7679f8a917456a3b484fd9b43c443c730034aeb3
[platform/kernel/linux-rpi.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67         return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78                               struct cpufreq_governor *new_gov,
79                               unsigned int new_pol);
80
81 /**
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94         return off;
95 }
96 void disable_cpufreq(void)
97 {
98         off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101
102 bool have_governor_per_policy(void)
103 {
104         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107
108 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
109 {
110         if (have_governor_per_policy())
111                 return &policy->kobj;
112         else
113                 return cpufreq_global_kobject;
114 }
115 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
116
117 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
118 {
119         u64 idle_time;
120         u64 cur_wall_time;
121         u64 busy_time;
122
123         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
124
125         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
126         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
127         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
128         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
129         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
130         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
131
132         idle_time = cur_wall_time - busy_time;
133         if (wall)
134                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
135
136         return div_u64(idle_time, NSEC_PER_USEC);
137 }
138
139 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
140 {
141         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
142
143         if (idle_time == -1ULL)
144                 return get_cpu_idle_time_jiffy(cpu, wall);
145         else if (!io_busy)
146                 idle_time += get_cpu_iowait_time_us(cpu, wall);
147
148         return idle_time;
149 }
150 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
151
152 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
153                 unsigned long max_freq)
154 {
155 }
156 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
157
158 /*
159  * This is a generic cpufreq init() routine which can be used by cpufreq
160  * drivers of SMP systems. It will do following:
161  * - validate & show freq table passed
162  * - set policies transition latency
163  * - policy->cpus with all possible CPUs
164  */
165 void cpufreq_generic_init(struct cpufreq_policy *policy,
166                 struct cpufreq_frequency_table *table,
167                 unsigned int transition_latency)
168 {
169         policy->freq_table = table;
170         policy->cpuinfo.transition_latency = transition_latency;
171
172         /*
173          * The driver only supports the SMP configuration where all processors
174          * share the clock and voltage and clock.
175          */
176         cpumask_setall(policy->cpus);
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
181 {
182         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
185 }
186 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
187
188 unsigned int cpufreq_generic_get(unsigned int cpu)
189 {
190         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
191
192         if (!policy || IS_ERR(policy->clk)) {
193                 pr_err("%s: No %s associated to cpu: %d\n",
194                        __func__, policy ? "clk" : "policy", cpu);
195                 return 0;
196         }
197
198         return clk_get_rate(policy->clk) / 1000;
199 }
200 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
201
202 /**
203  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
204  * @cpu: CPU to find the policy for.
205  *
206  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
207  * the kobject reference counter of that policy.  Return a valid policy on
208  * success or NULL on failure.
209  *
210  * The policy returned by this function has to be released with the help of
211  * cpufreq_cpu_put() to balance its kobject reference counter properly.
212  */
213 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
214 {
215         struct cpufreq_policy *policy = NULL;
216         unsigned long flags;
217
218         if (WARN_ON(cpu >= nr_cpu_ids))
219                 return NULL;
220
221         /* get the cpufreq driver */
222         read_lock_irqsave(&cpufreq_driver_lock, flags);
223
224         if (cpufreq_driver) {
225                 /* get the CPU */
226                 policy = cpufreq_cpu_get_raw(cpu);
227                 if (policy)
228                         kobject_get(&policy->kobj);
229         }
230
231         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
232
233         return policy;
234 }
235 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
236
237 /**
238  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
239  * @policy: cpufreq policy returned by cpufreq_cpu_get().
240  */
241 void cpufreq_cpu_put(struct cpufreq_policy *policy)
242 {
243         kobject_put(&policy->kobj);
244 }
245 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
246
247 /**
248  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
249  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
250  */
251 void cpufreq_cpu_release(struct cpufreq_policy *policy)
252 {
253         if (WARN_ON(!policy))
254                 return;
255
256         lockdep_assert_held(&policy->rwsem);
257
258         up_write(&policy->rwsem);
259
260         cpufreq_cpu_put(policy);
261 }
262
263 /**
264  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
265  * @cpu: CPU to find the policy for.
266  *
267  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
268  * if the policy returned by it is not NULL, acquire its rwsem for writing.
269  * Return the policy if it is active or release it and return NULL otherwise.
270  *
271  * The policy returned by this function has to be released with the help of
272  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
273  * counter properly.
274  */
275 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
276 {
277         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
278
279         if (!policy)
280                 return NULL;
281
282         down_write(&policy->rwsem);
283
284         if (policy_is_inactive(policy)) {
285                 cpufreq_cpu_release(policy);
286                 return NULL;
287         }
288
289         return policy;
290 }
291
292 /*********************************************************************
293  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
294  *********************************************************************/
295
296 /**
297  * adjust_jiffies - adjust the system "loops_per_jiffy"
298  *
299  * This function alters the system "loops_per_jiffy" for the clock
300  * speed change. Note that loops_per_jiffy cannot be updated on SMP
301  * systems as each CPU might be scaled differently. So, use the arch
302  * per-CPU loops_per_jiffy value wherever possible.
303  */
304 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
305 {
306 #ifndef CONFIG_SMP
307         static unsigned long l_p_j_ref;
308         static unsigned int l_p_j_ref_freq;
309
310         if (ci->flags & CPUFREQ_CONST_LOOPS)
311                 return;
312
313         if (!l_p_j_ref_freq) {
314                 l_p_j_ref = loops_per_jiffy;
315                 l_p_j_ref_freq = ci->old;
316                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
317                          l_p_j_ref, l_p_j_ref_freq);
318         }
319         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
320                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
321                                                                 ci->new);
322                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
323                          loops_per_jiffy, ci->new);
324         }
325 #endif
326 }
327
328 /**
329  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
330  * @policy: cpufreq policy to enable fast frequency switching for.
331  * @freqs: contain details of the frequency update.
332  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
333  *
334  * This function calls the transition notifiers and the "adjust_jiffies"
335  * function. It is called twice on all CPU frequency changes that have
336  * external effects.
337  */
338 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
339                                       struct cpufreq_freqs *freqs,
340                                       unsigned int state)
341 {
342         int cpu;
343
344         BUG_ON(irqs_disabled());
345
346         if (cpufreq_disabled())
347                 return;
348
349         freqs->policy = policy;
350         freqs->flags = cpufreq_driver->flags;
351         pr_debug("notification %u of frequency transition to %u kHz\n",
352                  state, freqs->new);
353
354         switch (state) {
355         case CPUFREQ_PRECHANGE:
356                 /*
357                  * Detect if the driver reported a value as "old frequency"
358                  * which is not equal to what the cpufreq core thinks is
359                  * "old frequency".
360                  */
361                 if (policy->cur && policy->cur != freqs->old) {
362                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
363                                  freqs->old, policy->cur);
364                         freqs->old = policy->cur;
365                 }
366
367                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
368                                          CPUFREQ_PRECHANGE, freqs);
369
370                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
371                 break;
372
373         case CPUFREQ_POSTCHANGE:
374                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
375                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
376                          cpumask_pr_args(policy->cpus));
377
378                 for_each_cpu(cpu, policy->cpus)
379                         trace_cpu_frequency(freqs->new, cpu);
380
381                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
382                                          CPUFREQ_POSTCHANGE, freqs);
383
384                 cpufreq_stats_record_transition(policy, freqs->new);
385                 policy->cur = freqs->new;
386         }
387 }
388
389 /* Do post notifications when there are chances that transition has failed */
390 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
391                 struct cpufreq_freqs *freqs, int transition_failed)
392 {
393         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
394         if (!transition_failed)
395                 return;
396
397         swap(freqs->old, freqs->new);
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
399         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
400 }
401
402 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
403                 struct cpufreq_freqs *freqs)
404 {
405
406         /*
407          * Catch double invocations of _begin() which lead to self-deadlock.
408          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
409          * doesn't invoke _begin() on their behalf, and hence the chances of
410          * double invocations are very low. Moreover, there are scenarios
411          * where these checks can emit false-positive warnings in these
412          * drivers; so we avoid that by skipping them altogether.
413          */
414         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
415                                 && current == policy->transition_task);
416
417 wait:
418         wait_event(policy->transition_wait, !policy->transition_ongoing);
419
420         spin_lock(&policy->transition_lock);
421
422         if (unlikely(policy->transition_ongoing)) {
423                 spin_unlock(&policy->transition_lock);
424                 goto wait;
425         }
426
427         policy->transition_ongoing = true;
428         policy->transition_task = current;
429
430         spin_unlock(&policy->transition_lock);
431
432         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
433 }
434 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
435
436 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
437                 struct cpufreq_freqs *freqs, int transition_failed)
438 {
439         if (WARN_ON(!policy->transition_ongoing))
440                 return;
441
442         cpufreq_notify_post_transition(policy, freqs, transition_failed);
443
444         policy->transition_ongoing = false;
445         policy->transition_task = NULL;
446
447         wake_up(&policy->transition_wait);
448 }
449 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
450
451 /*
452  * Fast frequency switching status count.  Positive means "enabled", negative
453  * means "disabled" and 0 means "not decided yet".
454  */
455 static int cpufreq_fast_switch_count;
456 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
457
458 static void cpufreq_list_transition_notifiers(void)
459 {
460         struct notifier_block *nb;
461
462         pr_info("Registered transition notifiers:\n");
463
464         mutex_lock(&cpufreq_transition_notifier_list.mutex);
465
466         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
467                 pr_info("%pS\n", nb->notifier_call);
468
469         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
470 }
471
472 /**
473  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
474  * @policy: cpufreq policy to enable fast frequency switching for.
475  *
476  * Try to enable fast frequency switching for @policy.
477  *
478  * The attempt will fail if there is at least one transition notifier registered
479  * at this point, as fast frequency switching is quite fundamentally at odds
480  * with transition notifiers.  Thus if successful, it will make registration of
481  * transition notifiers fail going forward.
482  */
483 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
484 {
485         lockdep_assert_held(&policy->rwsem);
486
487         if (!policy->fast_switch_possible)
488                 return;
489
490         mutex_lock(&cpufreq_fast_switch_lock);
491         if (cpufreq_fast_switch_count >= 0) {
492                 cpufreq_fast_switch_count++;
493                 policy->fast_switch_enabled = true;
494         } else {
495                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
496                         policy->cpu);
497                 cpufreq_list_transition_notifiers();
498         }
499         mutex_unlock(&cpufreq_fast_switch_lock);
500 }
501 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
502
503 /**
504  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
505  * @policy: cpufreq policy to disable fast frequency switching for.
506  */
507 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
508 {
509         mutex_lock(&cpufreq_fast_switch_lock);
510         if (policy->fast_switch_enabled) {
511                 policy->fast_switch_enabled = false;
512                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
513                         cpufreq_fast_switch_count--;
514         }
515         mutex_unlock(&cpufreq_fast_switch_lock);
516 }
517 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
518
519 /**
520  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
521  * one.
522  * @target_freq: target frequency to resolve.
523  *
524  * The target to driver frequency mapping is cached in the policy.
525  *
526  * Return: Lowest driver-supported frequency greater than or equal to the
527  * given target_freq, subject to policy (min/max) and driver limitations.
528  */
529 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
530                                          unsigned int target_freq)
531 {
532         target_freq = clamp_val(target_freq, policy->min, policy->max);
533         policy->cached_target_freq = target_freq;
534
535         if (cpufreq_driver->target_index) {
536                 int idx;
537
538                 idx = cpufreq_frequency_table_target(policy, target_freq,
539                                                      CPUFREQ_RELATION_L);
540                 policy->cached_resolved_idx = idx;
541                 return policy->freq_table[idx].frequency;
542         }
543
544         if (cpufreq_driver->resolve_freq)
545                 return cpufreq_driver->resolve_freq(policy, target_freq);
546
547         return target_freq;
548 }
549 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
550
551 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
552 {
553         unsigned int latency;
554
555         if (policy->transition_delay_us)
556                 return policy->transition_delay_us;
557
558         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
559         if (latency) {
560                 /*
561                  * For platforms that can change the frequency very fast (< 10
562                  * us), the above formula gives a decent transition delay. But
563                  * for platforms where transition_latency is in milliseconds, it
564                  * ends up giving unrealistic values.
565                  *
566                  * Cap the default transition delay to 10 ms, which seems to be
567                  * a reasonable amount of time after which we should reevaluate
568                  * the frequency.
569                  */
570                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
571         }
572
573         return LATENCY_MULTIPLIER;
574 }
575 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
576
577 /*********************************************************************
578  *                          SYSFS INTERFACE                          *
579  *********************************************************************/
580 static ssize_t show_boost(struct kobject *kobj,
581                           struct kobj_attribute *attr, char *buf)
582 {
583         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
584 }
585
586 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
587                            const char *buf, size_t count)
588 {
589         int ret, enable;
590
591         ret = sscanf(buf, "%d", &enable);
592         if (ret != 1 || enable < 0 || enable > 1)
593                 return -EINVAL;
594
595         if (cpufreq_boost_trigger_state(enable)) {
596                 pr_err("%s: Cannot %s BOOST!\n",
597                        __func__, enable ? "enable" : "disable");
598                 return -EINVAL;
599         }
600
601         pr_debug("%s: cpufreq BOOST %s\n",
602                  __func__, enable ? "enabled" : "disabled");
603
604         return count;
605 }
606 define_one_global_rw(boost);
607
608 static struct cpufreq_governor *find_governor(const char *str_governor)
609 {
610         struct cpufreq_governor *t;
611
612         for_each_governor(t)
613                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
614                         return t;
615
616         return NULL;
617 }
618
619 static unsigned int cpufreq_parse_policy(char *str_governor)
620 {
621         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
622                 return CPUFREQ_POLICY_PERFORMANCE;
623
624         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
625                 return CPUFREQ_POLICY_POWERSAVE;
626
627         return CPUFREQ_POLICY_UNKNOWN;
628 }
629
630 /**
631  * cpufreq_parse_governor - parse a governor string only for has_target()
632  * @str_governor: Governor name.
633  */
634 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
635 {
636         struct cpufreq_governor *t;
637
638         mutex_lock(&cpufreq_governor_mutex);
639
640         t = find_governor(str_governor);
641         if (!t) {
642                 int ret;
643
644                 mutex_unlock(&cpufreq_governor_mutex);
645
646                 ret = request_module("cpufreq_%s", str_governor);
647                 if (ret)
648                         return NULL;
649
650                 mutex_lock(&cpufreq_governor_mutex);
651
652                 t = find_governor(str_governor);
653         }
654         if (t && !try_module_get(t->owner))
655                 t = NULL;
656
657         mutex_unlock(&cpufreq_governor_mutex);
658
659         return t;
660 }
661
662 /**
663  * cpufreq_per_cpu_attr_read() / show_##file_name() -
664  * print out cpufreq information
665  *
666  * Write out information from cpufreq_driver->policy[cpu]; object must be
667  * "unsigned int".
668  */
669
670 #define show_one(file_name, object)                     \
671 static ssize_t show_##file_name                         \
672 (struct cpufreq_policy *policy, char *buf)              \
673 {                                                       \
674         return sprintf(buf, "%u\n", policy->object);    \
675 }
676
677 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
678 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
679 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
680 show_one(scaling_min_freq, min);
681 show_one(scaling_max_freq, max);
682
683 __weak unsigned int arch_freq_get_on_cpu(int cpu)
684 {
685         return 0;
686 }
687
688 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
689 {
690         ssize_t ret;
691         unsigned int freq;
692
693         freq = arch_freq_get_on_cpu(policy->cpu);
694         if (freq)
695                 ret = sprintf(buf, "%u\n", freq);
696         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
697                         cpufreq_driver->get)
698                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
699         else
700                 ret = sprintf(buf, "%u\n", policy->cur);
701         return ret;
702 }
703
704 /**
705  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
706  */
707 #define store_one(file_name, object)                    \
708 static ssize_t store_##file_name                                        \
709 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
710 {                                                                       \
711         unsigned long val;                                              \
712         int ret;                                                        \
713                                                                         \
714         ret = sscanf(buf, "%lu", &val);                                 \
715         if (ret != 1)                                                   \
716                 return -EINVAL;                                         \
717                                                                         \
718         ret = freq_qos_update_request(policy->object##_freq_req, val);\
719         return ret >= 0 ? count : ret;                                  \
720 }
721
722 store_one(scaling_min_freq, min);
723 store_one(scaling_max_freq, max);
724
725 /**
726  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
727  */
728 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
729                                         char *buf)
730 {
731         unsigned int cur_freq = __cpufreq_get(policy);
732
733         if (cur_freq)
734                 return sprintf(buf, "%u\n", cur_freq);
735
736         return sprintf(buf, "<unknown>\n");
737 }
738
739 /**
740  * show_scaling_governor - show the current policy for the specified CPU
741  */
742 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
743 {
744         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
745                 return sprintf(buf, "powersave\n");
746         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
747                 return sprintf(buf, "performance\n");
748         else if (policy->governor)
749                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
750                                 policy->governor->name);
751         return -EINVAL;
752 }
753
754 /**
755  * store_scaling_governor - store policy for the specified CPU
756  */
757 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
758                                         const char *buf, size_t count)
759 {
760         char str_governor[16];
761         int ret;
762
763         ret = sscanf(buf, "%15s", str_governor);
764         if (ret != 1)
765                 return -EINVAL;
766
767         if (cpufreq_driver->setpolicy) {
768                 unsigned int new_pol;
769
770                 new_pol = cpufreq_parse_policy(str_governor);
771                 if (!new_pol)
772                         return -EINVAL;
773
774                 ret = cpufreq_set_policy(policy, NULL, new_pol);
775         } else {
776                 struct cpufreq_governor *new_gov;
777
778                 new_gov = cpufreq_parse_governor(str_governor);
779                 if (!new_gov)
780                         return -EINVAL;
781
782                 ret = cpufreq_set_policy(policy, new_gov,
783                                          CPUFREQ_POLICY_UNKNOWN);
784
785                 module_put(new_gov->owner);
786         }
787
788         return ret ? ret : count;
789 }
790
791 /**
792  * show_scaling_driver - show the cpufreq driver currently loaded
793  */
794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
795 {
796         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
797 }
798
799 /**
800  * show_scaling_available_governors - show the available CPUfreq governors
801  */
802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
803                                                 char *buf)
804 {
805         ssize_t i = 0;
806         struct cpufreq_governor *t;
807
808         if (!has_target()) {
809                 i += sprintf(buf, "performance powersave");
810                 goto out;
811         }
812
813         for_each_governor(t) {
814                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
815                     - (CPUFREQ_NAME_LEN + 2)))
816                         goto out;
817                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
818         }
819 out:
820         i += sprintf(&buf[i], "\n");
821         return i;
822 }
823
824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
825 {
826         ssize_t i = 0;
827         unsigned int cpu;
828
829         for_each_cpu(cpu, mask) {
830                 if (i)
831                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
832                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
833                 if (i >= (PAGE_SIZE - 5))
834                         break;
835         }
836         i += sprintf(&buf[i], "\n");
837         return i;
838 }
839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
840
841 /**
842  * show_related_cpus - show the CPUs affected by each transition even if
843  * hw coordination is in use
844  */
845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
846 {
847         return cpufreq_show_cpus(policy->related_cpus, buf);
848 }
849
850 /**
851  * show_affected_cpus - show the CPUs affected by each transition
852  */
853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
854 {
855         return cpufreq_show_cpus(policy->cpus, buf);
856 }
857
858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
859                                         const char *buf, size_t count)
860 {
861         unsigned int freq = 0;
862         unsigned int ret;
863
864         if (!policy->governor || !policy->governor->store_setspeed)
865                 return -EINVAL;
866
867         ret = sscanf(buf, "%u", &freq);
868         if (ret != 1)
869                 return -EINVAL;
870
871         policy->governor->store_setspeed(policy, freq);
872
873         return count;
874 }
875
876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
877 {
878         if (!policy->governor || !policy->governor->show_setspeed)
879                 return sprintf(buf, "<unsupported>\n");
880
881         return policy->governor->show_setspeed(policy, buf);
882 }
883
884 /**
885  * show_bios_limit - show the current cpufreq HW/BIOS limitation
886  */
887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
888 {
889         unsigned int limit;
890         int ret;
891         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
892         if (!ret)
893                 return sprintf(buf, "%u\n", limit);
894         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
895 }
896
897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
898 cpufreq_freq_attr_ro(cpuinfo_min_freq);
899 cpufreq_freq_attr_ro(cpuinfo_max_freq);
900 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
901 cpufreq_freq_attr_ro(scaling_available_governors);
902 cpufreq_freq_attr_ro(scaling_driver);
903 cpufreq_freq_attr_ro(scaling_cur_freq);
904 cpufreq_freq_attr_ro(bios_limit);
905 cpufreq_freq_attr_ro(related_cpus);
906 cpufreq_freq_attr_ro(affected_cpus);
907 cpufreq_freq_attr_rw(scaling_min_freq);
908 cpufreq_freq_attr_rw(scaling_max_freq);
909 cpufreq_freq_attr_rw(scaling_governor);
910 cpufreq_freq_attr_rw(scaling_setspeed);
911
912 static struct attribute *default_attrs[] = {
913         &cpuinfo_min_freq.attr,
914         &cpuinfo_max_freq.attr,
915         &cpuinfo_transition_latency.attr,
916         &scaling_min_freq.attr,
917         &scaling_max_freq.attr,
918         &affected_cpus.attr,
919         &related_cpus.attr,
920         &scaling_governor.attr,
921         &scaling_driver.attr,
922         &scaling_available_governors.attr,
923         &scaling_setspeed.attr,
924         NULL
925 };
926
927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
928 #define to_attr(a) container_of(a, struct freq_attr, attr)
929
930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
931 {
932         struct cpufreq_policy *policy = to_policy(kobj);
933         struct freq_attr *fattr = to_attr(attr);
934         ssize_t ret;
935
936         if (!fattr->show)
937                 return -EIO;
938
939         down_read(&policy->rwsem);
940         ret = fattr->show(policy, buf);
941         up_read(&policy->rwsem);
942
943         return ret;
944 }
945
946 static ssize_t store(struct kobject *kobj, struct attribute *attr,
947                      const char *buf, size_t count)
948 {
949         struct cpufreq_policy *policy = to_policy(kobj);
950         struct freq_attr *fattr = to_attr(attr);
951         ssize_t ret = -EINVAL;
952
953         if (!fattr->store)
954                 return -EIO;
955
956         /*
957          * cpus_read_trylock() is used here to work around a circular lock
958          * dependency problem with respect to the cpufreq_register_driver().
959          */
960         if (!cpus_read_trylock())
961                 return -EBUSY;
962
963         if (cpu_online(policy->cpu)) {
964                 down_write(&policy->rwsem);
965                 ret = fattr->store(policy, buf, count);
966                 up_write(&policy->rwsem);
967         }
968
969         cpus_read_unlock();
970
971         return ret;
972 }
973
974 static void cpufreq_sysfs_release(struct kobject *kobj)
975 {
976         struct cpufreq_policy *policy = to_policy(kobj);
977         pr_debug("last reference is dropped\n");
978         complete(&policy->kobj_unregister);
979 }
980
981 static const struct sysfs_ops sysfs_ops = {
982         .show   = show,
983         .store  = store,
984 };
985
986 static struct kobj_type ktype_cpufreq = {
987         .sysfs_ops      = &sysfs_ops,
988         .default_attrs  = default_attrs,
989         .release        = cpufreq_sysfs_release,
990 };
991
992 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
993 {
994         struct device *dev = get_cpu_device(cpu);
995
996         if (unlikely(!dev))
997                 return;
998
999         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1000                 return;
1001
1002         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1003         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1004                 dev_err(dev, "cpufreq symlink creation failed\n");
1005 }
1006
1007 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1008                                    struct device *dev)
1009 {
1010         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1011         sysfs_remove_link(&dev->kobj, "cpufreq");
1012 }
1013
1014 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1015 {
1016         struct freq_attr **drv_attr;
1017         int ret = 0;
1018
1019         /* set up files for this cpu device */
1020         drv_attr = cpufreq_driver->attr;
1021         while (drv_attr && *drv_attr) {
1022                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1023                 if (ret)
1024                         return ret;
1025                 drv_attr++;
1026         }
1027         if (cpufreq_driver->get) {
1028                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1029                 if (ret)
1030                         return ret;
1031         }
1032
1033         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1034         if (ret)
1035                 return ret;
1036
1037         if (cpufreq_driver->bios_limit) {
1038                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1039                 if (ret)
1040                         return ret;
1041         }
1042
1043         return 0;
1044 }
1045
1046 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1047 {
1048         return NULL;
1049 }
1050
1051 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1052 {
1053         struct cpufreq_governor *def_gov = cpufreq_default_governor();
1054         struct cpufreq_governor *gov = NULL;
1055         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1056
1057         if (has_target()) {
1058                 /* Update policy governor to the one used before hotplug. */
1059                 gov = find_governor(policy->last_governor);
1060                 if (gov) {
1061                         pr_debug("Restoring governor %s for cpu %d\n",
1062                                  policy->governor->name, policy->cpu);
1063                 } else if (def_gov) {
1064                         gov = def_gov;
1065                 } else {
1066                         return -ENODATA;
1067                 }
1068         } else {
1069                 /* Use the default policy if there is no last_policy. */
1070                 if (policy->last_policy) {
1071                         pol = policy->last_policy;
1072                 } else if (def_gov) {
1073                         pol = cpufreq_parse_policy(def_gov->name);
1074                 } else {
1075                         return -ENODATA;
1076                 }
1077         }
1078
1079         return cpufreq_set_policy(policy, gov, pol);
1080 }
1081
1082 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1083 {
1084         int ret = 0;
1085
1086         /* Has this CPU been taken care of already? */
1087         if (cpumask_test_cpu(cpu, policy->cpus))
1088                 return 0;
1089
1090         down_write(&policy->rwsem);
1091         if (has_target())
1092                 cpufreq_stop_governor(policy);
1093
1094         cpumask_set_cpu(cpu, policy->cpus);
1095
1096         if (has_target()) {
1097                 ret = cpufreq_start_governor(policy);
1098                 if (ret)
1099                         pr_err("%s: Failed to start governor\n", __func__);
1100         }
1101         up_write(&policy->rwsem);
1102         return ret;
1103 }
1104
1105 void refresh_frequency_limits(struct cpufreq_policy *policy)
1106 {
1107         if (!policy_is_inactive(policy)) {
1108                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1109
1110                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1111         }
1112 }
1113 EXPORT_SYMBOL(refresh_frequency_limits);
1114
1115 static void handle_update(struct work_struct *work)
1116 {
1117         struct cpufreq_policy *policy =
1118                 container_of(work, struct cpufreq_policy, update);
1119
1120         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1121         down_write(&policy->rwsem);
1122         refresh_frequency_limits(policy);
1123         up_write(&policy->rwsem);
1124 }
1125
1126 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1127                                 void *data)
1128 {
1129         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1130
1131         schedule_work(&policy->update);
1132         return 0;
1133 }
1134
1135 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1136                                 void *data)
1137 {
1138         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1139
1140         schedule_work(&policy->update);
1141         return 0;
1142 }
1143
1144 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1145 {
1146         struct kobject *kobj;
1147         struct completion *cmp;
1148
1149         down_write(&policy->rwsem);
1150         cpufreq_stats_free_table(policy);
1151         kobj = &policy->kobj;
1152         cmp = &policy->kobj_unregister;
1153         up_write(&policy->rwsem);
1154         kobject_put(kobj);
1155
1156         /*
1157          * We need to make sure that the underlying kobj is
1158          * actually not referenced anymore by anybody before we
1159          * proceed with unloading.
1160          */
1161         pr_debug("waiting for dropping of refcount\n");
1162         wait_for_completion(cmp);
1163         pr_debug("wait complete\n");
1164 }
1165
1166 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1167 {
1168         struct cpufreq_policy *policy;
1169         struct device *dev = get_cpu_device(cpu);
1170         int ret;
1171
1172         if (!dev)
1173                 return NULL;
1174
1175         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1176         if (!policy)
1177                 return NULL;
1178
1179         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1180                 goto err_free_policy;
1181
1182         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1183                 goto err_free_cpumask;
1184
1185         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1186                 goto err_free_rcpumask;
1187
1188         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1189                                    cpufreq_global_kobject, "policy%u", cpu);
1190         if (ret) {
1191                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1192                 /*
1193                  * The entire policy object will be freed below, but the extra
1194                  * memory allocated for the kobject name needs to be freed by
1195                  * releasing the kobject.
1196                  */
1197                 kobject_put(&policy->kobj);
1198                 goto err_free_real_cpus;
1199         }
1200
1201         freq_constraints_init(&policy->constraints);
1202
1203         policy->nb_min.notifier_call = cpufreq_notifier_min;
1204         policy->nb_max.notifier_call = cpufreq_notifier_max;
1205
1206         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1207                                     &policy->nb_min);
1208         if (ret) {
1209                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1210                         ret, cpumask_pr_args(policy->cpus));
1211                 goto err_kobj_remove;
1212         }
1213
1214         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1215                                     &policy->nb_max);
1216         if (ret) {
1217                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1218                         ret, cpumask_pr_args(policy->cpus));
1219                 goto err_min_qos_notifier;
1220         }
1221
1222         INIT_LIST_HEAD(&policy->policy_list);
1223         init_rwsem(&policy->rwsem);
1224         spin_lock_init(&policy->transition_lock);
1225         init_waitqueue_head(&policy->transition_wait);
1226         init_completion(&policy->kobj_unregister);
1227         INIT_WORK(&policy->update, handle_update);
1228
1229         policy->cpu = cpu;
1230         return policy;
1231
1232 err_min_qos_notifier:
1233         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1234                                  &policy->nb_min);
1235 err_kobj_remove:
1236         cpufreq_policy_put_kobj(policy);
1237 err_free_real_cpus:
1238         free_cpumask_var(policy->real_cpus);
1239 err_free_rcpumask:
1240         free_cpumask_var(policy->related_cpus);
1241 err_free_cpumask:
1242         free_cpumask_var(policy->cpus);
1243 err_free_policy:
1244         kfree(policy);
1245
1246         return NULL;
1247 }
1248
1249 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1250 {
1251         unsigned long flags;
1252         int cpu;
1253
1254         /* Remove policy from list */
1255         write_lock_irqsave(&cpufreq_driver_lock, flags);
1256         list_del(&policy->policy_list);
1257
1258         for_each_cpu(cpu, policy->related_cpus)
1259                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1260         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1261
1262         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1263                                  &policy->nb_max);
1264         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1265                                  &policy->nb_min);
1266
1267         /* Cancel any pending policy->update work before freeing the policy. */
1268         cancel_work_sync(&policy->update);
1269
1270         if (policy->max_freq_req) {
1271                 /*
1272                  * CPUFREQ_CREATE_POLICY notification is sent only after
1273                  * successfully adding max_freq_req request.
1274                  */
1275                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1276                                              CPUFREQ_REMOVE_POLICY, policy);
1277                 freq_qos_remove_request(policy->max_freq_req);
1278         }
1279
1280         freq_qos_remove_request(policy->min_freq_req);
1281         kfree(policy->min_freq_req);
1282
1283         cpufreq_policy_put_kobj(policy);
1284         free_cpumask_var(policy->real_cpus);
1285         free_cpumask_var(policy->related_cpus);
1286         free_cpumask_var(policy->cpus);
1287         kfree(policy);
1288 }
1289
1290 static int cpufreq_online(unsigned int cpu)
1291 {
1292         struct cpufreq_policy *policy;
1293         bool new_policy;
1294         unsigned long flags;
1295         unsigned int j;
1296         int ret;
1297
1298         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1299
1300         /* Check if this CPU already has a policy to manage it */
1301         policy = per_cpu(cpufreq_cpu_data, cpu);
1302         if (policy) {
1303                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1304                 if (!policy_is_inactive(policy))
1305                         return cpufreq_add_policy_cpu(policy, cpu);
1306
1307                 /* This is the only online CPU for the policy.  Start over. */
1308                 new_policy = false;
1309                 down_write(&policy->rwsem);
1310                 policy->cpu = cpu;
1311                 policy->governor = NULL;
1312                 up_write(&policy->rwsem);
1313         } else {
1314                 new_policy = true;
1315                 policy = cpufreq_policy_alloc(cpu);
1316                 if (!policy)
1317                         return -ENOMEM;
1318         }
1319
1320         if (!new_policy && cpufreq_driver->online) {
1321                 ret = cpufreq_driver->online(policy);
1322                 if (ret) {
1323                         pr_debug("%s: %d: initialization failed\n", __func__,
1324                                  __LINE__);
1325                         goto out_exit_policy;
1326                 }
1327
1328                 /* Recover policy->cpus using related_cpus */
1329                 cpumask_copy(policy->cpus, policy->related_cpus);
1330         } else {
1331                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1332
1333                 /*
1334                  * Call driver. From then on the cpufreq must be able
1335                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1336                  */
1337                 ret = cpufreq_driver->init(policy);
1338                 if (ret) {
1339                         pr_debug("%s: %d: initialization failed\n", __func__,
1340                                  __LINE__);
1341                         goto out_free_policy;
1342                 }
1343
1344                 ret = cpufreq_table_validate_and_sort(policy);
1345                 if (ret)
1346                         goto out_exit_policy;
1347
1348                 /* related_cpus should at least include policy->cpus. */
1349                 cpumask_copy(policy->related_cpus, policy->cpus);
1350         }
1351
1352         down_write(&policy->rwsem);
1353         /*
1354          * affected cpus must always be the one, which are online. We aren't
1355          * managing offline cpus here.
1356          */
1357         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1358
1359         if (new_policy) {
1360                 for_each_cpu(j, policy->related_cpus) {
1361                         per_cpu(cpufreq_cpu_data, j) = policy;
1362                         add_cpu_dev_symlink(policy, j);
1363                 }
1364
1365                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1366                                                GFP_KERNEL);
1367                 if (!policy->min_freq_req)
1368                         goto out_destroy_policy;
1369
1370                 ret = freq_qos_add_request(&policy->constraints,
1371                                            policy->min_freq_req, FREQ_QOS_MIN,
1372                                            policy->min);
1373                 if (ret < 0) {
1374                         /*
1375                          * So we don't call freq_qos_remove_request() for an
1376                          * uninitialized request.
1377                          */
1378                         kfree(policy->min_freq_req);
1379                         policy->min_freq_req = NULL;
1380                         goto out_destroy_policy;
1381                 }
1382
1383                 /*
1384                  * This must be initialized right here to avoid calling
1385                  * freq_qos_remove_request() on uninitialized request in case
1386                  * of errors.
1387                  */
1388                 policy->max_freq_req = policy->min_freq_req + 1;
1389
1390                 ret = freq_qos_add_request(&policy->constraints,
1391                                            policy->max_freq_req, FREQ_QOS_MAX,
1392                                            policy->max);
1393                 if (ret < 0) {
1394                         policy->max_freq_req = NULL;
1395                         goto out_destroy_policy;
1396                 }
1397
1398                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1399                                 CPUFREQ_CREATE_POLICY, policy);
1400         }
1401
1402         if (cpufreq_driver->get && has_target()) {
1403                 policy->cur = cpufreq_driver->get(policy->cpu);
1404                 if (!policy->cur) {
1405                         pr_err("%s: ->get() failed\n", __func__);
1406                         goto out_destroy_policy;
1407                 }
1408         }
1409
1410         /*
1411          * Sometimes boot loaders set CPU frequency to a value outside of
1412          * frequency table present with cpufreq core. In such cases CPU might be
1413          * unstable if it has to run on that frequency for long duration of time
1414          * and so its better to set it to a frequency which is specified in
1415          * freq-table. This also makes cpufreq stats inconsistent as
1416          * cpufreq-stats would fail to register because current frequency of CPU
1417          * isn't found in freq-table.
1418          *
1419          * Because we don't want this change to effect boot process badly, we go
1420          * for the next freq which is >= policy->cur ('cur' must be set by now,
1421          * otherwise we will end up setting freq to lowest of the table as 'cur'
1422          * is initialized to zero).
1423          *
1424          * We are passing target-freq as "policy->cur - 1" otherwise
1425          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1426          * equal to target-freq.
1427          */
1428         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1429             && has_target()) {
1430                 /* Are we running at unknown frequency ? */
1431                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1432                 if (ret == -EINVAL) {
1433                         /* Warn user and fix it */
1434                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1435                                 __func__, policy->cpu, policy->cur);
1436                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1437                                 CPUFREQ_RELATION_L);
1438
1439                         /*
1440                          * Reaching here after boot in a few seconds may not
1441                          * mean that system will remain stable at "unknown"
1442                          * frequency for longer duration. Hence, a BUG_ON().
1443                          */
1444                         BUG_ON(ret);
1445                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1446                                 __func__, policy->cpu, policy->cur);
1447                 }
1448         }
1449
1450         if (new_policy) {
1451                 ret = cpufreq_add_dev_interface(policy);
1452                 if (ret)
1453                         goto out_destroy_policy;
1454
1455                 cpufreq_stats_create_table(policy);
1456
1457                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1458                 list_add(&policy->policy_list, &cpufreq_policy_list);
1459                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1460         }
1461
1462         ret = cpufreq_init_policy(policy);
1463         if (ret) {
1464                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1465                        __func__, cpu, ret);
1466                 goto out_destroy_policy;
1467         }
1468
1469         up_write(&policy->rwsem);
1470
1471         kobject_uevent(&policy->kobj, KOBJ_ADD);
1472
1473         /* Callback for handling stuff after policy is ready */
1474         if (cpufreq_driver->ready)
1475                 cpufreq_driver->ready(policy);
1476
1477         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1478                 policy->cdev = of_cpufreq_cooling_register(policy);
1479
1480         pr_debug("initialization complete\n");
1481
1482         return 0;
1483
1484 out_destroy_policy:
1485         for_each_cpu(j, policy->real_cpus)
1486                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1487
1488         up_write(&policy->rwsem);
1489
1490 out_exit_policy:
1491         if (cpufreq_driver->exit)
1492                 cpufreq_driver->exit(policy);
1493
1494 out_free_policy:
1495         cpufreq_policy_free(policy);
1496         return ret;
1497 }
1498
1499 /**
1500  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1501  * @dev: CPU device.
1502  * @sif: Subsystem interface structure pointer (not used)
1503  */
1504 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1505 {
1506         struct cpufreq_policy *policy;
1507         unsigned cpu = dev->id;
1508         int ret;
1509
1510         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1511
1512         if (cpu_online(cpu)) {
1513                 ret = cpufreq_online(cpu);
1514                 if (ret)
1515                         return ret;
1516         }
1517
1518         /* Create sysfs link on CPU registration */
1519         policy = per_cpu(cpufreq_cpu_data, cpu);
1520         if (policy)
1521                 add_cpu_dev_symlink(policy, cpu);
1522
1523         return 0;
1524 }
1525
1526 static int cpufreq_offline(unsigned int cpu)
1527 {
1528         struct cpufreq_policy *policy;
1529         int ret;
1530
1531         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1532
1533         policy = cpufreq_cpu_get_raw(cpu);
1534         if (!policy) {
1535                 pr_debug("%s: No cpu_data found\n", __func__);
1536                 return 0;
1537         }
1538
1539         down_write(&policy->rwsem);
1540         if (has_target())
1541                 cpufreq_stop_governor(policy);
1542
1543         cpumask_clear_cpu(cpu, policy->cpus);
1544
1545         if (policy_is_inactive(policy)) {
1546                 if (has_target())
1547                         strncpy(policy->last_governor, policy->governor->name,
1548                                 CPUFREQ_NAME_LEN);
1549                 else
1550                         policy->last_policy = policy->policy;
1551         } else if (cpu == policy->cpu) {
1552                 /* Nominate new CPU */
1553                 policy->cpu = cpumask_any(policy->cpus);
1554         }
1555
1556         /* Start governor again for active policy */
1557         if (!policy_is_inactive(policy)) {
1558                 if (has_target()) {
1559                         ret = cpufreq_start_governor(policy);
1560                         if (ret)
1561                                 pr_err("%s: Failed to start governor\n", __func__);
1562                 }
1563
1564                 goto unlock;
1565         }
1566
1567         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1568                 cpufreq_cooling_unregister(policy->cdev);
1569                 policy->cdev = NULL;
1570         }
1571
1572         if (cpufreq_driver->stop_cpu)
1573                 cpufreq_driver->stop_cpu(policy);
1574
1575         if (has_target())
1576                 cpufreq_exit_governor(policy);
1577
1578         /*
1579          * Perform the ->offline() during light-weight tear-down, as
1580          * that allows fast recovery when the CPU comes back.
1581          */
1582         if (cpufreq_driver->offline) {
1583                 cpufreq_driver->offline(policy);
1584         } else if (cpufreq_driver->exit) {
1585                 cpufreq_driver->exit(policy);
1586                 policy->freq_table = NULL;
1587         }
1588
1589 unlock:
1590         up_write(&policy->rwsem);
1591         return 0;
1592 }
1593
1594 /**
1595  * cpufreq_remove_dev - remove a CPU device
1596  *
1597  * Removes the cpufreq interface for a CPU device.
1598  */
1599 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1600 {
1601         unsigned int cpu = dev->id;
1602         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1603
1604         if (!policy)
1605                 return;
1606
1607         if (cpu_online(cpu))
1608                 cpufreq_offline(cpu);
1609
1610         cpumask_clear_cpu(cpu, policy->real_cpus);
1611         remove_cpu_dev_symlink(policy, dev);
1612
1613         if (cpumask_empty(policy->real_cpus)) {
1614                 /* We did light-weight exit earlier, do full tear down now */
1615                 if (cpufreq_driver->offline)
1616                         cpufreq_driver->exit(policy);
1617
1618                 cpufreq_policy_free(policy);
1619         }
1620 }
1621
1622 /**
1623  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1624  *      in deep trouble.
1625  *      @policy: policy managing CPUs
1626  *      @new_freq: CPU frequency the CPU actually runs at
1627  *
1628  *      We adjust to current frequency first, and need to clean up later.
1629  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1630  */
1631 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1632                                 unsigned int new_freq)
1633 {
1634         struct cpufreq_freqs freqs;
1635
1636         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1637                  policy->cur, new_freq);
1638
1639         freqs.old = policy->cur;
1640         freqs.new = new_freq;
1641
1642         cpufreq_freq_transition_begin(policy, &freqs);
1643         cpufreq_freq_transition_end(policy, &freqs, 0);
1644 }
1645
1646 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1647 {
1648         unsigned int new_freq;
1649
1650         new_freq = cpufreq_driver->get(policy->cpu);
1651         if (!new_freq)
1652                 return 0;
1653
1654         /*
1655          * If fast frequency switching is used with the given policy, the check
1656          * against policy->cur is pointless, so skip it in that case.
1657          */
1658         if (policy->fast_switch_enabled || !has_target())
1659                 return new_freq;
1660
1661         if (policy->cur != new_freq) {
1662                 cpufreq_out_of_sync(policy, new_freq);
1663                 if (update)
1664                         schedule_work(&policy->update);
1665         }
1666
1667         return new_freq;
1668 }
1669
1670 /**
1671  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1672  * @cpu: CPU number
1673  *
1674  * This is the last known freq, without actually getting it from the driver.
1675  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1676  */
1677 unsigned int cpufreq_quick_get(unsigned int cpu)
1678 {
1679         struct cpufreq_policy *policy;
1680         unsigned int ret_freq = 0;
1681         unsigned long flags;
1682
1683         read_lock_irqsave(&cpufreq_driver_lock, flags);
1684
1685         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1686                 ret_freq = cpufreq_driver->get(cpu);
1687                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1688                 return ret_freq;
1689         }
1690
1691         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1692
1693         policy = cpufreq_cpu_get(cpu);
1694         if (policy) {
1695                 ret_freq = policy->cur;
1696                 cpufreq_cpu_put(policy);
1697         }
1698
1699         return ret_freq;
1700 }
1701 EXPORT_SYMBOL(cpufreq_quick_get);
1702
1703 /**
1704  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1705  * @cpu: CPU number
1706  *
1707  * Just return the max possible frequency for a given CPU.
1708  */
1709 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1710 {
1711         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1712         unsigned int ret_freq = 0;
1713
1714         if (policy) {
1715                 ret_freq = policy->max;
1716                 cpufreq_cpu_put(policy);
1717         }
1718
1719         return ret_freq;
1720 }
1721 EXPORT_SYMBOL(cpufreq_quick_get_max);
1722
1723 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1724 {
1725         if (unlikely(policy_is_inactive(policy)))
1726                 return 0;
1727
1728         return cpufreq_verify_current_freq(policy, true);
1729 }
1730
1731 /**
1732  * cpufreq_get - get the current CPU frequency (in kHz)
1733  * @cpu: CPU number
1734  *
1735  * Get the CPU current (static) CPU frequency
1736  */
1737 unsigned int cpufreq_get(unsigned int cpu)
1738 {
1739         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1740         unsigned int ret_freq = 0;
1741
1742         if (policy) {
1743                 down_read(&policy->rwsem);
1744                 if (cpufreq_driver->get)
1745                         ret_freq = __cpufreq_get(policy);
1746                 up_read(&policy->rwsem);
1747
1748                 cpufreq_cpu_put(policy);
1749         }
1750
1751         return ret_freq;
1752 }
1753 EXPORT_SYMBOL(cpufreq_get);
1754
1755 static struct subsys_interface cpufreq_interface = {
1756         .name           = "cpufreq",
1757         .subsys         = &cpu_subsys,
1758         .add_dev        = cpufreq_add_dev,
1759         .remove_dev     = cpufreq_remove_dev,
1760 };
1761
1762 /*
1763  * In case platform wants some specific frequency to be configured
1764  * during suspend..
1765  */
1766 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1767 {
1768         int ret;
1769
1770         if (!policy->suspend_freq) {
1771                 pr_debug("%s: suspend_freq not defined\n", __func__);
1772                 return 0;
1773         }
1774
1775         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1776                         policy->suspend_freq);
1777
1778         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1779                         CPUFREQ_RELATION_H);
1780         if (ret)
1781                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1782                                 __func__, policy->suspend_freq, ret);
1783
1784         return ret;
1785 }
1786 EXPORT_SYMBOL(cpufreq_generic_suspend);
1787
1788 /**
1789  * cpufreq_suspend() - Suspend CPUFreq governors
1790  *
1791  * Called during system wide Suspend/Hibernate cycles for suspending governors
1792  * as some platforms can't change frequency after this point in suspend cycle.
1793  * Because some of the devices (like: i2c, regulators, etc) they use for
1794  * changing frequency are suspended quickly after this point.
1795  */
1796 void cpufreq_suspend(void)
1797 {
1798         struct cpufreq_policy *policy;
1799
1800         if (!cpufreq_driver)
1801                 return;
1802
1803         if (!has_target() && !cpufreq_driver->suspend)
1804                 goto suspend;
1805
1806         pr_debug("%s: Suspending Governors\n", __func__);
1807
1808         for_each_active_policy(policy) {
1809                 if (has_target()) {
1810                         down_write(&policy->rwsem);
1811                         cpufreq_stop_governor(policy);
1812                         up_write(&policy->rwsem);
1813                 }
1814
1815                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1816                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1817                                 cpufreq_driver->name);
1818         }
1819
1820 suspend:
1821         cpufreq_suspended = true;
1822 }
1823
1824 /**
1825  * cpufreq_resume() - Resume CPUFreq governors
1826  *
1827  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1828  * are suspended with cpufreq_suspend().
1829  */
1830 void cpufreq_resume(void)
1831 {
1832         struct cpufreq_policy *policy;
1833         int ret;
1834
1835         if (!cpufreq_driver)
1836                 return;
1837
1838         if (unlikely(!cpufreq_suspended))
1839                 return;
1840
1841         cpufreq_suspended = false;
1842
1843         if (!has_target() && !cpufreq_driver->resume)
1844                 return;
1845
1846         pr_debug("%s: Resuming Governors\n", __func__);
1847
1848         for_each_active_policy(policy) {
1849                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1850                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1851                                 policy);
1852                 } else if (has_target()) {
1853                         down_write(&policy->rwsem);
1854                         ret = cpufreq_start_governor(policy);
1855                         up_write(&policy->rwsem);
1856
1857                         if (ret)
1858                                 pr_err("%s: Failed to start governor for policy: %p\n",
1859                                        __func__, policy);
1860                 }
1861         }
1862 }
1863
1864 /**
1865  *      cpufreq_get_current_driver - return current driver's name
1866  *
1867  *      Return the name string of the currently loaded cpufreq driver
1868  *      or NULL, if none.
1869  */
1870 const char *cpufreq_get_current_driver(void)
1871 {
1872         if (cpufreq_driver)
1873                 return cpufreq_driver->name;
1874
1875         return NULL;
1876 }
1877 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1878
1879 /**
1880  *      cpufreq_get_driver_data - return current driver data
1881  *
1882  *      Return the private data of the currently loaded cpufreq
1883  *      driver, or NULL if no cpufreq driver is loaded.
1884  */
1885 void *cpufreq_get_driver_data(void)
1886 {
1887         if (cpufreq_driver)
1888                 return cpufreq_driver->driver_data;
1889
1890         return NULL;
1891 }
1892 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1893
1894 /*********************************************************************
1895  *                     NOTIFIER LISTS INTERFACE                      *
1896  *********************************************************************/
1897
1898 /**
1899  *      cpufreq_register_notifier - register a driver with cpufreq
1900  *      @nb: notifier function to register
1901  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1902  *
1903  *      Add a driver to one of two lists: either a list of drivers that
1904  *      are notified about clock rate changes (once before and once after
1905  *      the transition), or a list of drivers that are notified about
1906  *      changes in cpufreq policy.
1907  *
1908  *      This function may sleep, and has the same return conditions as
1909  *      blocking_notifier_chain_register.
1910  */
1911 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1912 {
1913         int ret;
1914
1915         if (cpufreq_disabled())
1916                 return -EINVAL;
1917
1918         switch (list) {
1919         case CPUFREQ_TRANSITION_NOTIFIER:
1920                 mutex_lock(&cpufreq_fast_switch_lock);
1921
1922                 if (cpufreq_fast_switch_count > 0) {
1923                         mutex_unlock(&cpufreq_fast_switch_lock);
1924                         return -EBUSY;
1925                 }
1926                 ret = srcu_notifier_chain_register(
1927                                 &cpufreq_transition_notifier_list, nb);
1928                 if (!ret)
1929                         cpufreq_fast_switch_count--;
1930
1931                 mutex_unlock(&cpufreq_fast_switch_lock);
1932                 break;
1933         case CPUFREQ_POLICY_NOTIFIER:
1934                 ret = blocking_notifier_chain_register(
1935                                 &cpufreq_policy_notifier_list, nb);
1936                 break;
1937         default:
1938                 ret = -EINVAL;
1939         }
1940
1941         return ret;
1942 }
1943 EXPORT_SYMBOL(cpufreq_register_notifier);
1944
1945 /**
1946  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1947  *      @nb: notifier block to be unregistered
1948  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1949  *
1950  *      Remove a driver from the CPU frequency notifier list.
1951  *
1952  *      This function may sleep, and has the same return conditions as
1953  *      blocking_notifier_chain_unregister.
1954  */
1955 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1956 {
1957         int ret;
1958
1959         if (cpufreq_disabled())
1960                 return -EINVAL;
1961
1962         switch (list) {
1963         case CPUFREQ_TRANSITION_NOTIFIER:
1964                 mutex_lock(&cpufreq_fast_switch_lock);
1965
1966                 ret = srcu_notifier_chain_unregister(
1967                                 &cpufreq_transition_notifier_list, nb);
1968                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1969                         cpufreq_fast_switch_count++;
1970
1971                 mutex_unlock(&cpufreq_fast_switch_lock);
1972                 break;
1973         case CPUFREQ_POLICY_NOTIFIER:
1974                 ret = blocking_notifier_chain_unregister(
1975                                 &cpufreq_policy_notifier_list, nb);
1976                 break;
1977         default:
1978                 ret = -EINVAL;
1979         }
1980
1981         return ret;
1982 }
1983 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1984
1985
1986 /*********************************************************************
1987  *                              GOVERNORS                            *
1988  *********************************************************************/
1989
1990 /**
1991  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1992  * @policy: cpufreq policy to switch the frequency for.
1993  * @target_freq: New frequency to set (may be approximate).
1994  *
1995  * Carry out a fast frequency switch without sleeping.
1996  *
1997  * The driver's ->fast_switch() callback invoked by this function must be
1998  * suitable for being called from within RCU-sched read-side critical sections
1999  * and it is expected to select the minimum available frequency greater than or
2000  * equal to @target_freq (CPUFREQ_RELATION_L).
2001  *
2002  * This function must not be called if policy->fast_switch_enabled is unset.
2003  *
2004  * Governors calling this function must guarantee that it will never be invoked
2005  * twice in parallel for the same policy and that it will never be called in
2006  * parallel with either ->target() or ->target_index() for the same policy.
2007  *
2008  * Returns the actual frequency set for the CPU.
2009  *
2010  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2011  * error condition, the hardware configuration must be preserved.
2012  */
2013 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2014                                         unsigned int target_freq)
2015 {
2016         target_freq = clamp_val(target_freq, policy->min, policy->max);
2017
2018         return cpufreq_driver->fast_switch(policy, target_freq);
2019 }
2020 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2021
2022 /* Must set freqs->new to intermediate frequency */
2023 static int __target_intermediate(struct cpufreq_policy *policy,
2024                                  struct cpufreq_freqs *freqs, int index)
2025 {
2026         int ret;
2027
2028         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2029
2030         /* We don't need to switch to intermediate freq */
2031         if (!freqs->new)
2032                 return 0;
2033
2034         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2035                  __func__, policy->cpu, freqs->old, freqs->new);
2036
2037         cpufreq_freq_transition_begin(policy, freqs);
2038         ret = cpufreq_driver->target_intermediate(policy, index);
2039         cpufreq_freq_transition_end(policy, freqs, ret);
2040
2041         if (ret)
2042                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2043                        __func__, ret);
2044
2045         return ret;
2046 }
2047
2048 static int __target_index(struct cpufreq_policy *policy, int index)
2049 {
2050         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2051         unsigned int intermediate_freq = 0;
2052         unsigned int newfreq = policy->freq_table[index].frequency;
2053         int retval = -EINVAL;
2054         bool notify;
2055
2056         if (newfreq == policy->cur)
2057                 return 0;
2058
2059         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2060         if (notify) {
2061                 /* Handle switching to intermediate frequency */
2062                 if (cpufreq_driver->get_intermediate) {
2063                         retval = __target_intermediate(policy, &freqs, index);
2064                         if (retval)
2065                                 return retval;
2066
2067                         intermediate_freq = freqs.new;
2068                         /* Set old freq to intermediate */
2069                         if (intermediate_freq)
2070                                 freqs.old = freqs.new;
2071                 }
2072
2073                 freqs.new = newfreq;
2074                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2075                          __func__, policy->cpu, freqs.old, freqs.new);
2076
2077                 cpufreq_freq_transition_begin(policy, &freqs);
2078         }
2079
2080         retval = cpufreq_driver->target_index(policy, index);
2081         if (retval)
2082                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2083                        retval);
2084
2085         if (notify) {
2086                 cpufreq_freq_transition_end(policy, &freqs, retval);
2087
2088                 /*
2089                  * Failed after setting to intermediate freq? Driver should have
2090                  * reverted back to initial frequency and so should we. Check
2091                  * here for intermediate_freq instead of get_intermediate, in
2092                  * case we haven't switched to intermediate freq at all.
2093                  */
2094                 if (unlikely(retval && intermediate_freq)) {
2095                         freqs.old = intermediate_freq;
2096                         freqs.new = policy->restore_freq;
2097                         cpufreq_freq_transition_begin(policy, &freqs);
2098                         cpufreq_freq_transition_end(policy, &freqs, 0);
2099                 }
2100         }
2101
2102         return retval;
2103 }
2104
2105 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2106                             unsigned int target_freq,
2107                             unsigned int relation)
2108 {
2109         unsigned int old_target_freq = target_freq;
2110         int index;
2111
2112         if (cpufreq_disabled())
2113                 return -ENODEV;
2114
2115         /* Make sure that target_freq is within supported range */
2116         target_freq = clamp_val(target_freq, policy->min, policy->max);
2117
2118         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2119                  policy->cpu, target_freq, relation, old_target_freq);
2120
2121         /*
2122          * This might look like a redundant call as we are checking it again
2123          * after finding index. But it is left intentionally for cases where
2124          * exactly same freq is called again and so we can save on few function
2125          * calls.
2126          */
2127         if (target_freq == policy->cur)
2128                 return 0;
2129
2130         /* Save last value to restore later on errors */
2131         policy->restore_freq = policy->cur;
2132
2133         if (cpufreq_driver->target)
2134                 return cpufreq_driver->target(policy, target_freq, relation);
2135
2136         if (!cpufreq_driver->target_index)
2137                 return -EINVAL;
2138
2139         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2140
2141         return __target_index(policy, index);
2142 }
2143 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2144
2145 int cpufreq_driver_target(struct cpufreq_policy *policy,
2146                           unsigned int target_freq,
2147                           unsigned int relation)
2148 {
2149         int ret;
2150
2151         down_write(&policy->rwsem);
2152
2153         ret = __cpufreq_driver_target(policy, target_freq, relation);
2154
2155         up_write(&policy->rwsem);
2156
2157         return ret;
2158 }
2159 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2160
2161 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2162 {
2163         return NULL;
2164 }
2165
2166 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2167 {
2168         int ret;
2169
2170         /* Don't start any governor operations if we are entering suspend */
2171         if (cpufreq_suspended)
2172                 return 0;
2173         /*
2174          * Governor might not be initiated here if ACPI _PPC changed
2175          * notification happened, so check it.
2176          */
2177         if (!policy->governor)
2178                 return -EINVAL;
2179
2180         /* Platform doesn't want dynamic frequency switching ? */
2181         if (policy->governor->dynamic_switching &&
2182             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2183                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2184
2185                 if (gov) {
2186                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2187                                 policy->governor->name, gov->name);
2188                         policy->governor = gov;
2189                 } else {
2190                         return -EINVAL;
2191                 }
2192         }
2193
2194         if (!try_module_get(policy->governor->owner))
2195                 return -EINVAL;
2196
2197         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2198
2199         if (policy->governor->init) {
2200                 ret = policy->governor->init(policy);
2201                 if (ret) {
2202                         module_put(policy->governor->owner);
2203                         return ret;
2204                 }
2205         }
2206
2207         return 0;
2208 }
2209
2210 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2211 {
2212         if (cpufreq_suspended || !policy->governor)
2213                 return;
2214
2215         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2216
2217         if (policy->governor->exit)
2218                 policy->governor->exit(policy);
2219
2220         module_put(policy->governor->owner);
2221 }
2222
2223 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2224 {
2225         int ret;
2226
2227         if (cpufreq_suspended)
2228                 return 0;
2229
2230         if (!policy->governor)
2231                 return -EINVAL;
2232
2233         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2234
2235         if (cpufreq_driver->get)
2236                 cpufreq_verify_current_freq(policy, false);
2237
2238         if (policy->governor->start) {
2239                 ret = policy->governor->start(policy);
2240                 if (ret)
2241                         return ret;
2242         }
2243
2244         if (policy->governor->limits)
2245                 policy->governor->limits(policy);
2246
2247         return 0;
2248 }
2249
2250 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2251 {
2252         if (cpufreq_suspended || !policy->governor)
2253                 return;
2254
2255         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2256
2257         if (policy->governor->stop)
2258                 policy->governor->stop(policy);
2259 }
2260
2261 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2262 {
2263         if (cpufreq_suspended || !policy->governor)
2264                 return;
2265
2266         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2267
2268         if (policy->governor->limits)
2269                 policy->governor->limits(policy);
2270 }
2271
2272 int cpufreq_register_governor(struct cpufreq_governor *governor)
2273 {
2274         int err;
2275
2276         if (!governor)
2277                 return -EINVAL;
2278
2279         if (cpufreq_disabled())
2280                 return -ENODEV;
2281
2282         mutex_lock(&cpufreq_governor_mutex);
2283
2284         err = -EBUSY;
2285         if (!find_governor(governor->name)) {
2286                 err = 0;
2287                 list_add(&governor->governor_list, &cpufreq_governor_list);
2288         }
2289
2290         mutex_unlock(&cpufreq_governor_mutex);
2291         return err;
2292 }
2293 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2294
2295 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2296 {
2297         struct cpufreq_policy *policy;
2298         unsigned long flags;
2299
2300         if (!governor)
2301                 return;
2302
2303         if (cpufreq_disabled())
2304                 return;
2305
2306         /* clear last_governor for all inactive policies */
2307         read_lock_irqsave(&cpufreq_driver_lock, flags);
2308         for_each_inactive_policy(policy) {
2309                 if (!strcmp(policy->last_governor, governor->name)) {
2310                         policy->governor = NULL;
2311                         strcpy(policy->last_governor, "\0");
2312                 }
2313         }
2314         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2315
2316         mutex_lock(&cpufreq_governor_mutex);
2317         list_del(&governor->governor_list);
2318         mutex_unlock(&cpufreq_governor_mutex);
2319 }
2320 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2321
2322
2323 /*********************************************************************
2324  *                          POLICY INTERFACE                         *
2325  *********************************************************************/
2326
2327 /**
2328  * cpufreq_get_policy - get the current cpufreq_policy
2329  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2330  *      is written
2331  *
2332  * Reads the current cpufreq policy.
2333  */
2334 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2335 {
2336         struct cpufreq_policy *cpu_policy;
2337         if (!policy)
2338                 return -EINVAL;
2339
2340         cpu_policy = cpufreq_cpu_get(cpu);
2341         if (!cpu_policy)
2342                 return -EINVAL;
2343
2344         memcpy(policy, cpu_policy, sizeof(*policy));
2345
2346         cpufreq_cpu_put(cpu_policy);
2347         return 0;
2348 }
2349 EXPORT_SYMBOL(cpufreq_get_policy);
2350
2351 /**
2352  * cpufreq_set_policy - Modify cpufreq policy parameters.
2353  * @policy: Policy object to modify.
2354  * @new_gov: Policy governor pointer.
2355  * @new_pol: Policy value (for drivers with built-in governors).
2356  *
2357  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2358  * limits to be set for the policy, update @policy with the verified limits
2359  * values and either invoke the driver's ->setpolicy() callback (if present) or
2360  * carry out a governor update for @policy.  That is, run the current governor's
2361  * ->limits() callback (if @new_gov points to the same object as the one in
2362  * @policy) or replace the governor for @policy with @new_gov.
2363  *
2364  * The cpuinfo part of @policy is not updated by this function.
2365  */
2366 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2367                               struct cpufreq_governor *new_gov,
2368                               unsigned int new_pol)
2369 {
2370         struct cpufreq_policy_data new_data;
2371         struct cpufreq_governor *old_gov;
2372         int ret;
2373
2374         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2375         new_data.freq_table = policy->freq_table;
2376         new_data.cpu = policy->cpu;
2377         /*
2378          * PM QoS framework collects all the requests from users and provide us
2379          * the final aggregated value here.
2380          */
2381         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2382         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2383
2384         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2385                  new_data.cpu, new_data.min, new_data.max);
2386
2387         /* verify the cpu speed can be set within this limit */
2388         ret = cpufreq_driver->verify(&new_data);
2389         if (ret)
2390                 return ret;
2391
2392         policy->min = new_data.min;
2393         policy->max = new_data.max;
2394         trace_cpu_frequency_limits(policy);
2395
2396         policy->cached_target_freq = UINT_MAX;
2397
2398         pr_debug("new min and max freqs are %u - %u kHz\n",
2399                  policy->min, policy->max);
2400
2401         if (cpufreq_driver->setpolicy) {
2402                 policy->policy = new_pol;
2403                 pr_debug("setting range\n");
2404                 return cpufreq_driver->setpolicy(policy);
2405         }
2406
2407         if (new_gov == policy->governor) {
2408                 pr_debug("governor limits update\n");
2409                 cpufreq_governor_limits(policy);
2410                 return 0;
2411         }
2412
2413         pr_debug("governor switch\n");
2414
2415         /* save old, working values */
2416         old_gov = policy->governor;
2417         /* end old governor */
2418         if (old_gov) {
2419                 cpufreq_stop_governor(policy);
2420                 cpufreq_exit_governor(policy);
2421         }
2422
2423         /* start new governor */
2424         policy->governor = new_gov;
2425         ret = cpufreq_init_governor(policy);
2426         if (!ret) {
2427                 ret = cpufreq_start_governor(policy);
2428                 if (!ret) {
2429                         pr_debug("governor change\n");
2430                         sched_cpufreq_governor_change(policy, old_gov);
2431                         return 0;
2432                 }
2433                 cpufreq_exit_governor(policy);
2434         }
2435
2436         /* new governor failed, so re-start old one */
2437         pr_debug("starting governor %s failed\n", policy->governor->name);
2438         if (old_gov) {
2439                 policy->governor = old_gov;
2440                 if (cpufreq_init_governor(policy))
2441                         policy->governor = NULL;
2442                 else
2443                         cpufreq_start_governor(policy);
2444         }
2445
2446         return ret;
2447 }
2448
2449 /**
2450  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2451  * @cpu: CPU to re-evaluate the policy for.
2452  *
2453  * Update the current frequency for the cpufreq policy of @cpu and use
2454  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2455  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2456  * for the policy in question, among other things.
2457  */
2458 void cpufreq_update_policy(unsigned int cpu)
2459 {
2460         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2461
2462         if (!policy)
2463                 return;
2464
2465         /*
2466          * BIOS might change freq behind our back
2467          * -> ask driver for current freq and notify governors about a change
2468          */
2469         if (cpufreq_driver->get && has_target() &&
2470             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2471                 goto unlock;
2472
2473         refresh_frequency_limits(policy);
2474
2475 unlock:
2476         cpufreq_cpu_release(policy);
2477 }
2478 EXPORT_SYMBOL(cpufreq_update_policy);
2479
2480 /**
2481  * cpufreq_update_limits - Update policy limits for a given CPU.
2482  * @cpu: CPU to update the policy limits for.
2483  *
2484  * Invoke the driver's ->update_limits callback if present or call
2485  * cpufreq_update_policy() for @cpu.
2486  */
2487 void cpufreq_update_limits(unsigned int cpu)
2488 {
2489         if (cpufreq_driver->update_limits)
2490                 cpufreq_driver->update_limits(cpu);
2491         else
2492                 cpufreq_update_policy(cpu);
2493 }
2494 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2495
2496 /*********************************************************************
2497  *               BOOST                                               *
2498  *********************************************************************/
2499 static int cpufreq_boost_set_sw(int state)
2500 {
2501         struct cpufreq_policy *policy;
2502         int ret = -EINVAL;
2503
2504         for_each_active_policy(policy) {
2505                 if (!policy->freq_table)
2506                         continue;
2507
2508                 ret = cpufreq_frequency_table_cpuinfo(policy,
2509                                                       policy->freq_table);
2510                 if (ret) {
2511                         pr_err("%s: Policy frequency update failed\n",
2512                                __func__);
2513                         break;
2514                 }
2515
2516                 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2517                 if (ret < 0)
2518                         break;
2519         }
2520
2521         return ret;
2522 }
2523
2524 int cpufreq_boost_trigger_state(int state)
2525 {
2526         unsigned long flags;
2527         int ret = 0;
2528
2529         if (cpufreq_driver->boost_enabled == state)
2530                 return 0;
2531
2532         write_lock_irqsave(&cpufreq_driver_lock, flags);
2533         cpufreq_driver->boost_enabled = state;
2534         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2535
2536         ret = cpufreq_driver->set_boost(state);
2537         if (ret) {
2538                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2539                 cpufreq_driver->boost_enabled = !state;
2540                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2541
2542                 pr_err("%s: Cannot %s BOOST\n",
2543                        __func__, state ? "enable" : "disable");
2544         }
2545
2546         return ret;
2547 }
2548
2549 static bool cpufreq_boost_supported(void)
2550 {
2551         return cpufreq_driver->set_boost;
2552 }
2553
2554 static int create_boost_sysfs_file(void)
2555 {
2556         int ret;
2557
2558         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2559         if (ret)
2560                 pr_err("%s: cannot register global BOOST sysfs file\n",
2561                        __func__);
2562
2563         return ret;
2564 }
2565
2566 static void remove_boost_sysfs_file(void)
2567 {
2568         if (cpufreq_boost_supported())
2569                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2570 }
2571
2572 int cpufreq_enable_boost_support(void)
2573 {
2574         if (!cpufreq_driver)
2575                 return -EINVAL;
2576
2577         if (cpufreq_boost_supported())
2578                 return 0;
2579
2580         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2581
2582         /* This will get removed on driver unregister */
2583         return create_boost_sysfs_file();
2584 }
2585 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2586
2587 int cpufreq_boost_enabled(void)
2588 {
2589         return cpufreq_driver->boost_enabled;
2590 }
2591 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2592
2593 /*********************************************************************
2594  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2595  *********************************************************************/
2596 static enum cpuhp_state hp_online;
2597
2598 static int cpuhp_cpufreq_online(unsigned int cpu)
2599 {
2600         cpufreq_online(cpu);
2601
2602         return 0;
2603 }
2604
2605 static int cpuhp_cpufreq_offline(unsigned int cpu)
2606 {
2607         cpufreq_offline(cpu);
2608
2609         return 0;
2610 }
2611
2612 /**
2613  * cpufreq_register_driver - register a CPU Frequency driver
2614  * @driver_data: A struct cpufreq_driver containing the values#
2615  * submitted by the CPU Frequency driver.
2616  *
2617  * Registers a CPU Frequency driver to this core code. This code
2618  * returns zero on success, -EEXIST when another driver got here first
2619  * (and isn't unregistered in the meantime).
2620  *
2621  */
2622 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2623 {
2624         unsigned long flags;
2625         int ret;
2626
2627         if (cpufreq_disabled())
2628                 return -ENODEV;
2629
2630         /*
2631          * The cpufreq core depends heavily on the availability of device
2632          * structure, make sure they are available before proceeding further.
2633          */
2634         if (!get_cpu_device(0))
2635                 return -EPROBE_DEFER;
2636
2637         if (!driver_data || !driver_data->verify || !driver_data->init ||
2638             !(driver_data->setpolicy || driver_data->target_index ||
2639                     driver_data->target) ||
2640              (driver_data->setpolicy && (driver_data->target_index ||
2641                     driver_data->target)) ||
2642              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2643              (!driver_data->online != !driver_data->offline))
2644                 return -EINVAL;
2645
2646         pr_debug("trying to register driver %s\n", driver_data->name);
2647
2648         /* Protect against concurrent CPU online/offline. */
2649         cpus_read_lock();
2650
2651         write_lock_irqsave(&cpufreq_driver_lock, flags);
2652         if (cpufreq_driver) {
2653                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2654                 ret = -EEXIST;
2655                 goto out;
2656         }
2657         cpufreq_driver = driver_data;
2658         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2659
2660         if (driver_data->setpolicy)
2661                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2662
2663         if (cpufreq_boost_supported()) {
2664                 ret = create_boost_sysfs_file();
2665                 if (ret)
2666                         goto err_null_driver;
2667         }
2668
2669         ret = subsys_interface_register(&cpufreq_interface);
2670         if (ret)
2671                 goto err_boost_unreg;
2672
2673         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2674             list_empty(&cpufreq_policy_list)) {
2675                 /* if all ->init() calls failed, unregister */
2676                 ret = -ENODEV;
2677                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2678                          driver_data->name);
2679                 goto err_if_unreg;
2680         }
2681
2682         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2683                                                    "cpufreq:online",
2684                                                    cpuhp_cpufreq_online,
2685                                                    cpuhp_cpufreq_offline);
2686         if (ret < 0)
2687                 goto err_if_unreg;
2688         hp_online = ret;
2689         ret = 0;
2690
2691         pr_debug("driver %s up and running\n", driver_data->name);
2692         goto out;
2693
2694 err_if_unreg:
2695         subsys_interface_unregister(&cpufreq_interface);
2696 err_boost_unreg:
2697         remove_boost_sysfs_file();
2698 err_null_driver:
2699         write_lock_irqsave(&cpufreq_driver_lock, flags);
2700         cpufreq_driver = NULL;
2701         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2702 out:
2703         cpus_read_unlock();
2704         return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2707
2708 /**
2709  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2710  *
2711  * Unregister the current CPUFreq driver. Only call this if you have
2712  * the right to do so, i.e. if you have succeeded in initialising before!
2713  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2714  * currently not initialised.
2715  */
2716 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2717 {
2718         unsigned long flags;
2719
2720         if (!cpufreq_driver || (driver != cpufreq_driver))
2721                 return -EINVAL;
2722
2723         pr_debug("unregistering driver %s\n", driver->name);
2724
2725         /* Protect against concurrent cpu hotplug */
2726         cpus_read_lock();
2727         subsys_interface_unregister(&cpufreq_interface);
2728         remove_boost_sysfs_file();
2729         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2730
2731         write_lock_irqsave(&cpufreq_driver_lock, flags);
2732
2733         cpufreq_driver = NULL;
2734
2735         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2736         cpus_read_unlock();
2737
2738         return 0;
2739 }
2740 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2741
2742 struct kobject *cpufreq_global_kobject;
2743 EXPORT_SYMBOL(cpufreq_global_kobject);
2744
2745 static int __init cpufreq_core_init(void)
2746 {
2747         if (cpufreq_disabled())
2748                 return -ENODEV;
2749
2750         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2751         BUG_ON(!cpufreq_global_kobject);
2752
2753         return 0;
2754 }
2755 module_param(off, int, 0444);
2756 core_initcall(cpufreq_core_init);