bc19d6c16aaa55ad3926e2c4a8b563b9de180821
[platform/kernel/linux-rpi.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67         return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77
78 /**
79  * Two notifier lists: the "policy" list is involved in the
80  * validation process for a new CPU frequency policy; the
81  * "transition" list for kernel code that needs to handle
82  * changes to devices when the CPU clock speed changes.
83  * The mutex locks both lists.
84  */
85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
87
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91         return off;
92 }
93 void disable_cpufreq(void)
94 {
95         off = 1;
96 }
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99 bool have_governor_per_policy(void)
100 {
101         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107         if (have_governor_per_policy())
108                 return &policy->kobj;
109         else
110                 return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116         u64 idle_time;
117         u64 cur_wall_time;
118         u64 busy_time;
119
120         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
121
122         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129         idle_time = cur_wall_time - busy_time;
130         if (wall)
131                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
132
133         return div_u64(idle_time, NSEC_PER_USEC);
134 }
135
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140         if (idle_time == -1ULL)
141                 return get_cpu_idle_time_jiffy(cpu, wall);
142         else if (!io_busy)
143                 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145         return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
150                 unsigned long max_freq)
151 {
152 }
153 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
154
155 /*
156  * This is a generic cpufreq init() routine which can be used by cpufreq
157  * drivers of SMP systems. It will do following:
158  * - validate & show freq table passed
159  * - set policies transition latency
160  * - policy->cpus with all possible CPUs
161  */
162 void cpufreq_generic_init(struct cpufreq_policy *policy,
163                 struct cpufreq_frequency_table *table,
164                 unsigned int transition_latency)
165 {
166         policy->freq_table = table;
167         policy->cpuinfo.transition_latency = transition_latency;
168
169         /*
170          * The driver only supports the SMP configuration where all processors
171          * share the clock and voltage and clock.
172          */
173         cpumask_setall(policy->cpus);
174 }
175 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
176
177 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
178 {
179         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
180
181         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
184
185 unsigned int cpufreq_generic_get(unsigned int cpu)
186 {
187         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
188
189         if (!policy || IS_ERR(policy->clk)) {
190                 pr_err("%s: No %s associated to cpu: %d\n",
191                        __func__, policy ? "clk" : "policy", cpu);
192                 return 0;
193         }
194
195         return clk_get_rate(policy->clk) / 1000;
196 }
197 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
198
199 /**
200  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
201  * @cpu: CPU to find the policy for.
202  *
203  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
204  * the kobject reference counter of that policy.  Return a valid policy on
205  * success or NULL on failure.
206  *
207  * The policy returned by this function has to be released with the help of
208  * cpufreq_cpu_put() to balance its kobject reference counter properly.
209  */
210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
211 {
212         struct cpufreq_policy *policy = NULL;
213         unsigned long flags;
214
215         if (WARN_ON(cpu >= nr_cpu_ids))
216                 return NULL;
217
218         /* get the cpufreq driver */
219         read_lock_irqsave(&cpufreq_driver_lock, flags);
220
221         if (cpufreq_driver) {
222                 /* get the CPU */
223                 policy = cpufreq_cpu_get_raw(cpu);
224                 if (policy)
225                         kobject_get(&policy->kobj);
226         }
227
228         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
229
230         return policy;
231 }
232 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
233
234 /**
235  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
236  * @policy: cpufreq policy returned by cpufreq_cpu_get().
237  */
238 void cpufreq_cpu_put(struct cpufreq_policy *policy)
239 {
240         kobject_put(&policy->kobj);
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
243
244 /**
245  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
246  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
247  */
248 void cpufreq_cpu_release(struct cpufreq_policy *policy)
249 {
250         if (WARN_ON(!policy))
251                 return;
252
253         lockdep_assert_held(&policy->rwsem);
254
255         up_write(&policy->rwsem);
256
257         cpufreq_cpu_put(policy);
258 }
259
260 /**
261  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
262  * @cpu: CPU to find the policy for.
263  *
264  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
265  * if the policy returned by it is not NULL, acquire its rwsem for writing.
266  * Return the policy if it is active or release it and return NULL otherwise.
267  *
268  * The policy returned by this function has to be released with the help of
269  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
270  * counter properly.
271  */
272 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
273 {
274         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
275
276         if (!policy)
277                 return NULL;
278
279         down_write(&policy->rwsem);
280
281         if (policy_is_inactive(policy)) {
282                 cpufreq_cpu_release(policy);
283                 return NULL;
284         }
285
286         return policy;
287 }
288
289 /*********************************************************************
290  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
291  *********************************************************************/
292
293 /**
294  * adjust_jiffies - adjust the system "loops_per_jiffy"
295  *
296  * This function alters the system "loops_per_jiffy" for the clock
297  * speed change. Note that loops_per_jiffy cannot be updated on SMP
298  * systems as each CPU might be scaled differently. So, use the arch
299  * per-CPU loops_per_jiffy value wherever possible.
300  */
301 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
302 {
303 #ifndef CONFIG_SMP
304         static unsigned long l_p_j_ref;
305         static unsigned int l_p_j_ref_freq;
306
307         if (ci->flags & CPUFREQ_CONST_LOOPS)
308                 return;
309
310         if (!l_p_j_ref_freq) {
311                 l_p_j_ref = loops_per_jiffy;
312                 l_p_j_ref_freq = ci->old;
313                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
314                          l_p_j_ref, l_p_j_ref_freq);
315         }
316         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
317                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
318                                                                 ci->new);
319                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
320                          loops_per_jiffy, ci->new);
321         }
322 #endif
323 }
324
325 /**
326  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
327  * @policy: cpufreq policy to enable fast frequency switching for.
328  * @freqs: contain details of the frequency update.
329  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
330  *
331  * This function calls the transition notifiers and the "adjust_jiffies"
332  * function. It is called twice on all CPU frequency changes that have
333  * external effects.
334  */
335 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
336                                       struct cpufreq_freqs *freqs,
337                                       unsigned int state)
338 {
339         int cpu;
340
341         BUG_ON(irqs_disabled());
342
343         if (cpufreq_disabled())
344                 return;
345
346         freqs->policy = policy;
347         freqs->flags = cpufreq_driver->flags;
348         pr_debug("notification %u of frequency transition to %u kHz\n",
349                  state, freqs->new);
350
351         switch (state) {
352         case CPUFREQ_PRECHANGE:
353                 /*
354                  * Detect if the driver reported a value as "old frequency"
355                  * which is not equal to what the cpufreq core thinks is
356                  * "old frequency".
357                  */
358                 if (policy->cur && policy->cur != freqs->old) {
359                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
360                                  freqs->old, policy->cur);
361                         freqs->old = policy->cur;
362                 }
363
364                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
365                                          CPUFREQ_PRECHANGE, freqs);
366
367                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
368                 break;
369
370         case CPUFREQ_POSTCHANGE:
371                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
372                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
373                          cpumask_pr_args(policy->cpus));
374
375                 for_each_cpu(cpu, policy->cpus)
376                         trace_cpu_frequency(freqs->new, cpu);
377
378                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379                                          CPUFREQ_POSTCHANGE, freqs);
380
381                 cpufreq_stats_record_transition(policy, freqs->new);
382                 policy->cur = freqs->new;
383         }
384 }
385
386 /* Do post notifications when there are chances that transition has failed */
387 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
388                 struct cpufreq_freqs *freqs, int transition_failed)
389 {
390         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
391         if (!transition_failed)
392                 return;
393
394         swap(freqs->old, freqs->new);
395         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
396         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397 }
398
399 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
400                 struct cpufreq_freqs *freqs)
401 {
402
403         /*
404          * Catch double invocations of _begin() which lead to self-deadlock.
405          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
406          * doesn't invoke _begin() on their behalf, and hence the chances of
407          * double invocations are very low. Moreover, there are scenarios
408          * where these checks can emit false-positive warnings in these
409          * drivers; so we avoid that by skipping them altogether.
410          */
411         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
412                                 && current == policy->transition_task);
413
414 wait:
415         wait_event(policy->transition_wait, !policy->transition_ongoing);
416
417         spin_lock(&policy->transition_lock);
418
419         if (unlikely(policy->transition_ongoing)) {
420                 spin_unlock(&policy->transition_lock);
421                 goto wait;
422         }
423
424         policy->transition_ongoing = true;
425         policy->transition_task = current;
426
427         spin_unlock(&policy->transition_lock);
428
429         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
430 }
431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
432
433 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
434                 struct cpufreq_freqs *freqs, int transition_failed)
435 {
436         if (WARN_ON(!policy->transition_ongoing))
437                 return;
438
439         cpufreq_notify_post_transition(policy, freqs, transition_failed);
440
441         policy->transition_ongoing = false;
442         policy->transition_task = NULL;
443
444         wake_up(&policy->transition_wait);
445 }
446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
447
448 /*
449  * Fast frequency switching status count.  Positive means "enabled", negative
450  * means "disabled" and 0 means "not decided yet".
451  */
452 static int cpufreq_fast_switch_count;
453 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
454
455 static void cpufreq_list_transition_notifiers(void)
456 {
457         struct notifier_block *nb;
458
459         pr_info("Registered transition notifiers:\n");
460
461         mutex_lock(&cpufreq_transition_notifier_list.mutex);
462
463         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
464                 pr_info("%pS\n", nb->notifier_call);
465
466         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
467 }
468
469 /**
470  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
471  * @policy: cpufreq policy to enable fast frequency switching for.
472  *
473  * Try to enable fast frequency switching for @policy.
474  *
475  * The attempt will fail if there is at least one transition notifier registered
476  * at this point, as fast frequency switching is quite fundamentally at odds
477  * with transition notifiers.  Thus if successful, it will make registration of
478  * transition notifiers fail going forward.
479  */
480 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
481 {
482         lockdep_assert_held(&policy->rwsem);
483
484         if (!policy->fast_switch_possible)
485                 return;
486
487         mutex_lock(&cpufreq_fast_switch_lock);
488         if (cpufreq_fast_switch_count >= 0) {
489                 cpufreq_fast_switch_count++;
490                 policy->fast_switch_enabled = true;
491         } else {
492                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
493                         policy->cpu);
494                 cpufreq_list_transition_notifiers();
495         }
496         mutex_unlock(&cpufreq_fast_switch_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
499
500 /**
501  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
502  * @policy: cpufreq policy to disable fast frequency switching for.
503  */
504 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
505 {
506         mutex_lock(&cpufreq_fast_switch_lock);
507         if (policy->fast_switch_enabled) {
508                 policy->fast_switch_enabled = false;
509                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
510                         cpufreq_fast_switch_count--;
511         }
512         mutex_unlock(&cpufreq_fast_switch_lock);
513 }
514 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
515
516 /**
517  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
518  * one.
519  * @target_freq: target frequency to resolve.
520  *
521  * The target to driver frequency mapping is cached in the policy.
522  *
523  * Return: Lowest driver-supported frequency greater than or equal to the
524  * given target_freq, subject to policy (min/max) and driver limitations.
525  */
526 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
527                                          unsigned int target_freq)
528 {
529         target_freq = clamp_val(target_freq, policy->min, policy->max);
530         policy->cached_target_freq = target_freq;
531
532         if (cpufreq_driver->target_index) {
533                 int idx;
534
535                 idx = cpufreq_frequency_table_target(policy, target_freq,
536                                                      CPUFREQ_RELATION_L);
537                 policy->cached_resolved_idx = idx;
538                 return policy->freq_table[idx].frequency;
539         }
540
541         if (cpufreq_driver->resolve_freq)
542                 return cpufreq_driver->resolve_freq(policy, target_freq);
543
544         return target_freq;
545 }
546 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
547
548 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
549 {
550         unsigned int latency;
551
552         if (policy->transition_delay_us)
553                 return policy->transition_delay_us;
554
555         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
556         if (latency) {
557                 /*
558                  * For platforms that can change the frequency very fast (< 10
559                  * us), the above formula gives a decent transition delay. But
560                  * for platforms where transition_latency is in milliseconds, it
561                  * ends up giving unrealistic values.
562                  *
563                  * Cap the default transition delay to 10 ms, which seems to be
564                  * a reasonable amount of time after which we should reevaluate
565                  * the frequency.
566                  */
567                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
568         }
569
570         return LATENCY_MULTIPLIER;
571 }
572 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
573
574 /*********************************************************************
575  *                          SYSFS INTERFACE                          *
576  *********************************************************************/
577 static ssize_t show_boost(struct kobject *kobj,
578                           struct kobj_attribute *attr, char *buf)
579 {
580         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
581 }
582
583 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
584                            const char *buf, size_t count)
585 {
586         int ret, enable;
587
588         ret = sscanf(buf, "%d", &enable);
589         if (ret != 1 || enable < 0 || enable > 1)
590                 return -EINVAL;
591
592         if (cpufreq_boost_trigger_state(enable)) {
593                 pr_err("%s: Cannot %s BOOST!\n",
594                        __func__, enable ? "enable" : "disable");
595                 return -EINVAL;
596         }
597
598         pr_debug("%s: cpufreq BOOST %s\n",
599                  __func__, enable ? "enabled" : "disabled");
600
601         return count;
602 }
603 define_one_global_rw(boost);
604
605 static struct cpufreq_governor *find_governor(const char *str_governor)
606 {
607         struct cpufreq_governor *t;
608
609         for_each_governor(t)
610                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
611                         return t;
612
613         return NULL;
614 }
615
616 static int cpufreq_parse_policy(char *str_governor,
617                                 struct cpufreq_policy *policy)
618 {
619         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
620                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
621                 return 0;
622         }
623         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
624                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
625                 return 0;
626         }
627         return -EINVAL;
628 }
629
630 /**
631  * cpufreq_parse_governor - parse a governor string only for has_target()
632  */
633 static int cpufreq_parse_governor(char *str_governor,
634                                   struct cpufreq_policy *policy)
635 {
636         struct cpufreq_governor *t;
637
638         mutex_lock(&cpufreq_governor_mutex);
639
640         t = find_governor(str_governor);
641         if (!t) {
642                 int ret;
643
644                 mutex_unlock(&cpufreq_governor_mutex);
645
646                 ret = request_module("cpufreq_%s", str_governor);
647                 if (ret)
648                         return -EINVAL;
649
650                 mutex_lock(&cpufreq_governor_mutex);
651
652                 t = find_governor(str_governor);
653         }
654         if (t && !try_module_get(t->owner))
655                 t = NULL;
656
657         mutex_unlock(&cpufreq_governor_mutex);
658
659         if (t) {
660                 policy->governor = t;
661                 return 0;
662         }
663
664         return -EINVAL;
665 }
666
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674
675 #define show_one(file_name, object)                     \
676 static ssize_t show_##file_name                         \
677 (struct cpufreq_policy *policy, char *buf)              \
678 {                                                       \
679         return sprintf(buf, "%u\n", policy->object);    \
680 }
681
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690         return 0;
691 }
692
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695         ssize_t ret;
696         unsigned int freq;
697
698         freq = arch_freq_get_on_cpu(policy->cpu);
699         if (freq)
700                 ret = sprintf(buf, "%u\n", freq);
701         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702                         cpufreq_driver->get)
703                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704         else
705                 ret = sprintf(buf, "%u\n", policy->cur);
706         return ret;
707 }
708
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)                    \
713 static ssize_t store_##file_name                                        \
714 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
715 {                                                                       \
716         unsigned long val;                                              \
717         int ret;                                                        \
718                                                                         \
719         ret = sscanf(buf, "%lu", &val);                                 \
720         if (ret != 1)                                                   \
721                 return -EINVAL;                                         \
722                                                                         \
723         ret = freq_qos_update_request(policy->object##_freq_req, val);\
724         return ret >= 0 ? count : ret;                                  \
725 }
726
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734                                         char *buf)
735 {
736         unsigned int cur_freq = __cpufreq_get(policy);
737
738         if (cur_freq)
739                 return sprintf(buf, "%u\n", cur_freq);
740
741         return sprintf(buf, "<unknown>\n");
742 }
743
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750                 return sprintf(buf, "powersave\n");
751         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752                 return sprintf(buf, "performance\n");
753         else if (policy->governor)
754                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755                                 policy->governor->name);
756         return -EINVAL;
757 }
758
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763                                         const char *buf, size_t count)
764 {
765         int ret;
766         char    str_governor[16];
767         struct cpufreq_policy new_policy;
768
769         memcpy(&new_policy, policy, sizeof(*policy));
770
771         ret = sscanf(buf, "%15s", str_governor);
772         if (ret != 1)
773                 return -EINVAL;
774
775         if (cpufreq_driver->setpolicy) {
776                 if (cpufreq_parse_policy(str_governor, &new_policy))
777                         return -EINVAL;
778         } else {
779                 if (cpufreq_parse_governor(str_governor, &new_policy))
780                         return -EINVAL;
781         }
782
783         ret = cpufreq_set_policy(policy, &new_policy);
784
785         if (new_policy.governor)
786                 module_put(new_policy.governor->owner);
787
788         return ret ? ret : count;
789 }
790
791 /**
792  * show_scaling_driver - show the cpufreq driver currently loaded
793  */
794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
795 {
796         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
797 }
798
799 /**
800  * show_scaling_available_governors - show the available CPUfreq governors
801  */
802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
803                                                 char *buf)
804 {
805         ssize_t i = 0;
806         struct cpufreq_governor *t;
807
808         if (!has_target()) {
809                 i += sprintf(buf, "performance powersave");
810                 goto out;
811         }
812
813         for_each_governor(t) {
814                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
815                     - (CPUFREQ_NAME_LEN + 2)))
816                         goto out;
817                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
818         }
819 out:
820         i += sprintf(&buf[i], "\n");
821         return i;
822 }
823
824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
825 {
826         ssize_t i = 0;
827         unsigned int cpu;
828
829         for_each_cpu(cpu, mask) {
830                 if (i)
831                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
832                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
833                 if (i >= (PAGE_SIZE - 5))
834                         break;
835         }
836         i += sprintf(&buf[i], "\n");
837         return i;
838 }
839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
840
841 /**
842  * show_related_cpus - show the CPUs affected by each transition even if
843  * hw coordination is in use
844  */
845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
846 {
847         return cpufreq_show_cpus(policy->related_cpus, buf);
848 }
849
850 /**
851  * show_affected_cpus - show the CPUs affected by each transition
852  */
853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
854 {
855         return cpufreq_show_cpus(policy->cpus, buf);
856 }
857
858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
859                                         const char *buf, size_t count)
860 {
861         unsigned int freq = 0;
862         unsigned int ret;
863
864         if (!policy->governor || !policy->governor->store_setspeed)
865                 return -EINVAL;
866
867         ret = sscanf(buf, "%u", &freq);
868         if (ret != 1)
869                 return -EINVAL;
870
871         policy->governor->store_setspeed(policy, freq);
872
873         return count;
874 }
875
876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
877 {
878         if (!policy->governor || !policy->governor->show_setspeed)
879                 return sprintf(buf, "<unsupported>\n");
880
881         return policy->governor->show_setspeed(policy, buf);
882 }
883
884 /**
885  * show_bios_limit - show the current cpufreq HW/BIOS limitation
886  */
887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
888 {
889         unsigned int limit;
890         int ret;
891         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
892         if (!ret)
893                 return sprintf(buf, "%u\n", limit);
894         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
895 }
896
897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
898 cpufreq_freq_attr_ro(cpuinfo_min_freq);
899 cpufreq_freq_attr_ro(cpuinfo_max_freq);
900 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
901 cpufreq_freq_attr_ro(scaling_available_governors);
902 cpufreq_freq_attr_ro(scaling_driver);
903 cpufreq_freq_attr_ro(scaling_cur_freq);
904 cpufreq_freq_attr_ro(bios_limit);
905 cpufreq_freq_attr_ro(related_cpus);
906 cpufreq_freq_attr_ro(affected_cpus);
907 cpufreq_freq_attr_rw(scaling_min_freq);
908 cpufreq_freq_attr_rw(scaling_max_freq);
909 cpufreq_freq_attr_rw(scaling_governor);
910 cpufreq_freq_attr_rw(scaling_setspeed);
911
912 static struct attribute *default_attrs[] = {
913         &cpuinfo_min_freq.attr,
914         &cpuinfo_max_freq.attr,
915         &cpuinfo_transition_latency.attr,
916         &scaling_min_freq.attr,
917         &scaling_max_freq.attr,
918         &affected_cpus.attr,
919         &related_cpus.attr,
920         &scaling_governor.attr,
921         &scaling_driver.attr,
922         &scaling_available_governors.attr,
923         &scaling_setspeed.attr,
924         NULL
925 };
926
927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
928 #define to_attr(a) container_of(a, struct freq_attr, attr)
929
930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
931 {
932         struct cpufreq_policy *policy = to_policy(kobj);
933         struct freq_attr *fattr = to_attr(attr);
934         ssize_t ret;
935
936         if (!fattr->show)
937                 return -EIO;
938
939         down_read(&policy->rwsem);
940         ret = fattr->show(policy, buf);
941         up_read(&policy->rwsem);
942
943         return ret;
944 }
945
946 static ssize_t store(struct kobject *kobj, struct attribute *attr,
947                      const char *buf, size_t count)
948 {
949         struct cpufreq_policy *policy = to_policy(kobj);
950         struct freq_attr *fattr = to_attr(attr);
951         ssize_t ret = -EINVAL;
952
953         if (!fattr->store)
954                 return -EIO;
955
956         /*
957          * cpus_read_trylock() is used here to work around a circular lock
958          * dependency problem with respect to the cpufreq_register_driver().
959          */
960         if (!cpus_read_trylock())
961                 return -EBUSY;
962
963         if (cpu_online(policy->cpu)) {
964                 down_write(&policy->rwsem);
965                 ret = fattr->store(policy, buf, count);
966                 up_write(&policy->rwsem);
967         }
968
969         cpus_read_unlock();
970
971         return ret;
972 }
973
974 static void cpufreq_sysfs_release(struct kobject *kobj)
975 {
976         struct cpufreq_policy *policy = to_policy(kobj);
977         pr_debug("last reference is dropped\n");
978         complete(&policy->kobj_unregister);
979 }
980
981 static const struct sysfs_ops sysfs_ops = {
982         .show   = show,
983         .store  = store,
984 };
985
986 static struct kobj_type ktype_cpufreq = {
987         .sysfs_ops      = &sysfs_ops,
988         .default_attrs  = default_attrs,
989         .release        = cpufreq_sysfs_release,
990 };
991
992 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
993 {
994         struct device *dev = get_cpu_device(cpu);
995
996         if (unlikely(!dev))
997                 return;
998
999         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1000                 return;
1001
1002         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1003         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1004                 dev_err(dev, "cpufreq symlink creation failed\n");
1005 }
1006
1007 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1008                                    struct device *dev)
1009 {
1010         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1011         sysfs_remove_link(&dev->kobj, "cpufreq");
1012 }
1013
1014 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1015 {
1016         struct freq_attr **drv_attr;
1017         int ret = 0;
1018
1019         /* set up files for this cpu device */
1020         drv_attr = cpufreq_driver->attr;
1021         while (drv_attr && *drv_attr) {
1022                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1023                 if (ret)
1024                         return ret;
1025                 drv_attr++;
1026         }
1027         if (cpufreq_driver->get) {
1028                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1029                 if (ret)
1030                         return ret;
1031         }
1032
1033         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1034         if (ret)
1035                 return ret;
1036
1037         if (cpufreq_driver->bios_limit) {
1038                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1039                 if (ret)
1040                         return ret;
1041         }
1042
1043         return 0;
1044 }
1045
1046 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1047 {
1048         return NULL;
1049 }
1050
1051 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1052 {
1053         struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1054         struct cpufreq_policy new_policy;
1055
1056         memcpy(&new_policy, policy, sizeof(*policy));
1057
1058         def_gov = cpufreq_default_governor();
1059
1060         if (has_target()) {
1061                 /*
1062                  * Update governor of new_policy to the governor used before
1063                  * hotplug
1064                  */
1065                 gov = find_governor(policy->last_governor);
1066                 if (gov) {
1067                         pr_debug("Restoring governor %s for cpu %d\n",
1068                                 policy->governor->name, policy->cpu);
1069                 } else {
1070                         if (!def_gov)
1071                                 return -ENODATA;
1072                         gov = def_gov;
1073                 }
1074                 new_policy.governor = gov;
1075         } else {
1076                 /* Use the default policy if there is no last_policy. */
1077                 if (policy->last_policy) {
1078                         new_policy.policy = policy->last_policy;
1079                 } else {
1080                         if (!def_gov)
1081                                 return -ENODATA;
1082                         cpufreq_parse_policy(def_gov->name, &new_policy);
1083                 }
1084         }
1085
1086         return cpufreq_set_policy(policy, &new_policy);
1087 }
1088
1089 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1090 {
1091         int ret = 0;
1092
1093         /* Has this CPU been taken care of already? */
1094         if (cpumask_test_cpu(cpu, policy->cpus))
1095                 return 0;
1096
1097         down_write(&policy->rwsem);
1098         if (has_target())
1099                 cpufreq_stop_governor(policy);
1100
1101         cpumask_set_cpu(cpu, policy->cpus);
1102
1103         if (has_target()) {
1104                 ret = cpufreq_start_governor(policy);
1105                 if (ret)
1106                         pr_err("%s: Failed to start governor\n", __func__);
1107         }
1108         up_write(&policy->rwsem);
1109         return ret;
1110 }
1111
1112 void refresh_frequency_limits(struct cpufreq_policy *policy)
1113 {
1114         struct cpufreq_policy new_policy;
1115
1116         if (!policy_is_inactive(policy)) {
1117                 new_policy = *policy;
1118                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1119
1120                 cpufreq_set_policy(policy, &new_policy);
1121         }
1122 }
1123 EXPORT_SYMBOL(refresh_frequency_limits);
1124
1125 static void handle_update(struct work_struct *work)
1126 {
1127         struct cpufreq_policy *policy =
1128                 container_of(work, struct cpufreq_policy, update);
1129
1130         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1131         down_write(&policy->rwsem);
1132         refresh_frequency_limits(policy);
1133         up_write(&policy->rwsem);
1134 }
1135
1136 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1137                                 void *data)
1138 {
1139         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1140
1141         schedule_work(&policy->update);
1142         return 0;
1143 }
1144
1145 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1146                                 void *data)
1147 {
1148         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1149
1150         schedule_work(&policy->update);
1151         return 0;
1152 }
1153
1154 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1155 {
1156         struct kobject *kobj;
1157         struct completion *cmp;
1158
1159         down_write(&policy->rwsem);
1160         cpufreq_stats_free_table(policy);
1161         kobj = &policy->kobj;
1162         cmp = &policy->kobj_unregister;
1163         up_write(&policy->rwsem);
1164         kobject_put(kobj);
1165
1166         /*
1167          * We need to make sure that the underlying kobj is
1168          * actually not referenced anymore by anybody before we
1169          * proceed with unloading.
1170          */
1171         pr_debug("waiting for dropping of refcount\n");
1172         wait_for_completion(cmp);
1173         pr_debug("wait complete\n");
1174 }
1175
1176 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1177 {
1178         struct cpufreq_policy *policy;
1179         struct device *dev = get_cpu_device(cpu);
1180         int ret;
1181
1182         if (!dev)
1183                 return NULL;
1184
1185         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1186         if (!policy)
1187                 return NULL;
1188
1189         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1190                 goto err_free_policy;
1191
1192         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1193                 goto err_free_cpumask;
1194
1195         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1196                 goto err_free_rcpumask;
1197
1198         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1199                                    cpufreq_global_kobject, "policy%u", cpu);
1200         if (ret) {
1201                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1202                 /*
1203                  * The entire policy object will be freed below, but the extra
1204                  * memory allocated for the kobject name needs to be freed by
1205                  * releasing the kobject.
1206                  */
1207                 kobject_put(&policy->kobj);
1208                 goto err_free_real_cpus;
1209         }
1210
1211         freq_constraints_init(&policy->constraints);
1212
1213         policy->nb_min.notifier_call = cpufreq_notifier_min;
1214         policy->nb_max.notifier_call = cpufreq_notifier_max;
1215
1216         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1217                                     &policy->nb_min);
1218         if (ret) {
1219                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1220                         ret, cpumask_pr_args(policy->cpus));
1221                 goto err_kobj_remove;
1222         }
1223
1224         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1225                                     &policy->nb_max);
1226         if (ret) {
1227                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1228                         ret, cpumask_pr_args(policy->cpus));
1229                 goto err_min_qos_notifier;
1230         }
1231
1232         INIT_LIST_HEAD(&policy->policy_list);
1233         init_rwsem(&policy->rwsem);
1234         spin_lock_init(&policy->transition_lock);
1235         init_waitqueue_head(&policy->transition_wait);
1236         init_completion(&policy->kobj_unregister);
1237         INIT_WORK(&policy->update, handle_update);
1238
1239         policy->cpu = cpu;
1240         return policy;
1241
1242 err_min_qos_notifier:
1243         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1244                                  &policy->nb_min);
1245 err_kobj_remove:
1246         cpufreq_policy_put_kobj(policy);
1247 err_free_real_cpus:
1248         free_cpumask_var(policy->real_cpus);
1249 err_free_rcpumask:
1250         free_cpumask_var(policy->related_cpus);
1251 err_free_cpumask:
1252         free_cpumask_var(policy->cpus);
1253 err_free_policy:
1254         kfree(policy);
1255
1256         return NULL;
1257 }
1258
1259 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1260 {
1261         unsigned long flags;
1262         int cpu;
1263
1264         /* Remove policy from list */
1265         write_lock_irqsave(&cpufreq_driver_lock, flags);
1266         list_del(&policy->policy_list);
1267
1268         for_each_cpu(cpu, policy->related_cpus)
1269                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1270         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1271
1272         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1273                                  &policy->nb_max);
1274         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1275                                  &policy->nb_min);
1276
1277         /* Cancel any pending policy->update work before freeing the policy. */
1278         cancel_work_sync(&policy->update);
1279
1280         if (policy->max_freq_req) {
1281                 /*
1282                  * CPUFREQ_CREATE_POLICY notification is sent only after
1283                  * successfully adding max_freq_req request.
1284                  */
1285                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1286                                              CPUFREQ_REMOVE_POLICY, policy);
1287                 freq_qos_remove_request(policy->max_freq_req);
1288         }
1289
1290         freq_qos_remove_request(policy->min_freq_req);
1291         kfree(policy->min_freq_req);
1292
1293         cpufreq_policy_put_kobj(policy);
1294         free_cpumask_var(policy->real_cpus);
1295         free_cpumask_var(policy->related_cpus);
1296         free_cpumask_var(policy->cpus);
1297         kfree(policy);
1298 }
1299
1300 static int cpufreq_online(unsigned int cpu)
1301 {
1302         struct cpufreq_policy *policy;
1303         bool new_policy;
1304         unsigned long flags;
1305         unsigned int j;
1306         int ret;
1307
1308         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1309
1310         /* Check if this CPU already has a policy to manage it */
1311         policy = per_cpu(cpufreq_cpu_data, cpu);
1312         if (policy) {
1313                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1314                 if (!policy_is_inactive(policy))
1315                         return cpufreq_add_policy_cpu(policy, cpu);
1316
1317                 /* This is the only online CPU for the policy.  Start over. */
1318                 new_policy = false;
1319                 down_write(&policy->rwsem);
1320                 policy->cpu = cpu;
1321                 policy->governor = NULL;
1322                 up_write(&policy->rwsem);
1323         } else {
1324                 new_policy = true;
1325                 policy = cpufreq_policy_alloc(cpu);
1326                 if (!policy)
1327                         return -ENOMEM;
1328         }
1329
1330         if (!new_policy && cpufreq_driver->online) {
1331                 ret = cpufreq_driver->online(policy);
1332                 if (ret) {
1333                         pr_debug("%s: %d: initialization failed\n", __func__,
1334                                  __LINE__);
1335                         goto out_exit_policy;
1336                 }
1337
1338                 /* Recover policy->cpus using related_cpus */
1339                 cpumask_copy(policy->cpus, policy->related_cpus);
1340         } else {
1341                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1342
1343                 /*
1344                  * Call driver. From then on the cpufreq must be able
1345                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1346                  */
1347                 ret = cpufreq_driver->init(policy);
1348                 if (ret) {
1349                         pr_debug("%s: %d: initialization failed\n", __func__,
1350                                  __LINE__);
1351                         goto out_free_policy;
1352                 }
1353
1354                 ret = cpufreq_table_validate_and_sort(policy);
1355                 if (ret)
1356                         goto out_exit_policy;
1357
1358                 /* related_cpus should at least include policy->cpus. */
1359                 cpumask_copy(policy->related_cpus, policy->cpus);
1360         }
1361
1362         down_write(&policy->rwsem);
1363         /*
1364          * affected cpus must always be the one, which are online. We aren't
1365          * managing offline cpus here.
1366          */
1367         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1368
1369         if (new_policy) {
1370                 for_each_cpu(j, policy->related_cpus) {
1371                         per_cpu(cpufreq_cpu_data, j) = policy;
1372                         add_cpu_dev_symlink(policy, j);
1373                 }
1374
1375                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1376                                                GFP_KERNEL);
1377                 if (!policy->min_freq_req)
1378                         goto out_destroy_policy;
1379
1380                 ret = freq_qos_add_request(&policy->constraints,
1381                                            policy->min_freq_req, FREQ_QOS_MIN,
1382                                            policy->min);
1383                 if (ret < 0) {
1384                         /*
1385                          * So we don't call freq_qos_remove_request() for an
1386                          * uninitialized request.
1387                          */
1388                         kfree(policy->min_freq_req);
1389                         policy->min_freq_req = NULL;
1390                         goto out_destroy_policy;
1391                 }
1392
1393                 /*
1394                  * This must be initialized right here to avoid calling
1395                  * freq_qos_remove_request() on uninitialized request in case
1396                  * of errors.
1397                  */
1398                 policy->max_freq_req = policy->min_freq_req + 1;
1399
1400                 ret = freq_qos_add_request(&policy->constraints,
1401                                            policy->max_freq_req, FREQ_QOS_MAX,
1402                                            policy->max);
1403                 if (ret < 0) {
1404                         policy->max_freq_req = NULL;
1405                         goto out_destroy_policy;
1406                 }
1407
1408                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1409                                 CPUFREQ_CREATE_POLICY, policy);
1410         }
1411
1412         if (cpufreq_driver->get && has_target()) {
1413                 policy->cur = cpufreq_driver->get(policy->cpu);
1414                 if (!policy->cur) {
1415                         pr_err("%s: ->get() failed\n", __func__);
1416                         goto out_destroy_policy;
1417                 }
1418         }
1419
1420         /*
1421          * Sometimes boot loaders set CPU frequency to a value outside of
1422          * frequency table present with cpufreq core. In such cases CPU might be
1423          * unstable if it has to run on that frequency for long duration of time
1424          * and so its better to set it to a frequency which is specified in
1425          * freq-table. This also makes cpufreq stats inconsistent as
1426          * cpufreq-stats would fail to register because current frequency of CPU
1427          * isn't found in freq-table.
1428          *
1429          * Because we don't want this change to effect boot process badly, we go
1430          * for the next freq which is >= policy->cur ('cur' must be set by now,
1431          * otherwise we will end up setting freq to lowest of the table as 'cur'
1432          * is initialized to zero).
1433          *
1434          * We are passing target-freq as "policy->cur - 1" otherwise
1435          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1436          * equal to target-freq.
1437          */
1438         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1439             && has_target()) {
1440                 /* Are we running at unknown frequency ? */
1441                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1442                 if (ret == -EINVAL) {
1443                         /* Warn user and fix it */
1444                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1445                                 __func__, policy->cpu, policy->cur);
1446                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1447                                 CPUFREQ_RELATION_L);
1448
1449                         /*
1450                          * Reaching here after boot in a few seconds may not
1451                          * mean that system will remain stable at "unknown"
1452                          * frequency for longer duration. Hence, a BUG_ON().
1453                          */
1454                         BUG_ON(ret);
1455                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1456                                 __func__, policy->cpu, policy->cur);
1457                 }
1458         }
1459
1460         if (new_policy) {
1461                 ret = cpufreq_add_dev_interface(policy);
1462                 if (ret)
1463                         goto out_destroy_policy;
1464
1465                 cpufreq_stats_create_table(policy);
1466
1467                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1468                 list_add(&policy->policy_list, &cpufreq_policy_list);
1469                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1470         }
1471
1472         ret = cpufreq_init_policy(policy);
1473         if (ret) {
1474                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1475                        __func__, cpu, ret);
1476                 goto out_destroy_policy;
1477         }
1478
1479         up_write(&policy->rwsem);
1480
1481         kobject_uevent(&policy->kobj, KOBJ_ADD);
1482
1483         /* Callback for handling stuff after policy is ready */
1484         if (cpufreq_driver->ready)
1485                 cpufreq_driver->ready(policy);
1486
1487         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1488                 policy->cdev = of_cpufreq_cooling_register(policy);
1489
1490         pr_debug("initialization complete\n");
1491
1492         return 0;
1493
1494 out_destroy_policy:
1495         for_each_cpu(j, policy->real_cpus)
1496                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1497
1498         up_write(&policy->rwsem);
1499
1500 out_exit_policy:
1501         if (cpufreq_driver->exit)
1502                 cpufreq_driver->exit(policy);
1503
1504 out_free_policy:
1505         cpufreq_policy_free(policy);
1506         return ret;
1507 }
1508
1509 /**
1510  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1511  * @dev: CPU device.
1512  * @sif: Subsystem interface structure pointer (not used)
1513  */
1514 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1515 {
1516         struct cpufreq_policy *policy;
1517         unsigned cpu = dev->id;
1518         int ret;
1519
1520         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1521
1522         if (cpu_online(cpu)) {
1523                 ret = cpufreq_online(cpu);
1524                 if (ret)
1525                         return ret;
1526         }
1527
1528         /* Create sysfs link on CPU registration */
1529         policy = per_cpu(cpufreq_cpu_data, cpu);
1530         if (policy)
1531                 add_cpu_dev_symlink(policy, cpu);
1532
1533         return 0;
1534 }
1535
1536 static int cpufreq_offline(unsigned int cpu)
1537 {
1538         struct cpufreq_policy *policy;
1539         int ret;
1540
1541         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1542
1543         policy = cpufreq_cpu_get_raw(cpu);
1544         if (!policy) {
1545                 pr_debug("%s: No cpu_data found\n", __func__);
1546                 return 0;
1547         }
1548
1549         down_write(&policy->rwsem);
1550         if (has_target())
1551                 cpufreq_stop_governor(policy);
1552
1553         cpumask_clear_cpu(cpu, policy->cpus);
1554
1555         if (policy_is_inactive(policy)) {
1556                 if (has_target())
1557                         strncpy(policy->last_governor, policy->governor->name,
1558                                 CPUFREQ_NAME_LEN);
1559                 else
1560                         policy->last_policy = policy->policy;
1561         } else if (cpu == policy->cpu) {
1562                 /* Nominate new CPU */
1563                 policy->cpu = cpumask_any(policy->cpus);
1564         }
1565
1566         /* Start governor again for active policy */
1567         if (!policy_is_inactive(policy)) {
1568                 if (has_target()) {
1569                         ret = cpufreq_start_governor(policy);
1570                         if (ret)
1571                                 pr_err("%s: Failed to start governor\n", __func__);
1572                 }
1573
1574                 goto unlock;
1575         }
1576
1577         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1578                 cpufreq_cooling_unregister(policy->cdev);
1579                 policy->cdev = NULL;
1580         }
1581
1582         if (cpufreq_driver->stop_cpu)
1583                 cpufreq_driver->stop_cpu(policy);
1584
1585         if (has_target())
1586                 cpufreq_exit_governor(policy);
1587
1588         /*
1589          * Perform the ->offline() during light-weight tear-down, as
1590          * that allows fast recovery when the CPU comes back.
1591          */
1592         if (cpufreq_driver->offline) {
1593                 cpufreq_driver->offline(policy);
1594         } else if (cpufreq_driver->exit) {
1595                 cpufreq_driver->exit(policy);
1596                 policy->freq_table = NULL;
1597         }
1598
1599 unlock:
1600         up_write(&policy->rwsem);
1601         return 0;
1602 }
1603
1604 /**
1605  * cpufreq_remove_dev - remove a CPU device
1606  *
1607  * Removes the cpufreq interface for a CPU device.
1608  */
1609 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1610 {
1611         unsigned int cpu = dev->id;
1612         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1613
1614         if (!policy)
1615                 return;
1616
1617         if (cpu_online(cpu))
1618                 cpufreq_offline(cpu);
1619
1620         cpumask_clear_cpu(cpu, policy->real_cpus);
1621         remove_cpu_dev_symlink(policy, dev);
1622
1623         if (cpumask_empty(policy->real_cpus)) {
1624                 /* We did light-weight exit earlier, do full tear down now */
1625                 if (cpufreq_driver->offline)
1626                         cpufreq_driver->exit(policy);
1627
1628                 cpufreq_policy_free(policy);
1629         }
1630 }
1631
1632 /**
1633  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1634  *      in deep trouble.
1635  *      @policy: policy managing CPUs
1636  *      @new_freq: CPU frequency the CPU actually runs at
1637  *
1638  *      We adjust to current frequency first, and need to clean up later.
1639  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1640  */
1641 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1642                                 unsigned int new_freq)
1643 {
1644         struct cpufreq_freqs freqs;
1645
1646         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1647                  policy->cur, new_freq);
1648
1649         freqs.old = policy->cur;
1650         freqs.new = new_freq;
1651
1652         cpufreq_freq_transition_begin(policy, &freqs);
1653         cpufreq_freq_transition_end(policy, &freqs, 0);
1654 }
1655
1656 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1657 {
1658         unsigned int new_freq;
1659
1660         new_freq = cpufreq_driver->get(policy->cpu);
1661         if (!new_freq)
1662                 return 0;
1663
1664         /*
1665          * If fast frequency switching is used with the given policy, the check
1666          * against policy->cur is pointless, so skip it in that case.
1667          */
1668         if (policy->fast_switch_enabled || !has_target())
1669                 return new_freq;
1670
1671         if (policy->cur != new_freq) {
1672                 cpufreq_out_of_sync(policy, new_freq);
1673                 if (update)
1674                         schedule_work(&policy->update);
1675         }
1676
1677         return new_freq;
1678 }
1679
1680 /**
1681  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1682  * @cpu: CPU number
1683  *
1684  * This is the last known freq, without actually getting it from the driver.
1685  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1686  */
1687 unsigned int cpufreq_quick_get(unsigned int cpu)
1688 {
1689         struct cpufreq_policy *policy;
1690         unsigned int ret_freq = 0;
1691         unsigned long flags;
1692
1693         read_lock_irqsave(&cpufreq_driver_lock, flags);
1694
1695         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1696                 ret_freq = cpufreq_driver->get(cpu);
1697                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1698                 return ret_freq;
1699         }
1700
1701         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1702
1703         policy = cpufreq_cpu_get(cpu);
1704         if (policy) {
1705                 ret_freq = policy->cur;
1706                 cpufreq_cpu_put(policy);
1707         }
1708
1709         return ret_freq;
1710 }
1711 EXPORT_SYMBOL(cpufreq_quick_get);
1712
1713 /**
1714  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1715  * @cpu: CPU number
1716  *
1717  * Just return the max possible frequency for a given CPU.
1718  */
1719 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1720 {
1721         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1722         unsigned int ret_freq = 0;
1723
1724         if (policy) {
1725                 ret_freq = policy->max;
1726                 cpufreq_cpu_put(policy);
1727         }
1728
1729         return ret_freq;
1730 }
1731 EXPORT_SYMBOL(cpufreq_quick_get_max);
1732
1733 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1734 {
1735         if (unlikely(policy_is_inactive(policy)))
1736                 return 0;
1737
1738         return cpufreq_verify_current_freq(policy, true);
1739 }
1740
1741 /**
1742  * cpufreq_get - get the current CPU frequency (in kHz)
1743  * @cpu: CPU number
1744  *
1745  * Get the CPU current (static) CPU frequency
1746  */
1747 unsigned int cpufreq_get(unsigned int cpu)
1748 {
1749         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1750         unsigned int ret_freq = 0;
1751
1752         if (policy) {
1753                 down_read(&policy->rwsem);
1754                 if (cpufreq_driver->get)
1755                         ret_freq = __cpufreq_get(policy);
1756                 up_read(&policy->rwsem);
1757
1758                 cpufreq_cpu_put(policy);
1759         }
1760
1761         return ret_freq;
1762 }
1763 EXPORT_SYMBOL(cpufreq_get);
1764
1765 static struct subsys_interface cpufreq_interface = {
1766         .name           = "cpufreq",
1767         .subsys         = &cpu_subsys,
1768         .add_dev        = cpufreq_add_dev,
1769         .remove_dev     = cpufreq_remove_dev,
1770 };
1771
1772 /*
1773  * In case platform wants some specific frequency to be configured
1774  * during suspend..
1775  */
1776 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1777 {
1778         int ret;
1779
1780         if (!policy->suspend_freq) {
1781                 pr_debug("%s: suspend_freq not defined\n", __func__);
1782                 return 0;
1783         }
1784
1785         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1786                         policy->suspend_freq);
1787
1788         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1789                         CPUFREQ_RELATION_H);
1790         if (ret)
1791                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1792                                 __func__, policy->suspend_freq, ret);
1793
1794         return ret;
1795 }
1796 EXPORT_SYMBOL(cpufreq_generic_suspend);
1797
1798 /**
1799  * cpufreq_suspend() - Suspend CPUFreq governors
1800  *
1801  * Called during system wide Suspend/Hibernate cycles for suspending governors
1802  * as some platforms can't change frequency after this point in suspend cycle.
1803  * Because some of the devices (like: i2c, regulators, etc) they use for
1804  * changing frequency are suspended quickly after this point.
1805  */
1806 void cpufreq_suspend(void)
1807 {
1808         struct cpufreq_policy *policy;
1809
1810         if (!cpufreq_driver)
1811                 return;
1812
1813         if (!has_target() && !cpufreq_driver->suspend)
1814                 goto suspend;
1815
1816         pr_debug("%s: Suspending Governors\n", __func__);
1817
1818         for_each_active_policy(policy) {
1819                 if (has_target()) {
1820                         down_write(&policy->rwsem);
1821                         cpufreq_stop_governor(policy);
1822                         up_write(&policy->rwsem);
1823                 }
1824
1825                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1826                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1827                                 cpufreq_driver->name);
1828         }
1829
1830 suspend:
1831         cpufreq_suspended = true;
1832 }
1833
1834 /**
1835  * cpufreq_resume() - Resume CPUFreq governors
1836  *
1837  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1838  * are suspended with cpufreq_suspend().
1839  */
1840 void cpufreq_resume(void)
1841 {
1842         struct cpufreq_policy *policy;
1843         int ret;
1844
1845         if (!cpufreq_driver)
1846                 return;
1847
1848         if (unlikely(!cpufreq_suspended))
1849                 return;
1850
1851         cpufreq_suspended = false;
1852
1853         if (!has_target() && !cpufreq_driver->resume)
1854                 return;
1855
1856         pr_debug("%s: Resuming Governors\n", __func__);
1857
1858         for_each_active_policy(policy) {
1859                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1860                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1861                                 policy);
1862                 } else if (has_target()) {
1863                         down_write(&policy->rwsem);
1864                         ret = cpufreq_start_governor(policy);
1865                         up_write(&policy->rwsem);
1866
1867                         if (ret)
1868                                 pr_err("%s: Failed to start governor for policy: %p\n",
1869                                        __func__, policy);
1870                 }
1871         }
1872 }
1873
1874 /**
1875  *      cpufreq_get_current_driver - return current driver's name
1876  *
1877  *      Return the name string of the currently loaded cpufreq driver
1878  *      or NULL, if none.
1879  */
1880 const char *cpufreq_get_current_driver(void)
1881 {
1882         if (cpufreq_driver)
1883                 return cpufreq_driver->name;
1884
1885         return NULL;
1886 }
1887 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1888
1889 /**
1890  *      cpufreq_get_driver_data - return current driver data
1891  *
1892  *      Return the private data of the currently loaded cpufreq
1893  *      driver, or NULL if no cpufreq driver is loaded.
1894  */
1895 void *cpufreq_get_driver_data(void)
1896 {
1897         if (cpufreq_driver)
1898                 return cpufreq_driver->driver_data;
1899
1900         return NULL;
1901 }
1902 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1903
1904 /*********************************************************************
1905  *                     NOTIFIER LISTS INTERFACE                      *
1906  *********************************************************************/
1907
1908 /**
1909  *      cpufreq_register_notifier - register a driver with cpufreq
1910  *      @nb: notifier function to register
1911  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1912  *
1913  *      Add a driver to one of two lists: either a list of drivers that
1914  *      are notified about clock rate changes (once before and once after
1915  *      the transition), or a list of drivers that are notified about
1916  *      changes in cpufreq policy.
1917  *
1918  *      This function may sleep, and has the same return conditions as
1919  *      blocking_notifier_chain_register.
1920  */
1921 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1922 {
1923         int ret;
1924
1925         if (cpufreq_disabled())
1926                 return -EINVAL;
1927
1928         switch (list) {
1929         case CPUFREQ_TRANSITION_NOTIFIER:
1930                 mutex_lock(&cpufreq_fast_switch_lock);
1931
1932                 if (cpufreq_fast_switch_count > 0) {
1933                         mutex_unlock(&cpufreq_fast_switch_lock);
1934                         return -EBUSY;
1935                 }
1936                 ret = srcu_notifier_chain_register(
1937                                 &cpufreq_transition_notifier_list, nb);
1938                 if (!ret)
1939                         cpufreq_fast_switch_count--;
1940
1941                 mutex_unlock(&cpufreq_fast_switch_lock);
1942                 break;
1943         case CPUFREQ_POLICY_NOTIFIER:
1944                 ret = blocking_notifier_chain_register(
1945                                 &cpufreq_policy_notifier_list, nb);
1946                 break;
1947         default:
1948                 ret = -EINVAL;
1949         }
1950
1951         return ret;
1952 }
1953 EXPORT_SYMBOL(cpufreq_register_notifier);
1954
1955 /**
1956  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1957  *      @nb: notifier block to be unregistered
1958  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1959  *
1960  *      Remove a driver from the CPU frequency notifier list.
1961  *
1962  *      This function may sleep, and has the same return conditions as
1963  *      blocking_notifier_chain_unregister.
1964  */
1965 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1966 {
1967         int ret;
1968
1969         if (cpufreq_disabled())
1970                 return -EINVAL;
1971
1972         switch (list) {
1973         case CPUFREQ_TRANSITION_NOTIFIER:
1974                 mutex_lock(&cpufreq_fast_switch_lock);
1975
1976                 ret = srcu_notifier_chain_unregister(
1977                                 &cpufreq_transition_notifier_list, nb);
1978                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1979                         cpufreq_fast_switch_count++;
1980
1981                 mutex_unlock(&cpufreq_fast_switch_lock);
1982                 break;
1983         case CPUFREQ_POLICY_NOTIFIER:
1984                 ret = blocking_notifier_chain_unregister(
1985                                 &cpufreq_policy_notifier_list, nb);
1986                 break;
1987         default:
1988                 ret = -EINVAL;
1989         }
1990
1991         return ret;
1992 }
1993 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1994
1995
1996 /*********************************************************************
1997  *                              GOVERNORS                            *
1998  *********************************************************************/
1999
2000 /**
2001  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2002  * @policy: cpufreq policy to switch the frequency for.
2003  * @target_freq: New frequency to set (may be approximate).
2004  *
2005  * Carry out a fast frequency switch without sleeping.
2006  *
2007  * The driver's ->fast_switch() callback invoked by this function must be
2008  * suitable for being called from within RCU-sched read-side critical sections
2009  * and it is expected to select the minimum available frequency greater than or
2010  * equal to @target_freq (CPUFREQ_RELATION_L).
2011  *
2012  * This function must not be called if policy->fast_switch_enabled is unset.
2013  *
2014  * Governors calling this function must guarantee that it will never be invoked
2015  * twice in parallel for the same policy and that it will never be called in
2016  * parallel with either ->target() or ->target_index() for the same policy.
2017  *
2018  * Returns the actual frequency set for the CPU.
2019  *
2020  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2021  * error condition, the hardware configuration must be preserved.
2022  */
2023 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2024                                         unsigned int target_freq)
2025 {
2026         target_freq = clamp_val(target_freq, policy->min, policy->max);
2027
2028         return cpufreq_driver->fast_switch(policy, target_freq);
2029 }
2030 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2031
2032 /* Must set freqs->new to intermediate frequency */
2033 static int __target_intermediate(struct cpufreq_policy *policy,
2034                                  struct cpufreq_freqs *freqs, int index)
2035 {
2036         int ret;
2037
2038         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2039
2040         /* We don't need to switch to intermediate freq */
2041         if (!freqs->new)
2042                 return 0;
2043
2044         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2045                  __func__, policy->cpu, freqs->old, freqs->new);
2046
2047         cpufreq_freq_transition_begin(policy, freqs);
2048         ret = cpufreq_driver->target_intermediate(policy, index);
2049         cpufreq_freq_transition_end(policy, freqs, ret);
2050
2051         if (ret)
2052                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2053                        __func__, ret);
2054
2055         return ret;
2056 }
2057
2058 static int __target_index(struct cpufreq_policy *policy, int index)
2059 {
2060         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2061         unsigned int intermediate_freq = 0;
2062         unsigned int newfreq = policy->freq_table[index].frequency;
2063         int retval = -EINVAL;
2064         bool notify;
2065
2066         if (newfreq == policy->cur)
2067                 return 0;
2068
2069         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2070         if (notify) {
2071                 /* Handle switching to intermediate frequency */
2072                 if (cpufreq_driver->get_intermediate) {
2073                         retval = __target_intermediate(policy, &freqs, index);
2074                         if (retval)
2075                                 return retval;
2076
2077                         intermediate_freq = freqs.new;
2078                         /* Set old freq to intermediate */
2079                         if (intermediate_freq)
2080                                 freqs.old = freqs.new;
2081                 }
2082
2083                 freqs.new = newfreq;
2084                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2085                          __func__, policy->cpu, freqs.old, freqs.new);
2086
2087                 cpufreq_freq_transition_begin(policy, &freqs);
2088         }
2089
2090         retval = cpufreq_driver->target_index(policy, index);
2091         if (retval)
2092                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2093                        retval);
2094
2095         if (notify) {
2096                 cpufreq_freq_transition_end(policy, &freqs, retval);
2097
2098                 /*
2099                  * Failed after setting to intermediate freq? Driver should have
2100                  * reverted back to initial frequency and so should we. Check
2101                  * here for intermediate_freq instead of get_intermediate, in
2102                  * case we haven't switched to intermediate freq at all.
2103                  */
2104                 if (unlikely(retval && intermediate_freq)) {
2105                         freqs.old = intermediate_freq;
2106                         freqs.new = policy->restore_freq;
2107                         cpufreq_freq_transition_begin(policy, &freqs);
2108                         cpufreq_freq_transition_end(policy, &freqs, 0);
2109                 }
2110         }
2111
2112         return retval;
2113 }
2114
2115 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2116                             unsigned int target_freq,
2117                             unsigned int relation)
2118 {
2119         unsigned int old_target_freq = target_freq;
2120         int index;
2121
2122         if (cpufreq_disabled())
2123                 return -ENODEV;
2124
2125         /* Make sure that target_freq is within supported range */
2126         target_freq = clamp_val(target_freq, policy->min, policy->max);
2127
2128         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2129                  policy->cpu, target_freq, relation, old_target_freq);
2130
2131         /*
2132          * This might look like a redundant call as we are checking it again
2133          * after finding index. But it is left intentionally for cases where
2134          * exactly same freq is called again and so we can save on few function
2135          * calls.
2136          */
2137         if (target_freq == policy->cur)
2138                 return 0;
2139
2140         /* Save last value to restore later on errors */
2141         policy->restore_freq = policy->cur;
2142
2143         if (cpufreq_driver->target)
2144                 return cpufreq_driver->target(policy, target_freq, relation);
2145
2146         if (!cpufreq_driver->target_index)
2147                 return -EINVAL;
2148
2149         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2150
2151         return __target_index(policy, index);
2152 }
2153 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2154
2155 int cpufreq_driver_target(struct cpufreq_policy *policy,
2156                           unsigned int target_freq,
2157                           unsigned int relation)
2158 {
2159         int ret;
2160
2161         down_write(&policy->rwsem);
2162
2163         ret = __cpufreq_driver_target(policy, target_freq, relation);
2164
2165         up_write(&policy->rwsem);
2166
2167         return ret;
2168 }
2169 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2170
2171 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2172 {
2173         return NULL;
2174 }
2175
2176 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2177 {
2178         int ret;
2179
2180         /* Don't start any governor operations if we are entering suspend */
2181         if (cpufreq_suspended)
2182                 return 0;
2183         /*
2184          * Governor might not be initiated here if ACPI _PPC changed
2185          * notification happened, so check it.
2186          */
2187         if (!policy->governor)
2188                 return -EINVAL;
2189
2190         /* Platform doesn't want dynamic frequency switching ? */
2191         if (policy->governor->dynamic_switching &&
2192             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2193                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2194
2195                 if (gov) {
2196                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2197                                 policy->governor->name, gov->name);
2198                         policy->governor = gov;
2199                 } else {
2200                         return -EINVAL;
2201                 }
2202         }
2203
2204         if (!try_module_get(policy->governor->owner))
2205                 return -EINVAL;
2206
2207         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2208
2209         if (policy->governor->init) {
2210                 ret = policy->governor->init(policy);
2211                 if (ret) {
2212                         module_put(policy->governor->owner);
2213                         return ret;
2214                 }
2215         }
2216
2217         return 0;
2218 }
2219
2220 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2221 {
2222         if (cpufreq_suspended || !policy->governor)
2223                 return;
2224
2225         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2226
2227         if (policy->governor->exit)
2228                 policy->governor->exit(policy);
2229
2230         module_put(policy->governor->owner);
2231 }
2232
2233 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2234 {
2235         int ret;
2236
2237         if (cpufreq_suspended)
2238                 return 0;
2239
2240         if (!policy->governor)
2241                 return -EINVAL;
2242
2243         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2244
2245         if (cpufreq_driver->get)
2246                 cpufreq_verify_current_freq(policy, false);
2247
2248         if (policy->governor->start) {
2249                 ret = policy->governor->start(policy);
2250                 if (ret)
2251                         return ret;
2252         }
2253
2254         if (policy->governor->limits)
2255                 policy->governor->limits(policy);
2256
2257         return 0;
2258 }
2259
2260 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2261 {
2262         if (cpufreq_suspended || !policy->governor)
2263                 return;
2264
2265         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2266
2267         if (policy->governor->stop)
2268                 policy->governor->stop(policy);
2269 }
2270
2271 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2272 {
2273         if (cpufreq_suspended || !policy->governor)
2274                 return;
2275
2276         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2277
2278         if (policy->governor->limits)
2279                 policy->governor->limits(policy);
2280 }
2281
2282 int cpufreq_register_governor(struct cpufreq_governor *governor)
2283 {
2284         int err;
2285
2286         if (!governor)
2287                 return -EINVAL;
2288
2289         if (cpufreq_disabled())
2290                 return -ENODEV;
2291
2292         mutex_lock(&cpufreq_governor_mutex);
2293
2294         err = -EBUSY;
2295         if (!find_governor(governor->name)) {
2296                 err = 0;
2297                 list_add(&governor->governor_list, &cpufreq_governor_list);
2298         }
2299
2300         mutex_unlock(&cpufreq_governor_mutex);
2301         return err;
2302 }
2303 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2304
2305 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2306 {
2307         struct cpufreq_policy *policy;
2308         unsigned long flags;
2309
2310         if (!governor)
2311                 return;
2312
2313         if (cpufreq_disabled())
2314                 return;
2315
2316         /* clear last_governor for all inactive policies */
2317         read_lock_irqsave(&cpufreq_driver_lock, flags);
2318         for_each_inactive_policy(policy) {
2319                 if (!strcmp(policy->last_governor, governor->name)) {
2320                         policy->governor = NULL;
2321                         strcpy(policy->last_governor, "\0");
2322                 }
2323         }
2324         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2325
2326         mutex_lock(&cpufreq_governor_mutex);
2327         list_del(&governor->governor_list);
2328         mutex_unlock(&cpufreq_governor_mutex);
2329 }
2330 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2331
2332
2333 /*********************************************************************
2334  *                          POLICY INTERFACE                         *
2335  *********************************************************************/
2336
2337 /**
2338  * cpufreq_get_policy - get the current cpufreq_policy
2339  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2340  *      is written
2341  *
2342  * Reads the current cpufreq policy.
2343  */
2344 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2345 {
2346         struct cpufreq_policy *cpu_policy;
2347         if (!policy)
2348                 return -EINVAL;
2349
2350         cpu_policy = cpufreq_cpu_get(cpu);
2351         if (!cpu_policy)
2352                 return -EINVAL;
2353
2354         memcpy(policy, cpu_policy, sizeof(*policy));
2355
2356         cpufreq_cpu_put(cpu_policy);
2357         return 0;
2358 }
2359 EXPORT_SYMBOL(cpufreq_get_policy);
2360
2361 /**
2362  * cpufreq_set_policy - Modify cpufreq policy parameters.
2363  * @policy: Policy object to modify.
2364  * @new_policy: New policy data.
2365  *
2366  * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the
2367  * min and max parameters of @new_policy to @policy and either invoke the
2368  * driver's ->setpolicy() callback (if present) or carry out a governor update
2369  * for @policy.  That is, run the current governor's ->limits() callback (if the
2370  * governor field in @new_policy points to the same object as the one in
2371  * @policy) or replace the governor for @policy with the new one stored in
2372  * @new_policy.
2373  *
2374  * The cpuinfo part of @policy is not updated by this function.
2375  */
2376 int cpufreq_set_policy(struct cpufreq_policy *policy,
2377                        struct cpufreq_policy *new_policy)
2378 {
2379         struct cpufreq_governor *old_gov;
2380         int ret;
2381
2382         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2383                  new_policy->cpu, new_policy->min, new_policy->max);
2384
2385         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2386
2387         /*
2388          * PM QoS framework collects all the requests from users and provide us
2389          * the final aggregated value here.
2390          */
2391         new_policy->min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2392         new_policy->max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2393
2394         /* verify the cpu speed can be set within this limit */
2395         ret = cpufreq_driver->verify(new_policy);
2396         if (ret)
2397                 return ret;
2398
2399         policy->min = new_policy->min;
2400         policy->max = new_policy->max;
2401         trace_cpu_frequency_limits(policy);
2402
2403         policy->cached_target_freq = UINT_MAX;
2404
2405         pr_debug("new min and max freqs are %u - %u kHz\n",
2406                  policy->min, policy->max);
2407
2408         if (cpufreq_driver->setpolicy) {
2409                 policy->policy = new_policy->policy;
2410                 pr_debug("setting range\n");
2411                 return cpufreq_driver->setpolicy(policy);
2412         }
2413
2414         if (new_policy->governor == policy->governor) {
2415                 pr_debug("governor limits update\n");
2416                 cpufreq_governor_limits(policy);
2417                 return 0;
2418         }
2419
2420         pr_debug("governor switch\n");
2421
2422         /* save old, working values */
2423         old_gov = policy->governor;
2424         /* end old governor */
2425         if (old_gov) {
2426                 cpufreq_stop_governor(policy);
2427                 cpufreq_exit_governor(policy);
2428         }
2429
2430         /* start new governor */
2431         policy->governor = new_policy->governor;
2432         ret = cpufreq_init_governor(policy);
2433         if (!ret) {
2434                 ret = cpufreq_start_governor(policy);
2435                 if (!ret) {
2436                         pr_debug("governor change\n");
2437                         sched_cpufreq_governor_change(policy, old_gov);
2438                         return 0;
2439                 }
2440                 cpufreq_exit_governor(policy);
2441         }
2442
2443         /* new governor failed, so re-start old one */
2444         pr_debug("starting governor %s failed\n", policy->governor->name);
2445         if (old_gov) {
2446                 policy->governor = old_gov;
2447                 if (cpufreq_init_governor(policy))
2448                         policy->governor = NULL;
2449                 else
2450                         cpufreq_start_governor(policy);
2451         }
2452
2453         return ret;
2454 }
2455
2456 /**
2457  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2458  * @cpu: CPU to re-evaluate the policy for.
2459  *
2460  * Update the current frequency for the cpufreq policy of @cpu and use
2461  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2462  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2463  * for the policy in question, among other things.
2464  */
2465 void cpufreq_update_policy(unsigned int cpu)
2466 {
2467         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2468
2469         if (!policy)
2470                 return;
2471
2472         /*
2473          * BIOS might change freq behind our back
2474          * -> ask driver for current freq and notify governors about a change
2475          */
2476         if (cpufreq_driver->get && has_target() &&
2477             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2478                 goto unlock;
2479
2480         refresh_frequency_limits(policy);
2481
2482 unlock:
2483         cpufreq_cpu_release(policy);
2484 }
2485 EXPORT_SYMBOL(cpufreq_update_policy);
2486
2487 /**
2488  * cpufreq_update_limits - Update policy limits for a given CPU.
2489  * @cpu: CPU to update the policy limits for.
2490  *
2491  * Invoke the driver's ->update_limits callback if present or call
2492  * cpufreq_update_policy() for @cpu.
2493  */
2494 void cpufreq_update_limits(unsigned int cpu)
2495 {
2496         if (cpufreq_driver->update_limits)
2497                 cpufreq_driver->update_limits(cpu);
2498         else
2499                 cpufreq_update_policy(cpu);
2500 }
2501 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2502
2503 /*********************************************************************
2504  *               BOOST                                               *
2505  *********************************************************************/
2506 static int cpufreq_boost_set_sw(int state)
2507 {
2508         struct cpufreq_policy *policy;
2509         int ret = -EINVAL;
2510
2511         for_each_active_policy(policy) {
2512                 if (!policy->freq_table)
2513                         continue;
2514
2515                 ret = cpufreq_frequency_table_cpuinfo(policy,
2516                                                       policy->freq_table);
2517                 if (ret) {
2518                         pr_err("%s: Policy frequency update failed\n",
2519                                __func__);
2520                         break;
2521                 }
2522
2523                 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2524                 if (ret < 0)
2525                         break;
2526         }
2527
2528         return ret;
2529 }
2530
2531 int cpufreq_boost_trigger_state(int state)
2532 {
2533         unsigned long flags;
2534         int ret = 0;
2535
2536         if (cpufreq_driver->boost_enabled == state)
2537                 return 0;
2538
2539         write_lock_irqsave(&cpufreq_driver_lock, flags);
2540         cpufreq_driver->boost_enabled = state;
2541         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2542
2543         ret = cpufreq_driver->set_boost(state);
2544         if (ret) {
2545                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2546                 cpufreq_driver->boost_enabled = !state;
2547                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2548
2549                 pr_err("%s: Cannot %s BOOST\n",
2550                        __func__, state ? "enable" : "disable");
2551         }
2552
2553         return ret;
2554 }
2555
2556 static bool cpufreq_boost_supported(void)
2557 {
2558         return cpufreq_driver->set_boost;
2559 }
2560
2561 static int create_boost_sysfs_file(void)
2562 {
2563         int ret;
2564
2565         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2566         if (ret)
2567                 pr_err("%s: cannot register global BOOST sysfs file\n",
2568                        __func__);
2569
2570         return ret;
2571 }
2572
2573 static void remove_boost_sysfs_file(void)
2574 {
2575         if (cpufreq_boost_supported())
2576                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2577 }
2578
2579 int cpufreq_enable_boost_support(void)
2580 {
2581         if (!cpufreq_driver)
2582                 return -EINVAL;
2583
2584         if (cpufreq_boost_supported())
2585                 return 0;
2586
2587         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2588
2589         /* This will get removed on driver unregister */
2590         return create_boost_sysfs_file();
2591 }
2592 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2593
2594 int cpufreq_boost_enabled(void)
2595 {
2596         return cpufreq_driver->boost_enabled;
2597 }
2598 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2599
2600 /*********************************************************************
2601  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2602  *********************************************************************/
2603 static enum cpuhp_state hp_online;
2604
2605 static int cpuhp_cpufreq_online(unsigned int cpu)
2606 {
2607         cpufreq_online(cpu);
2608
2609         return 0;
2610 }
2611
2612 static int cpuhp_cpufreq_offline(unsigned int cpu)
2613 {
2614         cpufreq_offline(cpu);
2615
2616         return 0;
2617 }
2618
2619 /**
2620  * cpufreq_register_driver - register a CPU Frequency driver
2621  * @driver_data: A struct cpufreq_driver containing the values#
2622  * submitted by the CPU Frequency driver.
2623  *
2624  * Registers a CPU Frequency driver to this core code. This code
2625  * returns zero on success, -EEXIST when another driver got here first
2626  * (and isn't unregistered in the meantime).
2627  *
2628  */
2629 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2630 {
2631         unsigned long flags;
2632         int ret;
2633
2634         if (cpufreq_disabled())
2635                 return -ENODEV;
2636
2637         if (!driver_data || !driver_data->verify || !driver_data->init ||
2638             !(driver_data->setpolicy || driver_data->target_index ||
2639                     driver_data->target) ||
2640              (driver_data->setpolicy && (driver_data->target_index ||
2641                     driver_data->target)) ||
2642              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2643              (!driver_data->online != !driver_data->offline))
2644                 return -EINVAL;
2645
2646         pr_debug("trying to register driver %s\n", driver_data->name);
2647
2648         /* Protect against concurrent CPU online/offline. */
2649         cpus_read_lock();
2650
2651         write_lock_irqsave(&cpufreq_driver_lock, flags);
2652         if (cpufreq_driver) {
2653                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2654                 ret = -EEXIST;
2655                 goto out;
2656         }
2657         cpufreq_driver = driver_data;
2658         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2659
2660         if (driver_data->setpolicy)
2661                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2662
2663         if (cpufreq_boost_supported()) {
2664                 ret = create_boost_sysfs_file();
2665                 if (ret)
2666                         goto err_null_driver;
2667         }
2668
2669         ret = subsys_interface_register(&cpufreq_interface);
2670         if (ret)
2671                 goto err_boost_unreg;
2672
2673         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2674             list_empty(&cpufreq_policy_list)) {
2675                 /* if all ->init() calls failed, unregister */
2676                 ret = -ENODEV;
2677                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2678                          driver_data->name);
2679                 goto err_if_unreg;
2680         }
2681
2682         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2683                                                    "cpufreq:online",
2684                                                    cpuhp_cpufreq_online,
2685                                                    cpuhp_cpufreq_offline);
2686         if (ret < 0)
2687                 goto err_if_unreg;
2688         hp_online = ret;
2689         ret = 0;
2690
2691         pr_debug("driver %s up and running\n", driver_data->name);
2692         goto out;
2693
2694 err_if_unreg:
2695         subsys_interface_unregister(&cpufreq_interface);
2696 err_boost_unreg:
2697         remove_boost_sysfs_file();
2698 err_null_driver:
2699         write_lock_irqsave(&cpufreq_driver_lock, flags);
2700         cpufreq_driver = NULL;
2701         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2702 out:
2703         cpus_read_unlock();
2704         return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2707
2708 /**
2709  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2710  *
2711  * Unregister the current CPUFreq driver. Only call this if you have
2712  * the right to do so, i.e. if you have succeeded in initialising before!
2713  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2714  * currently not initialised.
2715  */
2716 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2717 {
2718         unsigned long flags;
2719
2720         if (!cpufreq_driver || (driver != cpufreq_driver))
2721                 return -EINVAL;
2722
2723         pr_debug("unregistering driver %s\n", driver->name);
2724
2725         /* Protect against concurrent cpu hotplug */
2726         cpus_read_lock();
2727         subsys_interface_unregister(&cpufreq_interface);
2728         remove_boost_sysfs_file();
2729         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2730
2731         write_lock_irqsave(&cpufreq_driver_lock, flags);
2732
2733         cpufreq_driver = NULL;
2734
2735         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2736         cpus_read_unlock();
2737
2738         return 0;
2739 }
2740 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2741
2742 struct kobject *cpufreq_global_kobject;
2743 EXPORT_SYMBOL(cpufreq_global_kobject);
2744
2745 static int __init cpufreq_core_init(void)
2746 {
2747         if (cpufreq_disabled())
2748                 return -ENODEV;
2749
2750         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2751         BUG_ON(!cpufreq_global_kobject);
2752
2753         return 0;
2754 }
2755 module_param(off, int, 0444);
2756 core_initcall(cpufreq_core_init);