cpufreq_parse_policy(char *str_governor)
648 {
649         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
650                 return CPUFREQ_POLICY_PERFORMANCE;
651
652         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
653                 return CPUFREQ_POLICY_POWERSAVE;
654
655         return CPUFREQ_POLICY_UNKNOWN;
656 }
657
658 /**
659  * cpufreq_parse_governor - parse a governor string only for has_target()
660  * @str_governor: Governor name.
661  */
662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
663 {
664         struct cpufreq_governor *t;
665
666         t = get_governor(str_governor);
667         if (t)
668                 return t;
669
670         if (request_module("cpufreq_%s", str_governor))
671                 return NULL;
672
673         return get_governor(str_governor);
674 }
675
676 /*
677  * cpufreq_per_cpu_attr_read() / show_##file_name() -
678  * print out cpufreq information
679  *
680  * Write out information from cpufreq_driver->policy[cpu]; object must be
681  * "unsigned int".
682  */
683
684 #define show_one(file_name, object)                     \
685 static ssize_t show_##file_name                         \
686 (struct cpufreq_policy *policy, char *buf)              \
687 {                                                       \
688         return sprintf(buf, "%u\n", policy->object);    \
689 }
690
691 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
692 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
694 show_one(scaling_min_freq, min);
695 show_one(scaling_max_freq, max);
696
697 __weak unsigned int arch_freq_get_on_cpu(int cpu)
698 {
699         return 0;
700 }
701
702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
703 {
704         ssize_t ret;
705         unsigned int freq;
706
707         freq = arch_freq_get_on_cpu(policy->cpu);
708         if (freq)
709                 ret = sprintf(buf, "%u\n", freq);
710         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
711                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712         else
713                 ret = sprintf(buf, "%u\n", policy->cur);
714         return ret;
715 }
716
717 /*
718  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719  */
720 #define store_one(file_name, object)                    \
721 static ssize_t store_##file_name                                        \
722 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
723 {                                                                       \
724         unsigned long val;                                              \
725         int ret;                                                        \
726                                                                         \
727         ret = sscanf(buf, "%lu", &val);                                 \
728         if (ret != 1)                                                   \
729                 return -EINVAL;                                         \
730                                                                         \
731         ret = freq_qos_update_request(policy->object##_freq_req, val);\
732         return ret >= 0 ? count : ret;                                  \
733 }
734
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737
738 /*
739  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740  */
741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742                                         char *buf)
743 {
744         unsigned int cur_freq = __cpufreq_get(policy);
745
746         if (cur_freq)
747                 return sprintf(buf, "%u\n", cur_freq);
748
749         return sprintf(buf, "<unknown>\n");
750 }
751
752 /*
753  * show_scaling_governor - show the current policy for the specified CPU
754  */
755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758                 return sprintf(buf, "powersave\n");
759         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760                 return sprintf(buf, "performance\n");
761         else if (policy->governor)
762                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763                                 policy->governor->name);
764         return -EINVAL;
765 }
766
767 /*
768  * store_scaling_governor - store policy for the specified CPU
769  */
770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771                                         const char *buf, size_t count)
772 {
773         char str_governor[16];
774         int ret;
775
776         ret = sscanf(buf, "%15s", str_governor);
777         if (ret != 1)
778                 return -EINVAL;
779
780         if (cpufreq_driver->setpolicy) {
781                 unsigned int new_pol;
782
783                 new_pol = cpufreq_parse_policy(str_governor);
784                 if (!new_pol)
785                         return -EINVAL;
786
787                 ret = cpufreq_set_policy(policy, NULL, new_pol);
788         } else {
789                 struct cpufreq_governor *new_gov;
790
791                 new_gov = cpufreq_parse_governor(str_governor);
792                 if (!new_gov)
793                         return -EINVAL;
794
795                 ret = cpufreq_set_policy(policy, new_gov,
796                                          CPUFREQ_POLICY_UNKNOWN);
797
798                 module_put(new_gov->owner);
799         }
800
801         return ret ? ret : count;
802 }
803
804 /*
805  * show_scaling_driver - show the cpufreq driver currently loaded
806  */
807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811
812 /*
813  * show_scaling_available_governors - show the available CPUfreq governors
814  */
815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816                                                 char *buf)
817 {
818         ssize_t i = 0;
819         struct cpufreq_governor *t;
820
821         if (!has_target()) {
822                 i += sprintf(buf, "performance powersave");
823                 goto out;
824         }
825
826         mutex_lock(&cpufreq_governor_mutex);
827         for_each_governor(t) {
828                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829                     - (CPUFREQ_NAME_LEN + 2)))
830                         break;
831                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832         }
833         mutex_unlock(&cpufreq_governor_mutex);
834 out:
835         i += sprintf(&buf[i], "\n");
836         return i;
837 }
838
839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
840 {
841         ssize_t i = 0;
842         unsigned int cpu;
843
844         for_each_cpu(cpu, mask) {
845                 if (i)
846                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
847                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
848                 if (i >= (PAGE_SIZE - 5))
849                         break;
850         }
851         i += sprintf(&buf[i], "\n");
852         return i;
853 }
854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
855
856 /*
857  * show_related_cpus - show the CPUs affected by each transition even if
858  * hw coordination is in use
859  */
860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
861 {
862         return cpufreq_show_cpus(policy->related_cpus, buf);
863 }
864
865 /*
866  * show_affected_cpus - show the CPUs affected by each transition
867  */
868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
869 {
870         return cpufreq_show_cpus(policy->cpus, buf);
871 }
872
873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
874                                         const char *buf, size_t count)
875 {
876         unsigned int freq = 0;
877         unsigned int ret;
878
879         if (!policy->governor || !policy->governor->store_setspeed)
880                 return -EINVAL;
881
882         ret = sscanf(buf, "%u", &freq);
883         if (ret != 1)
884                 return -EINVAL;
885
886         policy->governor->store_setspeed(policy, freq);
887
888         return count;
889 }
890
891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
892 {
893         if (!policy->governor || !policy->governor->show_setspeed)
894                 return sprintf(buf, "<unsupported>\n");
895
896         return policy->governor->show_setspeed(policy, buf);
897 }
898
899 /*
900  * show_bios_limit - show the current cpufreq HW/BIOS limitation
901  */
902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
903 {
904         unsigned int limit;
905         int ret;
906         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
907         if (!ret)
908                 return sprintf(buf, "%u\n", limit);
909         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
910 }
911
912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
913 cpufreq_freq_attr_ro(cpuinfo_min_freq);
914 cpufreq_freq_attr_ro(cpuinfo_max_freq);
915 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
916 cpufreq_freq_attr_ro(scaling_available_governors);
917 cpufreq_freq_attr_ro(scaling_driver);
918 cpufreq_freq_attr_ro(scaling_cur_freq);
919 cpufreq_freq_attr_ro(bios_limit);
920 cpufreq_freq_attr_ro(related_cpus);
921 cpufreq_freq_attr_ro(affected_cpus);
922 cpufreq_freq_attr_rw(scaling_min_freq);
923 cpufreq_freq_attr_rw(scaling_max_freq);
924 cpufreq_freq_attr_rw(scaling_governor);
925 cpufreq_freq_attr_rw(scaling_setspeed);
926
927 static struct attribute *default_attrs[] = {
928         &cpuinfo_min_freq.attr,
929         &cpuinfo_max_freq.attr,
930         &cpuinfo_transition_latency.attr,
931         &scaling_min_freq.attr,
932         &scaling_max_freq.attr,
933         &affected_cpus.attr,
934         &related_cpus.attr,
935         &scaling_governor.attr,
936         &scaling_driver.attr,
937         &scaling_available_governors.attr,
938         &scaling_setspeed.attr,
939         NULL
940 };
941
942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
943 #define to_attr(a) container_of(a, struct freq_attr, attr)
944
945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
946 {
947         struct cpufreq_policy *policy = to_policy(kobj);
948         struct freq_attr *fattr = to_attr(attr);
949         ssize_t ret;
950
951         if (!fattr->show)
952                 return -EIO;
953
954         down_read(&policy->rwsem);
955         ret = fattr->show(policy, buf);
956         up_read(&policy->rwsem);
957
958         return ret;
959 }
960
961 static ssize_t store(struct kobject *kobj, struct attribute *attr,
962                      const char *buf, size_t count)
963 {
964         struct cpufreq_policy *policy = to_policy(kobj);
965         struct freq_attr *fattr = to_attr(attr);
966         ssize_t ret = -EINVAL;
967
968         if (!fattr->store)
969                 return -EIO;
970
971         /*
972          * cpus_read_trylock() is used here to work around a circular lock
973          * dependency problem with respect to the cpufreq_register_driver().
974          */
975         if (!cpus_read_trylock())
976                 return -EBUSY;
977
978         if (cpu_online(policy->cpu)) {
979                 down_write(&policy->rwsem);
980                 ret = fattr->store(policy, buf, count);
981                 up_write(&policy->rwsem);
982         }
983
984         cpus_read_unlock();
985
986         return ret;
987 }
988
989 static void cpufreq_sysfs_release(struct kobject *kobj)
990 {
991         struct cpufreq_policy *policy = to_policy(kobj);
992         pr_debug("last reference is dropped\n");
993         complete(&policy->kobj_unregister);
994 }
995
996 static const struct sysfs_ops sysfs_ops = {
997         .show   = show,
998         .store  = store,
999 };
1000
1001 static struct kobj_type ktype_cpufreq = {
1002         .sysfs_ops      = &sysfs_ops,
1003         .default_attrs  = default_attrs,
1004         .release        = cpufreq_sysfs_release,
1005 };
1006
1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1008                                 struct device *dev)
1009 {
1010         if (unlikely(!dev))
1011                 return;
1012
1013         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1014                 return;
1015
1016         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1017         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1018                 dev_err(dev, "cpufreq symlink creation failed\n");
1019 }
1020
1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1022                                    struct device *dev)
1023 {
1024         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1025         sysfs_remove_link(&dev->kobj, "cpufreq");
1026 }
1027
1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1029 {
1030         struct freq_attr **drv_attr;
1031         int ret = 0;
1032
1033         /* set up files for this cpu device */
1034         drv_attr = cpufreq_driver->attr;
1035         while (drv_attr && *drv_attr) {
1036                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1037                 if (ret)
1038                         return ret;
1039                 drv_attr++;
1040         }
1041         if (cpufreq_driver->get) {
1042                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1043                 if (ret)
1044                         return ret;
1045         }
1046
1047         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1048         if (ret)
1049                 return ret;
1050
1051         if (cpufreq_driver->bios_limit) {
1052                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1053                 if (ret)
1054                         return ret;
1055         }
1056
1057         return 0;
1058 }
1059
1060 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1061 {
1062         struct cpufreq_governor *gov = NULL;
1063         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1064         int ret;
1065
1066         if (has_target()) {
1067                 /* Update policy governor to the one used before hotplug. */
1068                 gov = get_governor(policy->last_governor);
1069                 if (gov) {
1070                         pr_debug("Restoring governor %s for cpu %d\n",
1071                                  gov->name, policy->cpu);
1072                 } else {
1073                         gov = get_governor(default_governor);
1074                 }
1075
1076                 if (!gov) {
1077                         gov = cpufreq_default_governor();
1078                         __module_get(gov->owner);
1079                 }
1080
1081         } else {
1082
1083                 /* Use the default policy if there is no last_policy. */
1084                 if (policy->last_policy) {
1085                         pol = policy->last_policy;
1086                 } else {
1087                         pol = cpufreq_parse_policy(default_governor);
1088                         /*
1089                          * In case the default governor is neither "performance"
1090                          * nor "powersave", fall back to the initial policy
1091                          * value set by the driver.
1092                          */
1093                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1094                                 pol = policy->policy;
1095                 }
1096                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1097                     pol != CPUFREQ_POLICY_POWERSAVE)
1098                         return -ENODATA;
1099         }
1100
1101         ret = cpufreq_set_policy(policy, gov, pol);
1102         if (gov)
1103                 module_put(gov->owner);
1104
1105         return ret;
1106 }
1107
1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1109 {
1110         int ret = 0;
1111
1112         /* Has this CPU been taken care of already? */
1113         if (cpumask_test_cpu(cpu, policy->cpus))
1114                 return 0;
1115
1116         down_write(&policy->rwsem);
1117         if (has_target())
1118                 cpufreq_stop_governor(policy);
1119
1120         cpumask_set_cpu(cpu, policy->cpus);
1121
1122         if (has_target()) {
1123                 ret = cpufreq_start_governor(policy);
1124                 if (ret)
1125                         pr_err("%s: Failed to start governor\n", __func__);
1126         }
1127         up_write(&policy->rwsem);
1128         return ret;
1129 }
1130
1131 void refresh_frequency_limits(struct cpufreq_policy *policy)
1132 {
1133         if (!policy_is_inactive(policy)) {
1134                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1135
1136                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1137         }
1138 }
1139 EXPORT_SYMBOL(refresh_frequency_limits);
1140
1141 static void handle_update(struct work_struct *work)
1142 {
1143         struct cpufreq_policy *policy =
1144                 container_of(work, struct cpufreq_policy, update);
1145
1146         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1147         down_write(&policy->rwsem);
1148         refresh_frequency_limits(policy);
1149         up_write(&policy->rwsem);
1150 }
1151
1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1153                                 void *data)
1154 {
1155         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1156
1157         schedule_work(&policy->update);
1158         return 0;
1159 }
1160
1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1162                                 void *data)
1163 {
1164         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1165
1166         schedule_work(&policy->update);
1167         return 0;
1168 }
1169
1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1171 {
1172         struct kobject *kobj;
1173         struct completion *cmp;
1174
1175         down_write(&policy->rwsem);
1176         cpufreq_stats_free_table(policy);
1177         kobj = &policy->kobj;
1178         cmp = &policy->kobj_unregister;
1179         up_write(&policy->rwsem);
1180         kobject_put(kobj);
1181
1182         /*
1183          * We need to make sure that the underlying kobj is
1184          * actually not referenced anymore by anybody before we
1185          * proceed with unloading.
1186          */
1187         pr_debug("waiting for dropping of refcount\n");
1188         wait_for_completion(cmp);
1189         pr_debug("wait complete\n");
1190 }
1191
1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1193 {
1194         struct cpufreq_policy *policy;
1195         struct device *dev = get_cpu_device(cpu);
1196         int ret;
1197
1198         if (!dev)
1199                 return NULL;
1200
1201         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1202         if (!policy)
1203                 return NULL;
1204
1205         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1206                 goto err_free_policy;
1207
1208         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1209                 goto err_free_cpumask;
1210
1211         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1212                 goto err_free_rcpumask;
1213
1214         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1215                                    cpufreq_global_kobject, "policy%u", cpu);
1216         if (ret) {
1217                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1218                 /*
1219                  * The entire policy object will be freed below, but the extra
1220                  * memory allocated for the kobject name needs to be freed by
1221                  * releasing the kobject.
1222                  */
1223                 kobject_put(&policy->kobj);
1224                 goto err_free_real_cpus;
1225         }
1226
1227         freq_constraints_init(&policy->constraints);
1228
1229         policy->nb_min.notifier_call = cpufreq_notifier_min;
1230         policy->nb_max.notifier_call = cpufreq_notifier_max;
1231
1232         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1233                                     &policy->nb_min);
1234         if (ret) {
1235                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1236                         ret, cpumask_pr_args(policy->cpus));
1237                 goto err_kobj_remove;
1238         }
1239
1240         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1241                                     &policy->nb_max);
1242         if (ret) {
1243                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1244                         ret, cpumask_pr_args(policy->cpus));
1245                 goto err_min_qos_notifier;
1246         }
1247
1248         INIT_LIST_HEAD(&policy->policy_list);
1249         init_rwsem(&policy->rwsem);
1250         spin_lock_init(&policy->transition_lock);
1251         init_waitqueue_head(&policy->transition_wait);
1252         init_completion(&policy->kobj_unregister);
1253         INIT_WORK(&policy->update, handle_update);
1254
1255         policy->cpu = cpu;
1256         return policy;
1257
1258 err_min_qos_notifier:
1259         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1260                                  &policy->nb_min);
1261 err_kobj_remove:
1262         cpufreq_policy_put_kobj(policy);
1263 err_free_real_cpus:
1264         free_cpumask_var(policy->real_cpus);
1265 err_free_rcpumask:
1266         free_cpumask_var(policy->related_cpus);
1267 err_free_cpumask:
1268         free_cpumask_var(policy->cpus);
1269 err_free_policy:
1270         kfree(policy);
1271
1272         return NULL;
1273 }
1274
1275 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1276 {
1277         unsigned long flags;
1278         int cpu;
1279
1280         /* Remove policy from list */
1281         write_lock_irqsave(&cpufreq_driver_lock, flags);
1282         list_del(&policy->policy_list);
1283
1284         for_each_cpu(cpu, policy->related_cpus)
1285                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1286         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1287
1288         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1289                                  &policy->nb_max);
1290         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1291                                  &policy->nb_min);
1292
1293         /* Cancel any pending policy->update work before freeing the policy. */
1294         cancel_work_sync(&policy->update);
1295
1296         if (policy->max_freq_req) {
1297                 /*
1298                  * CPUFREQ_CREATE_POLICY notification is sent only after
1299                  * successfully adding max_freq_req request.
1300                  */
1301                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1302                                              CPUFREQ_REMOVE_POLICY, policy);
1303                 freq_qos_remove_request(policy->max_freq_req);
1304         }
1305
1306         freq_qos_remove_request(policy->min_freq_req);
1307         kfree(policy->min_freq_req);
1308
1309         cpufreq_policy_put_kobj(policy);
1310         free_cpumask_var(policy->real_cpus);
1311         free_cpumask_var(policy->related_cpus);
1312         free_cpumask_var(policy->cpus);
1313         kfree(policy);
1314 }
1315
1316 static int cpufreq_online(unsigned int cpu)
1317 {
1318         struct cpufreq_policy *policy;
1319         bool new_policy;
1320         unsigned long flags;
1321         unsigned int j;
1322         int ret;
1323
1324         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1325
1326         /* Check if this CPU already has a policy to manage it */
1327         policy = per_cpu(cpufreq_cpu_data, cpu);
1328         if (policy) {
1329                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1330                 if (!policy_is_inactive(policy))
1331                         return cpufreq_add_policy_cpu(policy, cpu);
1332
1333                 /* This is the only online CPU for the policy.  Start over. */
1334                 new_policy = false;
1335                 down_write(&policy->rwsem);
1336                 policy->cpu = cpu;
1337                 policy->governor = NULL;
1338                 up_write(&policy->rwsem);
1339         } else {
1340                 new_policy = true;
1341                 policy = cpufreq_policy_alloc(cpu);
1342                 if (!policy)
1343                         return -ENOMEM;
1344         }
1345
1346         if (!new_policy && cpufreq_driver->online) {
1347                 ret = cpufreq_driver->online(policy);
1348                 if (ret) {
1349                         pr_debug("%s: %d: initialization failed\n", __func__,
1350                                  __LINE__);
1351                         goto out_exit_policy;
1352                 }
1353
1354                 /* Recover policy->cpus using related_cpus */
1355                 cpumask_copy(policy->cpus, policy->related_cpus);
1356         } else {
1357                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1358
1359                 /*
1360                  * Call driver. From then on the cpufreq must be able
1361                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1362                  */
1363                 ret = cpufreq_driver->init(policy);
1364                 if (ret) {
1365                         pr_debug("%s: %d: initialization failed\n", __func__,
1366                                  __LINE__);
1367                         goto out_free_policy;
1368                 }
1369
1370                 /*
1371                  * The initialization has succeeded and the policy is online.
1372                  * If there is a problem with its frequency table, take it
1373                  * offline and drop it.
1374                  */
1375                 ret = cpufreq_table_validate_and_sort(policy);
1376                 if (ret)
1377                         goto out_offline_policy;
1378
1379                 /* related_cpus should at least include policy->cpus. */
1380                 cpumask_copy(policy->related_cpus, policy->cpus);
1381         }
1382
1383         down_write(&policy->rwsem);
1384         /*
1385          * affected cpus must always be the one, which are online. We aren't
1386          * managing offline cpus here.
1387          */
1388         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1389
1390         if (new_policy) {
1391                 for_each_cpu(j, policy->related_cpus) {
1392                         per_cpu(cpufreq_cpu_data, j) = policy;
1393                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1394                 }
1395
1396                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1397                                                GFP_KERNEL);
1398                 if (!policy->min_freq_req) {
1399                         ret = -ENOMEM;
1400                         goto out_destroy_policy;
1401                 }
1402
1403                 ret = freq_qos_add_request(&policy->constraints,
1404                                            policy->min_freq_req, FREQ_QOS_MIN,
1405                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1406                 if (ret < 0) {
1407                         /*
1408                          * So we don't call freq_qos_remove_request() for an
1409                          * uninitialized request.
1410                          */
1411                         kfree(policy->min_freq_req);
1412                         policy->min_freq_req = NULL;
1413                         goto out_destroy_policy;
1414                 }
1415
1416                 /*
1417                  * This must be initialized right here to avoid calling
1418                  * freq_qos_remove_request() on uninitialized request in case
1419                  * of errors.
1420                  */
1421                 policy->max_freq_req = policy->min_freq_req + 1;
1422
1423                 ret = freq_qos_add_request(&policy->constraints,
1424                                            policy->max_freq_req, FREQ_QOS_MAX,
1425                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1426                 if (ret < 0) {
1427                         policy->max_freq_req = NULL;
1428                         goto out_destroy_policy;
1429                 }
1430
1431                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1432                                 CPUFREQ_CREATE_POLICY, policy);
1433         }
1434
1435         if (cpufreq_driver->get && has_target()) {
1436                 policy->cur = cpufreq_driver->get(policy->cpu);
1437                 if (!policy->cur) {
1438                         ret = -EIO;
1439                         pr_err("%s: ->get() failed\n", __func__);
1440                         goto out_destroy_policy;
1441                 }
1442         }
1443
1444         /*
1445          * Sometimes boot loaders set CPU frequency to a value outside of
1446          * frequency table present with cpufreq core. In such cases CPU might be
1447          * unstable if it has to run on that frequency for long duration of time
1448          * and so its better to set it to a frequency which is specified in
1449          * freq-table. This also makes cpufreq stats inconsistent as
1450          * cpufreq-stats would fail to register because current frequency of CPU
1451          * isn't found in freq-table.
1452          *
1453          * Because we don't want this change to effect boot process badly, we go
1454          * for the next freq which is >= policy->cur ('cur' must be set by now,
1455          * otherwise we will end up setting freq to lowest of the table as 'cur'
1456          * is initialized to zero).
1457          *
1458          * We are passing target-freq as "policy->cur - 1" otherwise
1459          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1460          * equal to target-freq.
1461          */
1462         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1463             && has_target()) {
1464                 unsigned int old_freq = policy->cur;
1465
1466                 /* Are we running at unknown frequency ? */
1467                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1468                 if (ret == -EINVAL) {
1469                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1470                                                       CPUFREQ_RELATION_L);
1471
1472                         /*
1473                          * Reaching here after boot in a few seconds may not
1474                          * mean that system will remain stable at "unknown"
1475                          * frequency for longer duration. Hence, a BUG_ON().
1476                          */
1477                         BUG_ON(ret);
1478                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1479                                 __func__, policy->cpu, old_freq, policy->cur);
1480                 }
1481         }
1482
1483         if (new_policy) {
1484                 ret = cpufreq_add_dev_interface(policy);
1485                 if (ret)
1486                         goto out_destroy_policy;
1487
1488                 cpufreq_stats_create_table(policy);
1489
1490                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1491                 list_add(&policy->policy_list, &cpufreq_policy_list);
1492                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1493
1494                 /*
1495                  * Register with the energy model before
1496                  * sched_cpufreq_governor_change() is called, which will result
1497                  * in rebuilding of the sched domains, which should only be done
1498                  * once the energy model is properly initialized for the policy
1499                  * first.
1500                  *
1501                  * Also, this should be called before the policy is registered
1502                  * with cooling framework.
1503                  */
1504                 if (cpufreq_driver->register_em)
1505                         cpufreq_driver->register_em(policy);
1506         }
1507
1508         ret = cpufreq_init_policy(policy);
1509         if (ret) {
1510                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1511                        __func__, cpu, ret);
1512                 goto out_destroy_policy;
1513         }
1514
1515         up_write(&policy->rwsem);
1516
1517         kobject_uevent(&policy->kobj, KOBJ_ADD);
1518
1519         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1520                 policy->cdev = of_cpufreq_cooling_register(policy);
1521
1522         pr_debug("initialization complete\n");
1523
1524         return 0;
1525
1526 out_destroy_policy:
1527         for_each_cpu(j, policy->real_cpus)
1528                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1529
1530         up_write(&policy->rwsem);
1531
1532 out_offline_policy:
1533         if (cpufreq_driver->offline)
1534                 cpufreq_driver->offline(policy);
1535
1536 out_exit_policy:
1537         if (cpufreq_driver->exit)
1538                 cpufreq_driver->exit(policy);
1539
1540 out_free_policy:
1541         cpufreq_policy_free(policy);
1542         return ret;
1543 }
1544
1545 /**
1546  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1547  * @dev: CPU device.
1548  * @sif: Subsystem interface structure pointer (not used)
1549  */
1550 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1551 {
1552         struct cpufreq_policy *policy;
1553         unsigned cpu = dev->id;
1554         int ret;
1555
1556         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1557
1558         if (cpu_online(cpu)) {
1559                 ret = cpufreq_online(cpu);
1560                 if (ret)
1561                         return ret;
1562         }
1563
1564         /* Create sysfs link on CPU registration */
1565         policy = per_cpu(cpufreq_cpu_data, cpu);
1566         if (policy)
1567                 add_cpu_dev_symlink(policy, cpu, dev);
1568
1569         return 0;
1570 }
1571
1572 static int cpufreq_offline(unsigned int cpu)
1573 {
1574         struct cpufreq_policy *policy;
1575         int ret;
1576
1577         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1578
1579         policy = cpufreq_cpu_get_raw(cpu);
1580         if (!policy) {
1581                 pr_debug("%s: No cpu_data found\n", __func__);
1582                 return 0;
1583         }
1584
1585         down_write(&policy->rwsem);
1586         if (has_target())
1587                 cpufreq_stop_governor(policy);
1588
1589         cpumask_clear_cpu(cpu, policy->cpus);
1590
1591         if (policy_is_inactive(policy)) {
1592                 if (has_target())
1593                         strncpy(policy->last_governor, policy->governor->name,
1594                                 CPUFREQ_NAME_LEN);
1595                 else
1596                         policy->last_policy = policy->policy;
1597         } else if (cpu == policy->cpu) {
1598                 /* Nominate new CPU */
1599                 policy->cpu = cpumask_any(policy->cpus);
1600         }
1601
1602         /* Start governor again for active policy */
1603         if (!policy_is_inactive(policy)) {
1604                 if (has_target()) {
1605                         ret = cpufreq_start_governor(policy);
1606                         if (ret)
1607                                 pr_err("%s: Failed to start governor\n", __func__);
1608                 }
1609
1610                 goto unlock;
1611         }
1612
1613         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1614                 cpufreq_cooling_unregister(policy->cdev);
1615                 policy->cdev = NULL;
1616         }
1617
1618         if (has_target())
1619                 cpufreq_exit_governor(policy);
1620
1621         /*
1622          * Perform the ->offline() during light-weight tear-down, as
1623          * that allows fast recovery when the CPU comes back.
1624          */
1625         if (cpufreq_driver->offline) {
1626                 cpufreq_driver->offline(policy);
1627         } else if (cpufreq_driver->exit) {
1628                 cpufreq_driver->exit(policy);
1629                 policy->freq_table = NULL;
1630         }
1631
1632 unlock:
1633         up_write(&policy->rwsem);
1634         return 0;
1635 }
1636
1637 /*
1638  * cpufreq_remove_dev - remove a CPU device
1639  *
1640  * Removes the cpufreq interface for a CPU device.
1641  */
1642 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1643 {
1644         unsigned int cpu = dev->id;
1645         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1646
1647         if (!policy)
1648                 return;
1649
1650         if (cpu_online(cpu))
1651                 cpufreq_offline(cpu);
1652
1653         cpumask_clear_cpu(cpu, policy->real_cpus);
1654         remove_cpu_dev_symlink(policy, dev);
1655
1656         if (cpumask_empty(policy->real_cpus)) {
1657                 /* We did light-weight exit earlier, do full tear down now */
1658                 if (cpufreq_driver->offline)
1659                         cpufreq_driver->exit(policy);
1660
1661                 cpufreq_policy_free(policy);
1662         }
1663 }
1664
1665 /**
1666  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1667  * @policy: Policy managing CPUs.
1668  * @new_freq: New CPU frequency.
1669  *
1670  * Adjust to the current frequency first and clean up later by either calling
1671  * cpufreq_update_policy(), or scheduling handle_update().
1672  */
1673 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1674                                 unsigned int new_freq)
1675 {
1676         struct cpufreq_freqs freqs;
1677
1678         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1679                  policy->cur, new_freq);
1680
1681         freqs.old = policy->cur;
1682         freqs.new = new_freq;
1683
1684         cpufreq_freq_transition_begin(policy, &freqs);
1685         cpufreq_freq_transition_end(policy, &freqs, 0);
1686 }
1687
1688 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1689 {
1690         unsigned int new_freq;
1691
1692         new_freq = cpufreq_driver->get(policy->cpu);
1693         if (!new_freq)
1694                 return 0;
1695
1696         /*
1697          * If fast frequency switching is used with the given policy, the check
1698          * against policy->cur is pointless, so skip it in that case.
1699          */
1700         if (policy->fast_switch_enabled || !has_target())
1701                 return new_freq;
1702
1703         if (policy->cur != new_freq) {
1704                 cpufreq_out_of_sync(policy, new_freq);
1705                 if (update)
1706                         schedule_work(&policy->update);
1707         }
1708
1709         return new_freq;
1710 }
1711
1712 /**
1713  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1714  * @cpu: CPU number
1715  *
1716  * This is the last known freq, without actually getting it from the driver.
1717  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1718  */
1719 unsigned int cpufreq_quick_get(unsigned int cpu)
1720 {
1721         struct cpufreq_policy *policy;
1722         unsigned int ret_freq = 0;
1723         unsigned long flags;
1724
1725         read_lock_irqsave(&cpufreq_driver_lock, flags);
1726
1727         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1728                 ret_freq = cpufreq_driver->get(cpu);
1729                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1730                 return ret_freq;
1731         }
1732
1733         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1734
1735         policy = cpufreq_cpu_get(cpu);
1736         if (policy) {
1737                 ret_freq = policy->cur;
1738                 cpufreq_cpu_put(policy);
1739         }
1740
1741         return ret_freq;
1742 }
1743 EXPORT_SYMBOL(cpufreq_quick_get);
1744
1745 /**
1746  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1747  * @cpu: CPU number
1748  *
1749  * Just return the max possible frequency for a given CPU.
1750  */
1751 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1752 {
1753         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1754         unsigned int ret_freq = 0;
1755
1756         if (policy) {
1757                 ret_freq = policy->max;
1758                 cpufreq_cpu_put(policy);
1759         }
1760
1761         return ret_freq;
1762 }
1763 EXPORT_SYMBOL(cpufreq_quick_get_max);
1764
1765 /**
1766  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1767  * @cpu: CPU number
1768  *
1769  * The default return value is the max_freq field of cpuinfo.
1770  */
1771 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1772 {
1773         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1774         unsigned int ret_freq = 0;
1775
1776         if (policy) {
1777                 ret_freq = policy->cpuinfo.max_freq;
1778                 cpufreq_cpu_put(policy);
1779         }
1780
1781         return ret_freq;
1782 }
1783 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1784
1785 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1786 {
1787         if (unlikely(policy_is_inactive(policy)))
1788                 return 0;
1789
1790         return cpufreq_verify_current_freq(policy, true);
1791 }
1792
1793 /**
1794  * cpufreq_get - get the current CPU frequency (in kHz)
1795  * @cpu: CPU number
1796  *
1797  * Get the CPU current (static) CPU frequency
1798  */
1799 unsigned int cpufreq_get(unsigned int cpu)
1800 {
1801         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1802         unsigned int ret_freq = 0;
1803
1804         if (policy) {
1805                 down_read(&policy->rwsem);
1806                 if (cpufreq_driver->get)
1807                         ret_freq = __cpufreq_get(policy);
1808                 up_read(&policy->rwsem);
1809
1810                 cpufreq_cpu_put(policy);
1811         }
1812
1813         return ret_freq;
1814 }
1815 EXPORT_SYMBOL(cpufreq_get);
1816
1817 static struct subsys_interface cpufreq_interface = {
1818         .name           = "cpufreq",
1819         .subsys         = &cpu_subsys,
1820         .add_dev        = cpufreq_add_dev,
1821         .remove_dev     = cpufreq_remove_dev,
1822 };
1823
1824 /*
1825  * In case platform wants some specific frequency to be configured
1826  * during suspend..
1827  */
1828 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1829 {
1830         int ret;
1831
1832         if (!policy->suspend_freq) {
1833                 pr_debug("%s: suspend_freq not defined\n", __func__);
1834                 return 0;
1835         }
1836
1837         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1838                         policy->suspend_freq);
1839
1840         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1841                         CPUFREQ_RELATION_H);
1842         if (ret)
1843                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1844                                 __func__, policy->suspend_freq, ret);
1845
1846         return ret;
1847 }
1848 EXPORT_SYMBOL(cpufreq_generic_suspend);
1849
1850 /**
1851  * cpufreq_suspend() - Suspend CPUFreq governors.
1852  *
1853  * Called during system wide Suspend/Hibernate cycles for suspending governors
1854  * as some platforms can't change frequency after this point in suspend cycle.
1855  * Because some of the devices (like: i2c, regulators, etc) they use for
1856  * changing frequency are suspended quickly after this point.
1857  */
1858 void cpufreq_suspend(void)
1859 {
1860         struct cpufreq_policy *policy;
1861
1862         if (!cpufreq_driver)
1863                 return;
1864
1865         if (!has_target() && !cpufreq_driver->suspend)
1866                 goto suspend;
1867
1868         pr_debug("%s: Suspending Governors\n", __func__);
1869
1870         for_each_active_policy(policy) {
1871                 if (has_target()) {
1872                         down_write(&policy->rwsem);
1873                         cpufreq_stop_governor(policy);
1874                         up_write(&policy->rwsem);
1875                 }
1876
1877                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1878                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1879                                 cpufreq_driver->name);
1880         }
1881
1882 suspend:
1883         cpufreq_suspended = true;
1884 }
1885
1886 /**
1887  * cpufreq_resume() - Resume CPUFreq governors.
1888  *
1889  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1890  * are suspended with cpufreq_suspend().
1891  */
1892 void cpufreq_resume(void)
1893 {
1894         struct cpufreq_policy *policy;
1895         int ret;
1896
1897         if (!cpufreq_driver)
1898                 return;
1899
1900         if (unlikely(!cpufreq_suspended))
1901                 return;
1902
1903         cpufreq_suspended = false;
1904
1905         if (!has_target() && !cpufreq_driver->resume)
1906                 return;
1907
1908         pr_debug("%s: Resuming Governors\n", __func__);
1909
1910         for_each_active_policy(policy) {
1911                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1912                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1913                                 policy);
1914                 } else if (has_target()) {
1915                         down_write(&policy->rwsem);
1916                         ret = cpufreq_start_governor(policy);
1917                         up_write(&policy->rwsem);
1918
1919                         if (ret)
1920                                 pr_err("%s: Failed to start governor for policy: %p\n",
1921                                        __func__, policy);
1922                 }
1923         }
1924 }
1925
1926 /**
1927  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1928  * @flags: Flags to test against the current cpufreq driver's flags.
1929  *
1930  * Assumes that the driver is there, so callers must ensure that this is the
1931  * case.
1932  */
1933 bool cpufreq_driver_test_flags(u16 flags)
1934 {
1935         return !!(cpufreq_driver->flags & flags);
1936 }
1937
1938 /**
1939  * cpufreq_get_current_driver - Return the current driver's name.
1940  *
1941  * Return the name string of the currently registered cpufreq driver or NULL if
1942  * none.
1943  */
1944 const char *cpufreq_get_current_driver(void)
1945 {
1946         if (cpufreq_driver)
1947                 return cpufreq_driver->name;
1948
1949         return NULL;
1950 }
1951 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1952
1953 /**
1954  * cpufreq_get_driver_data - Return current driver data.
1955  *
1956  * Return the private data of the currently registered cpufreq driver, or NULL
1957  * if no cpufreq driver has been registered.
1958  */
1959 void *cpufreq_get_driver_data(void)
1960 {
1961         if (cpufreq_driver)
1962                 return cpufreq_driver->driver_data;
1963
1964         return NULL;
1965 }
1966 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1967
1968 /*********************************************************************
1969  *                     NOTIFIER LISTS INTERFACE                      *
1970  *********************************************************************/
1971
1972 /**
1973  * cpufreq_register_notifier - Register a notifier with cpufreq.
1974  * @nb: notifier function to register.
1975  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1976  *
1977  * Add a notifier to one of two lists: either a list of notifiers that run on
1978  * clock rate changes (once before and once after every transition), or a list
1979  * of notifiers that ron on cpufreq policy changes.
1980  *
1981  * This function may sleep and it has the same return values as
1982  * blocking_notifier_chain_register().
1983  */
1984 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1985 {
1986         int ret;
1987
1988         if (cpufreq_disabled())
1989                 return -EINVAL;
1990
1991         switch (list) {
1992         case CPUFREQ_TRANSITION_NOTIFIER:
1993                 mutex_lock(&cpufreq_fast_switch_lock);
1994
1995                 if (cpufreq_fast_switch_count > 0) {
1996                         mutex_unlock(&cpufreq_fast_switch_lock);
1997                         return -EBUSY;
1998                 }
1999                 ret = srcu_notifier_chain_register(
2000                                 &cpufreq_transition_notifier_list, nb);
2001                 if (!ret)
2002                         cpufreq_fast_switch_count--;
2003
2004                 mutex_unlock(&cpufreq_fast_switch_lock);
2005                 break;
2006         case CPUFREQ_POLICY_NOTIFIER:
2007                 ret = blocking_notifier_chain_register(
2008                                 &cpufreq_policy_notifier_list, nb);
2009                 break;
2010         default:
2011                 ret = -EINVAL;
2012         }
2013
2014         return ret;
2015 }
2016 EXPORT_SYMBOL(cpufreq_register_notifier);
2017
2018 /**
2019  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2020  * @nb: notifier block to be unregistered.
2021  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2022  *
2023  * Remove a notifier from one of the cpufreq notifier lists.
2024  *
2025  * This function may sleep and it has the same return values as
2026  * blocking_notifier_chain_unregister().
2027  */
2028 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2029 {
2030         int ret;
2031
2032         if (cpufreq_disabled())
2033                 return -EINVAL;
2034
2035         switch (list) {
2036         case CPUFREQ_TRANSITION_NOTIFIER:
2037                 mutex_lock(&cpufreq_fast_switch_lock);
2038
2039                 ret = srcu_notifier_chain_unregister(
2040                                 &cpufreq_transition_notifier_list, nb);
2041                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2042                         cpufreq_fast_switch_count++;
2043
2044                 mutex_unlock(&cpufreq_fast_switch_lock);
2045                 break;
2046         case CPUFREQ_POLICY_NOTIFIER:
2047                 ret = blocking_notifier_chain_unregister(
2048                                 &cpufreq_policy_notifier_list, nb);
2049                 break;
2050         default:
2051                 ret = -EINVAL;
2052         }
2053
2054         return ret;
2055 }
2056 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2057
2058
2059 /*********************************************************************
2060  *                              GOVERNORS                            *
2061  *********************************************************************/
2062
2063 /**
2064  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2065  * @policy: cpufreq policy to switch the frequency for.
2066  * @target_freq: New frequency to set (may be approximate).
2067  *
2068  * Carry out a fast frequency switch without sleeping.
2069  *
2070  * The driver's ->fast_switch() callback invoked by this function must be
2071  * suitable for being called from within RCU-sched read-side critical sections
2072  * and it is expected to select the minimum available frequency greater than or
2073  * equal to @target_freq (CPUFREQ_RELATION_L).
2074  *
2075  * This function must not be called if policy->fast_switch_enabled is unset.
2076  *
2077  * Governors calling this function must guarantee that it will never be invoked
2078  * twice in parallel for the same policy and that it will never be called in
2079  * parallel with either ->target() or ->target_index() for the same policy.
2080  *
2081  * Returns the actual frequency set for the CPU.
2082  *
2083  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2084  * error condition, the hardware configuration must be preserved.
2085  */
2086 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2087                                         unsigned int target_freq)
2088 {
2089         unsigned int freq;
2090         int cpu;
2091
2092         target_freq = clamp_val(target_freq, policy->min, policy->max);
2093         freq = cpufreq_driver->fast_switch(policy, target_freq);
2094
2095         if (!freq)
2096                 return 0;
2097
2098         policy->cur = freq;
2099         arch_set_freq_scale(policy->related_cpus, freq,
2100                             policy->cpuinfo.max_freq);
2101         cpufreq_stats_record_transition(policy, freq);
2102
2103         if (trace_cpu_frequency_enabled()) {
2104                 for_each_cpu(cpu, policy->cpus)
2105                         trace_cpu_frequency(freq, cpu);
2106         }
2107
2108         return freq;
2109 }
2110 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2111
2112 /**
2113  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2114  * @cpu: Target CPU.
2115  * @min_perf: Minimum (required) performance level (units of @capacity).
2116  * @target_perf: Target (desired) performance level (units of @capacity).
2117  * @capacity: Capacity of the target CPU.
2118  *
2119  * Carry out a fast performance level switch of @cpu without sleeping.
2120  *
2121  * The driver's ->adjust_perf() callback invoked by this function must be
2122  * suitable for being called from within RCU-sched read-side critical sections
2123  * and it is expected to select a suitable performance level equal to or above
2124  * @min_perf and preferably equal to or below @target_perf.
2125  *
2126  * This function must not be called if policy->fast_switch_enabled is unset.
2127  *
2128  * Governors calling this function must guarantee that it will never be invoked
2129  * twice in parallel for the same CPU and that it will never be called in
2130  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2131  * the same CPU.
2132  */
2133 void cpufreq_driver_adjust_perf(unsigned int cpu,
2134                                  unsigned long min_perf,
2135                                  unsigned long target_perf,
2136                                  unsigned long capacity)
2137 {
2138         cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2139 }
2140
2141 /**
2142  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2143  *
2144  * Return 'true' if the ->adjust_perf callback is present for the
2145  * current driver or 'false' otherwise.
2146  */
2147 bool cpufreq_driver_has_adjust_perf(void)
2148 {
2149         return !!cpufreq_driver->adjust_perf;
2150 }
2151
2152 /* Must set freqs->new to intermediate frequency */
2153 static int __target_intermediate(struct cpufreq_policy *policy,
2154                                  struct cpufreq_freqs *freqs, int index)
2155 {
2156         int ret;
2157
2158         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2159
2160         /* We don't need to switch to intermediate freq */
2161         if (!freqs->new)
2162                 return 0;
2163
2164         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2165                  __func__, policy->cpu, freqs->old, freqs->new);
2166
2167         cpufreq_freq_transition_begin(policy, freqs);
2168         ret = cpufreq_driver->target_intermediate(policy, index);
2169         cpufreq_freq_transition_end(policy, freqs, ret);
2170
2171         if (ret)
2172                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2173                        __func__, ret);
2174
2175         return ret;
2176 }
2177
2178 static int __target_index(struct cpufreq_policy *policy, int index)
2179 {
2180         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2181         unsigned int restore_freq, intermediate_freq = 0;
2182         unsigned int newfreq = policy->freq_table[index].frequency;
2183         int retval = -EINVAL;
2184         bool notify;
2185
2186         if (newfreq == policy->cur)
2187                 return 0;
2188
2189         /* Save last value to restore later on errors */
2190         restore_freq = policy->cur;
2191
2192         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2193         if (notify) {
2194                 /* Handle switching to intermediate frequency */
2195                 if (cpufreq_driver->get_intermediate) {
2196                         retval = __target_intermediate(policy, &freqs, index);
2197                         if (retval)
2198                                 return retval;
2199
2200                         intermediate_freq = freqs.new;
2201                         /* Set old freq to intermediate */
2202                         if (intermediate_freq)
2203                                 freqs.old = freqs.new;
2204                 }
2205
2206                 freqs.new = newfreq;
2207                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2208                          __func__, policy->cpu, freqs.old, freqs.new);
2209
2210                 cpufreq_freq_transition_begin(policy, &freqs);
2211         }
2212
2213         retval = cpufreq_driver->target_index(policy, index);
2214         if (retval)
2215                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2216                        retval);
2217
2218         if (notify) {
2219                 cpufreq_freq_transition_end(policy, &freqs, retval);
2220
2221                 /*
2222                  * Failed after setting to intermediate freq? Driver should have
2223                  * reverted back to initial frequency and so should we. Check
2224                  * here for intermediate_freq instead of get_intermediate, in
2225                  * case we haven't switched to intermediate freq at all.
2226                  */
2227                 if (unlikely(retval && intermediate_freq)) {
2228                         freqs.old = intermediate_freq;
2229                         freqs.new = restore_freq;
2230                         cpufreq_freq_transition_begin(policy, &freqs);
2231                         cpufreq_freq_transition_end(policy, &freqs, 0);
2232                 }
2233         }
2234
2235         return retval;
2236 }
2237
2238 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2239                             unsigned int target_freq,
2240                             unsigned int relation)
2241 {
2242         unsigned int old_target_freq = target_freq;
2243
2244         if (cpufreq_disabled())
2245                 return -ENODEV;
2246
2247         target_freq = __resolve_freq(policy, target_freq, relation);
2248
2249         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2250                  policy->cpu, target_freq, relation, old_target_freq);
2251
2252         /*
2253          * This might look like a redundant call as we are checking it again
2254          * after finding index. But it is left intentionally for cases where
2255          * exactly same freq is called again and so we can save on few function
2256          * calls.
2257          */
2258         if (target_freq == policy->cur &&
2259             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2260                 return 0;
2261
2262         if (cpufreq_driver->target)
2263                 return cpufreq_driver->target(policy, target_freq, relation);
2264
2265         if (!cpufreq_driver->target_index)
2266                 return -EINVAL;
2267
2268         return __target_index(policy, policy->cached_resolved_idx);
2269 }
2270 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2271
2272 int cpufreq_driver_target(struct cpufreq_policy *policy,
2273                           unsigned int target_freq,
2274                           unsigned int relation)
2275 {
2276         int ret;
2277
2278         down_write(&policy->rwsem);
2279
2280         ret = __cpufreq_driver_target(policy, target_freq, relation);
2281
2282         up_write(&policy->rwsem);
2283
2284         return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2287
2288 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2289 {
2290         return NULL;
2291 }
2292
2293 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2294 {
2295         int ret;
2296
2297         /* Don't start any governor operations if we are entering suspend */
2298         if (cpufreq_suspended)
2299                 return 0;
2300         /*
2301          * Governor might not be initiated here if ACPI _PPC changed
2302          * notification happened, so check it.
2303          */
2304         if (!policy->governor)
2305                 return -EINVAL;
2306
2307         /* Platform doesn't want dynamic frequency switching ? */
2308         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2309             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2310                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2311
2312                 if (gov) {
2313                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2314                                 policy->governor->name, gov->name);
2315                         policy->governor = gov;
2316                 } else {
2317                         return -EINVAL;
2318                 }
2319         }
2320
2321         if (!try_module_get(policy->governor->owner))
2322                 return -EINVAL;
2323
2324         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2325
2326         if (policy->governor->init) {
2327                 ret = policy->governor->init(policy);
2328                 if (ret) {
2329                         module_put(policy->governor->owner);
2330                         return ret;
2331                 }
2332         }
2333
2334         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2335
2336         return 0;
2337 }
2338
2339 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2340 {
2341         if (cpufreq_suspended || !policy->governor)
2342                 return;
2343
2344         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2345
2346         if (policy->governor->exit)
2347                 policy->governor->exit(policy);
2348
2349         module_put(policy->governor->owner);
2350 }
2351
2352 int cpufreq_start_governor(struct cpufreq_policy *policy)
2353 {
2354         int ret;
2355
2356         if (cpufreq_suspended)
2357                 return 0;
2358
2359         if (!policy->governor)
2360                 return -EINVAL;
2361
2362         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2363
2364         if (cpufreq_driver->get)
2365                 cpufreq_verify_current_freq(policy, false);
2366
2367         if (policy->governor->start) {
2368                 ret = policy->governor->start(policy);
2369                 if (ret)
2370                         return ret;
2371         }
2372
2373         if (policy->governor->limits)
2374                 policy->governor->limits(policy);
2375
2376         return 0;
2377 }
2378
2379 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2380 {
2381         if (cpufreq_suspended || !policy->governor)
2382                 return;
2383
2384         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2385
2386         if (policy->governor->stop)
2387                 policy->governor->stop(policy);
2388 }
2389
2390 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2391 {
2392         if (cpufreq_suspended || !policy->governor)
2393                 return;
2394
2395         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2396
2397         if (policy->governor->limits)
2398                 policy->governor->limits(policy);
2399 }
2400
2401 int cpufreq_register_governor(struct cpufreq_governor *governor)
2402 {
2403         int err;
2404
2405         if (!governor)
2406                 return -EINVAL;
2407
2408         if (cpufreq_disabled())
2409                 return -ENODEV;
2410
2411         mutex_lock(&cpufreq_governor_mutex);
2412
2413         err = -EBUSY;
2414         if (!find_governor(governor->name)) {
2415                 err = 0;
2416                 list_add(&governor->governor_list, &cpufreq_governor_list);
2417         }
2418
2419         mutex_unlock(&cpufreq_governor_mutex);
2420         return err;
2421 }
2422 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2423
2424 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2425 {
2426         struct cpufreq_policy *policy;
2427         unsigned long flags;
2428
2429         if (!governor)
2430                 return;
2431
2432         if (cpufreq_disabled())
2433                 return;
2434
2435         /* clear last_governor for all inactive policies */
2436         read_lock_irqsave(&cpufreq_driver_lock, flags);
2437         for_each_inactive_policy(policy) {
2438                 if (!strcmp(policy->last_governor, governor->name)) {
2439                         policy->governor = NULL;
2440                         strcpy(policy->last_governor, "\0");
2441                 }
2442         }
2443         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2444
2445         mutex_lock(&cpufreq_governor_mutex);
2446         list_del(&governor->governor_list);
2447         mutex_unlock(&cpufreq_governor_mutex);
2448 }
2449 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2450
2451
2452 /*********************************************************************
2453  *                          POLICY INTERFACE                         *
2454  *********************************************************************/
2455
2456 /**
2457  * cpufreq_get_policy - get the current cpufreq_policy
2458  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2459  *      is written
2460  * @cpu: CPU to find the policy for
2461  *
2462  * Reads the current cpufreq policy.
2463  */
2464 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2465 {
2466         struct cpufreq_policy *cpu_policy;
2467         if (!policy)
2468                 return -EINVAL;
2469
2470         cpu_policy = cpufreq_cpu_get(cpu);
2471         if (!cpu_policy)
2472                 return -EINVAL;
2473
2474         memcpy(policy, cpu_policy, sizeof(*policy));
2475
2476         cpufreq_cpu_put(cpu_policy);
2477         return 0;
2478 }
2479 EXPORT_SYMBOL(cpufreq_get_policy);
2480
2481 /**
2482  * cpufreq_set_policy - Modify cpufreq policy parameters.
2483  * @policy: Policy object to modify.
2484  * @new_gov: Policy governor pointer.
2485  * @new_pol: Policy value (for drivers with built-in governors).
2486  *
2487  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2488  * limits to be set for the policy, update @policy with the verified limits
2489  * values and either invoke the driver's ->setpolicy() callback (if present) or
2490  * carry out a governor update for @policy.  That is, run the current governor's
2491  * ->limits() callback (if @new_gov points to the same object as the one in
2492  * @policy) or replace the governor for @policy with @new_gov.
2493  *
2494  * The cpuinfo part of @policy is not updated by this function.
2495  */
2496 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2497                               struct cpufreq_governor *new_gov,
2498                               unsigned int new_pol)
2499 {
2500         struct cpufreq_policy_data new_data;
2501         struct cpufreq_governor *old_gov;
2502         int ret;
2503
2504         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2505         new_data.freq_table = policy->freq_table;
2506         new_data.cpu = policy->cpu;
2507         /*
2508          * PM QoS framework collects all the requests from users and provide us
2509          * the final aggregated value here.
2510          */
2511         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2512         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2513
2514         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2515                  new_data.cpu, new_data.min, new_data.max);
2516
2517         /*
2518          * Verify that the CPU speed can be set within these limits and make sure
2519          * that min <= max.
2520          */
2521         ret = cpufreq_driver->verify(&new_data);
2522         if (ret)
2523                 return ret;
2524
2525         /*
2526          * Resolve policy min/max to available frequencies. It ensures
2527          * no frequency resolution will neither overshoot the requested maximum
2528          * nor undershoot the requested minimum.
2529          */
2530         policy->min = new_data.min;
2531         policy->max = new_data.max;
2532         policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2533         policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2534         trace_cpu_frequency_limits(policy);
2535
2536         policy->cached_target_freq = UINT_MAX;
2537
2538         pr_debug("new min and max freqs are %u - %u kHz\n",
2539                  policy->min, policy->max);
2540
2541         if (cpufreq_driver->setpolicy) {
2542                 policy->policy = new_pol;
2543                 pr_debug("setting range\n");
2544                 return cpufreq_driver->setpolicy(policy);
2545         }
2546
2547         if (new_gov == policy->governor) {
2548                 pr_debug("governor limits update\n");
2549                 cpufreq_governor_limits(policy);
2550                 return 0;
2551         }
2552
2553         pr_debug("governor switch\n");
2554
2555         /* save old, working values */
2556         old_gov = policy->governor;
2557         /* end old governor */
2558         if (old_gov) {
2559                 cpufreq_stop_governor(policy);
2560                 cpufreq_exit_governor(policy);
2561         }
2562
2563         /* start new governor */
2564         policy->governor = new_gov;
2565         ret = cpufreq_init_governor(policy);
2566         if (!ret) {
2567                 ret = cpufreq_start_governor(policy);
2568                 if (!ret) {
2569                         pr_debug("governor change\n");
2570                         sched_cpufreq_governor_change(policy, old_gov);
2571                         return 0;
2572                 }
2573                 cpufreq_exit_governor(policy);
2574         }
2575
2576         /* new governor failed, so re-start old one */
2577         pr_debug("starting governor %s failed\n", policy->governor->name);
2578         if (old_gov) {
2579                 policy->governor = old_gov;
2580                 if (cpufreq_init_governor(policy))
2581                         policy->governor = NULL;
2582                 else
2583                         cpufreq_start_governor(policy);
2584         }
2585
2586         return ret;
2587 }
2588
2589 /**
2590  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2591  * @cpu: CPU to re-evaluate the policy for.
2592  *
2593  * Update the current frequency for the cpufreq policy of @cpu and use
2594  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2595  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2596  * for the policy in question, among other things.
2597  */
2598 void cpufreq_update_policy(unsigned int cpu)
2599 {
2600         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2601
2602         if (!policy)
2603                 return;
2604
2605         /*
2606          * BIOS might change freq behind our back
2607          * -> ask driver for current freq and notify governors about a change
2608          */
2609         if (cpufreq_driver->get && has_target() &&
2610             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2611                 goto unlock;
2612
2613         refresh_frequency_limits(policy);
2614
2615 unlock:
2616         cpufreq_cpu_release(policy);
2617 }
2618 EXPORT_SYMBOL(cpufreq_update_policy);
2619
2620 /**
2621  * cpufreq_update_limits - Update policy limits for a given CPU.
2622  * @cpu: CPU to update the policy limits for.
2623  *
2624  * Invoke the driver's ->update_limits callback if present or call
2625  * cpufreq_update_policy() for @cpu.
2626  */
2627 void cpufreq_update_limits(unsigned int cpu)
2628 {
2629         if (cpufreq_driver->update_limits)
2630                 cpufreq_driver->update_limits(cpu);
2631         else
2632                 cpufreq_update_policy(cpu);
2633 }
2634 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2635
2636 /*********************************************************************
2637  *               BOOST                                               *
2638  *********************************************************************/
2639 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2640 {
2641         int ret;
2642
2643         if (!policy->freq_table)
2644                 return -ENXIO;
2645
2646         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2647         if (ret) {
2648                 pr_err("%s: Policy frequency update failed\n", __func__);
2649                 return ret;
2650         }
2651
2652         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2653         if (ret < 0)
2654                 return ret;
2655
2656         return 0;
2657 }
2658
2659 int cpufreq_boost_trigger_state(int state)
2660 {
2661         struct cpufreq_policy *policy;
2662         unsigned long flags;
2663         int ret = 0;
2664
2665         if (cpufreq_driver->boost_enabled == state)
2666                 return 0;
2667
2668         write_lock_irqsave(&cpufreq_driver_lock, flags);
2669         cpufreq_driver->boost_enabled = state;
2670         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2671
2672         cpus_read_lock();
2673         for_each_active_policy(policy) {
2674                 ret = cpufreq_driver->set_boost(policy, state);
2675                 if (ret)
2676                         goto err_reset_state;
2677         }
2678         cpus_read_unlock();
2679
2680         return 0;
2681
2682 err_reset_state:
2683         cpus_read_unlock();
2684
2685         write_lock_irqsave(&cpufreq_driver_lock, flags);
2686         cpufreq_driver->boost_enabled = !state;
2687         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2688
2689         pr_err("%s: Cannot %s BOOST\n",
2690                __func__, state ? "enable" : "disable");
2691
2692         return ret;
2693 }
2694
2695 static bool cpufreq_boost_supported(void)
2696 {
2697         return cpufreq_driver->set_boost;
2698 }
2699
2700 static int create_boost_sysfs_file(void)
2701 {
2702         int ret;
2703
2704         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2705         if (ret)
2706                 pr_err("%s: cannot register global BOOST sysfs file\n",
2707                        __func__);
2708
2709         return ret;
2710 }
2711
2712 static void remove_boost_sysfs_file(void)
2713 {
2714         if (cpufreq_boost_supported())
2715                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2716 }
2717
2718 int cpufreq_enable_boost_support(void)
2719 {
2720         if (!cpufreq_driver)
2721                 return -EINVAL;
2722
2723         if (cpufreq_boost_supported())
2724                 return 0;
2725
2726         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2727
2728         /* This will get removed on driver unregister */
2729         return create_boost_sysfs_file();
2730 }
2731 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2732
2733 int cpufreq_boost_enabled(void)
2734 {
2735         return cpufreq_driver->boost_enabled;
2736 }
2737 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2738
2739 /*********************************************************************
2740  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2741  *********************************************************************/
2742 static enum cpuhp_state hp_online;
2743
2744 static int cpuhp_cpufreq_online(unsigned int cpu)
2745 {
2746         cpufreq_online(cpu);
2747
2748         return 0;
2749 }
2750
2751 static int cpuhp_cpufreq_offline(unsigned int cpu)
2752 {
2753         cpufreq_offline(cpu);
2754
2755         return 0;
2756 }
2757
2758 /**
2759  * cpufreq_register_driver - register a CPU Frequency driver
2760  * @driver_data: A struct cpufreq_driver containing the values#
2761  * submitted by the CPU Frequency driver.
2762  *
2763  * Registers a CPU Frequency driver to this core code. This code
2764  * returns zero on success, -EEXIST when another driver got here first
2765  * (and isn't unregistered in the meantime).
2766  *
2767  */
2768 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2769 {
2770         unsigned long flags;
2771         int ret;
2772
2773         if (cpufreq_disabled())
2774                 return -ENODEV;
2775
2776         /*
2777          * The cpufreq core depends heavily on the availability of device
2778          * structure, make sure they are available before proceeding further.
2779          */
2780         if (!get_cpu_device(0))
2781                 return -EPROBE_DEFER;
2782
2783         if (!driver_data || !driver_data->verify || !driver_data->init ||
2784             !(driver_data->setpolicy || driver_data->target_index ||
2785                     driver_data->target) ||
2786              (driver_data->setpolicy && (driver_data->target_index ||
2787                     driver_data->target)) ||
2788              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2789              (!driver_data->online != !driver_data->offline))
2790                 return -EINVAL;
2791
2792         pr_debug("trying to register driver %s\n", driver_data->name);
2793
2794         /* Protect against concurrent CPU online/offline. */
2795         cpus_read_lock();
2796
2797         write_lock_irqsave(&cpufreq_driver_lock, flags);
2798         if (cpufreq_driver) {
2799                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2800                 ret = -EEXIST;
2801                 goto out;
2802         }
2803         cpufreq_driver = driver_data;
2804         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2805
2806         /*
2807          * Mark support for the scheduler's frequency invariance engine for
2808          * drivers that implement target(), target_index() or fast_switch().
2809          */
2810         if (!cpufreq_driver->setpolicy) {
2811                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2812                 pr_debug("supports frequency invariance");
2813         }
2814
2815         if (driver_data->setpolicy)
2816                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2817
2818         if (cpufreq_boost_supported()) {
2819                 ret = create_boost_sysfs_file();
2820                 if (ret)
2821                         goto err_null_driver;
2822         }
2823
2824         ret = subsys_interface_register(&cpufreq_interface);
2825         if (ret)
2826                 goto err_boost_unreg;
2827
2828         if (unlikely(list_empty(&cpufreq_policy_list))) {
2829                 /* if all ->init() calls failed, unregister */
2830                 ret = -ENODEV;
2831                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2832                          driver_data->name);
2833                 goto err_if_unreg;
2834         }
2835
2836         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2837                                                    "cpufreq:online",
2838                                                    cpuhp_cpufreq_online,
2839                                                    cpuhp_cpufreq_offline);
2840         if (ret < 0)
2841                 goto err_if_unreg;
2842         hp_online = ret;
2843         ret = 0;
2844
2845         pr_debug("driver %s up and running\n", driver_data->name);
2846         goto out;
2847
2848 err_if_unreg:
2849         subsys_interface_unregister(&cpufreq_interface);
2850 err_boost_unreg:
2851         remove_boost_sysfs_file();
2852 err_null_driver:
2853         write_lock_irqsave(&cpufreq_driver_lock, flags);
2854         cpufreq_driver = NULL;
2855         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2856 out:
2857         cpus_read_unlock();
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2861
2862 /*
2863  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2864  *
2865  * Unregister the current CPUFreq driver. Only call this if you have
2866  * the right to do so, i.e. if you have succeeded in initialising before!
2867  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2868  * currently not initialised.
2869  */
2870 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2871 {
2872         unsigned long flags;
2873
2874         if (!cpufreq_driver || (driver != cpufreq_driver))
2875                 return -EINVAL;
2876
2877         pr_debug("unregistering driver %s\n", driver->name);
2878
2879         /* Protect against concurrent cpu hotplug */
2880         cpus_read_lock();
2881         subsys_interface_unregister(&cpufreq_interface);
2882         remove_boost_sysfs_file();
2883         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2884         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2885
2886         write_lock_irqsave(&cpufreq_driver_lock, flags);
2887
2888         cpufreq_driver = NULL;
2889
2890         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2891         cpus_read_unlock();
2892
2893         return 0;
2894 }
2895 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2896
2897 static int __init cpufreq_core_init(void)
2898 {
2899         struct cpufreq_governor *gov = cpufreq_default_governor();
2900
2901         if (cpufreq_disabled())
2902                 return -ENODEV;
2903
2904         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2905         BUG_ON(!cpufreq_global_kobject);
2906
2907         if (!strlen(default_governor))
2908                 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2909
2910         return 0;
2911 }
2912 module_param(off, int, 0444);
2913 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2914 core_initcall(cpufreq_core_init);