net: atlantic: fix double free in ring reinit logic
[platform/kernel/linux-starfive.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)                     \
38         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39                 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy)                \
42         for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)              \
44         for_each_suitable_policy(__policy, false)
45
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)                           \
49         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51 static char default_governor[CPUFREQ_NAME_LEN];
52
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65         return static_branch_likely(&cpufreq_freq_invariance);
66 }
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 bool has_target_index(void)
77 {
78         return !!cpufreq_driver->target_index;
79 }
80
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87                               struct cpufreq_governor *new_gov,
88                               unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90
91 /*
92  * Two notifier lists: the "policy" list is involved in the
93  * validation process for a new CPU frequency policy; the
94  * "transition" list for kernel code that needs to handle
95  * changes to devices when the CPU clock speed changes.
96  * The mutex locks both lists.
97  */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101 static int off __read_mostly;
102 static int cpufreq_disabled(void)
103 {
104         return off;
105 }
106 void disable_cpufreq(void)
107 {
108         off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112 bool have_governor_per_policy(void)
113 {
114         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118 static struct kobject *cpufreq_global_kobject;
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122         if (have_governor_per_policy())
123                 return &policy->kobj;
124         else
125                 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131         struct kernel_cpustat kcpustat;
132         u64 cur_wall_time;
133         u64 idle_time;
134         u64 busy_time;
135
136         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138         kcpustat_cpu_fetch(&kcpustat, cpu);
139
140         busy_time = kcpustat.cpustat[CPUTIME_USER];
141         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145         busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147         idle_time = cur_wall_time - busy_time;
148         if (wall)
149                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151         return div_u64(idle_time, NSEC_PER_USEC);
152 }
153
154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158         if (idle_time == -1ULL)
159                 return get_cpu_idle_time_jiffy(cpu, wall);
160         else if (!io_busy)
161                 idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163         return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167 /*
168  * This is a generic cpufreq init() routine which can be used by cpufreq
169  * drivers of SMP systems. It will do following:
170  * - validate & show freq table passed
171  * - set policies transition latency
172  * - policy->cpus with all possible CPUs
173  */
174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175                 struct cpufreq_frequency_table *table,
176                 unsigned int transition_latency)
177 {
178         policy->freq_table = table;
179         policy->cpuinfo.transition_latency = transition_latency;
180
181         /*
182          * The driver only supports the SMP configuration where all processors
183          * share the clock and voltage and clock.
184          */
185         cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201         if (!policy || IS_ERR(policy->clk)) {
202                 pr_err("%s: No %s associated to cpu: %d\n",
203                        __func__, policy ? "clk" : "policy", cpu);
204                 return 0;
205         }
206
207         return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211 /**
212  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213  * @cpu: CPU to find the policy for.
214  *
215  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216  * the kobject reference counter of that policy.  Return a valid policy on
217  * success or NULL on failure.
218  *
219  * The policy returned by this function has to be released with the help of
220  * cpufreq_cpu_put() to balance its kobject reference counter properly.
221  */
222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224         struct cpufreq_policy *policy = NULL;
225         unsigned long flags;
226
227         if (WARN_ON(cpu >= nr_cpu_ids))
228                 return NULL;
229
230         /* get the cpufreq driver */
231         read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233         if (cpufreq_driver) {
234                 /* get the CPU */
235                 policy = cpufreq_cpu_get_raw(cpu);
236                 if (policy)
237                         kobject_get(&policy->kobj);
238         }
239
240         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242         return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246 /**
247  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248  * @policy: cpufreq policy returned by cpufreq_cpu_get().
249  */
250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252         kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256 /**
257  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259  */
260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262         if (WARN_ON(!policy))
263                 return;
264
265         lockdep_assert_held(&policy->rwsem);
266
267         up_write(&policy->rwsem);
268
269         cpufreq_cpu_put(policy);
270 }
271
272 /**
273  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274  * @cpu: CPU to find the policy for.
275  *
276  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277  * if the policy returned by it is not NULL, acquire its rwsem for writing.
278  * Return the policy if it is active or release it and return NULL otherwise.
279  *
280  * The policy returned by this function has to be released with the help of
281  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282  * counter properly.
283  */
284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288         if (!policy)
289                 return NULL;
290
291         down_write(&policy->rwsem);
292
293         if (policy_is_inactive(policy)) {
294                 cpufreq_cpu_release(policy);
295                 return NULL;
296         }
297
298         return policy;
299 }
300
301 /*********************************************************************
302  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303  *********************************************************************/
304
305 /**
306  * adjust_jiffies - Adjust the system "loops_per_jiffy".
307  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308  * @ci: Frequency change information.
309  *
310  * This function alters the system "loops_per_jiffy" for the clock
311  * speed change. Note that loops_per_jiffy cannot be updated on SMP
312  * systems as each CPU might be scaled differently. So, use the arch
313  * per-CPU loops_per_jiffy value wherever possible.
314  */
315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318         static unsigned long l_p_j_ref;
319         static unsigned int l_p_j_ref_freq;
320
321         if (ci->flags & CPUFREQ_CONST_LOOPS)
322                 return;
323
324         if (!l_p_j_ref_freq) {
325                 l_p_j_ref = loops_per_jiffy;
326                 l_p_j_ref_freq = ci->old;
327                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328                          l_p_j_ref, l_p_j_ref_freq);
329         }
330         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332                                                                 ci->new);
333                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334                          loops_per_jiffy, ci->new);
335         }
336 #endif
337 }
338
339 /**
340  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341  * @policy: cpufreq policy to enable fast frequency switching for.
342  * @freqs: contain details of the frequency update.
343  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344  *
345  * This function calls the transition notifiers and adjust_jiffies().
346  *
347  * It is called twice on all CPU frequency changes that have external effects.
348  */
349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350                                       struct cpufreq_freqs *freqs,
351                                       unsigned int state)
352 {
353         int cpu;
354
355         BUG_ON(irqs_disabled());
356
357         if (cpufreq_disabled())
358                 return;
359
360         freqs->policy = policy;
361         freqs->flags = cpufreq_driver->flags;
362         pr_debug("notification %u of frequency transition to %u kHz\n",
363                  state, freqs->new);
364
365         switch (state) {
366         case CPUFREQ_PRECHANGE:
367                 /*
368                  * Detect if the driver reported a value as "old frequency"
369                  * which is not equal to what the cpufreq core thinks is
370                  * "old frequency".
371                  */
372                 if (policy->cur && policy->cur != freqs->old) {
373                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374                                  freqs->old, policy->cur);
375                         freqs->old = policy->cur;
376                 }
377
378                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379                                          CPUFREQ_PRECHANGE, freqs);
380
381                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382                 break;
383
384         case CPUFREQ_POSTCHANGE:
385                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387                          cpumask_pr_args(policy->cpus));
388
389                 for_each_cpu(cpu, policy->cpus)
390                         trace_cpu_frequency(freqs->new, cpu);
391
392                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393                                          CPUFREQ_POSTCHANGE, freqs);
394
395                 cpufreq_stats_record_transition(policy, freqs->new);
396                 policy->cur = freqs->new;
397         }
398 }
399
400 /* Do post notifications when there are chances that transition has failed */
401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402                 struct cpufreq_freqs *freqs, int transition_failed)
403 {
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405         if (!transition_failed)
406                 return;
407
408         swap(freqs->old, freqs->new);
409         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412
413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414                 struct cpufreq_freqs *freqs)
415 {
416
417         /*
418          * Catch double invocations of _begin() which lead to self-deadlock.
419          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420          * doesn't invoke _begin() on their behalf, and hence the chances of
421          * double invocations are very low. Moreover, there are scenarios
422          * where these checks can emit false-positive warnings in these
423          * drivers; so we avoid that by skipping them altogether.
424          */
425         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426                                 && current == policy->transition_task);
427
428 wait:
429         wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431         spin_lock(&policy->transition_lock);
432
433         if (unlikely(policy->transition_ongoing)) {
434                 spin_unlock(&policy->transition_lock);
435                 goto wait;
436         }
437
438         policy->transition_ongoing = true;
439         policy->transition_task = current;
440
441         spin_unlock(&policy->transition_lock);
442
443         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448                 struct cpufreq_freqs *freqs, int transition_failed)
449 {
450         if (WARN_ON(!policy->transition_ongoing))
451                 return;
452
453         cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455         arch_set_freq_scale(policy->related_cpus,
456                             policy->cur,
457                             policy->cpuinfo.max_freq);
458
459         spin_lock(&policy->transition_lock);
460         policy->transition_ongoing = false;
461         policy->transition_task = NULL;
462         spin_unlock(&policy->transition_lock);
463
464         wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468 /*
469  * Fast frequency switching status count.  Positive means "enabled", negative
470  * means "disabled" and 0 means "not decided yet".
471  */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475 static void cpufreq_list_transition_notifiers(void)
476 {
477         struct notifier_block *nb;
478
479         pr_info("Registered transition notifiers:\n");
480
481         mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484                 pr_info("%pS\n", nb->notifier_call);
485
486         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488
489 /**
490  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491  * @policy: cpufreq policy to enable fast frequency switching for.
492  *
493  * Try to enable fast frequency switching for @policy.
494  *
495  * The attempt will fail if there is at least one transition notifier registered
496  * at this point, as fast frequency switching is quite fundamentally at odds
497  * with transition notifiers.  Thus if successful, it will make registration of
498  * transition notifiers fail going forward.
499  */
500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502         lockdep_assert_held(&policy->rwsem);
503
504         if (!policy->fast_switch_possible)
505                 return;
506
507         mutex_lock(&cpufreq_fast_switch_lock);
508         if (cpufreq_fast_switch_count >= 0) {
509                 cpufreq_fast_switch_count++;
510                 policy->fast_switch_enabled = true;
511         } else {
512                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513                         policy->cpu);
514                 cpufreq_list_transition_notifiers();
515         }
516         mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520 /**
521  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522  * @policy: cpufreq policy to disable fast frequency switching for.
523  */
524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526         mutex_lock(&cpufreq_fast_switch_lock);
527         if (policy->fast_switch_enabled) {
528                 policy->fast_switch_enabled = false;
529                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530                         cpufreq_fast_switch_count--;
531         }
532         mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537                 unsigned int target_freq, unsigned int relation)
538 {
539         unsigned int idx;
540
541         target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543         if (!policy->freq_table)
544                 return target_freq;
545
546         idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547         policy->cached_resolved_idx = idx;
548         policy->cached_target_freq = target_freq;
549         return policy->freq_table[idx].frequency;
550 }
551
552 /**
553  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554  * one.
555  * @policy: associated policy to interrogate
556  * @target_freq: target frequency to resolve.
557  *
558  * The target to driver frequency mapping is cached in the policy.
559  *
560  * Return: Lowest driver-supported frequency greater than or equal to the
561  * given target_freq, subject to policy (min/max) and driver limitations.
562  */
563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564                                          unsigned int target_freq)
565 {
566         return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567 }
568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571 {
572         unsigned int latency;
573
574         if (policy->transition_delay_us)
575                 return policy->transition_delay_us;
576
577         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578         if (latency) {
579                 /*
580                  * For platforms that can change the frequency very fast (< 10
581                  * us), the above formula gives a decent transition delay. But
582                  * for platforms where transition_latency is in milliseconds, it
583                  * ends up giving unrealistic values.
584                  *
585                  * Cap the default transition delay to 10 ms, which seems to be
586                  * a reasonable amount of time after which we should reevaluate
587                  * the frequency.
588                  */
589                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
590         }
591
592         return LATENCY_MULTIPLIER;
593 }
594 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
595
596 /*********************************************************************
597  *                          SYSFS INTERFACE                          *
598  *********************************************************************/
599 static ssize_t show_boost(struct kobject *kobj,
600                           struct kobj_attribute *attr, char *buf)
601 {
602         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
603 }
604
605 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
606                            const char *buf, size_t count)
607 {
608         int ret, enable;
609
610         ret = sscanf(buf, "%d", &enable);
611         if (ret != 1 || enable < 0 || enable > 1)
612                 return -EINVAL;
613
614         if (cpufreq_boost_trigger_state(enable)) {
615                 pr_err("%s: Cannot %s BOOST!\n",
616                        __func__, enable ? "enable" : "disable");
617                 return -EINVAL;
618         }
619
620         pr_debug("%s: cpufreq BOOST %s\n",
621                  __func__, enable ? "enabled" : "disabled");
622
623         return count;
624 }
625 define_one_global_rw(boost);
626
627 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
628 {
629         return sysfs_emit(buf, "%d\n", policy->boost_enabled);
630 }
631
632 static ssize_t store_local_boost(struct cpufreq_policy *policy,
633                                  const char *buf, size_t count)
634 {
635         int ret, enable;
636
637         ret = kstrtoint(buf, 10, &enable);
638         if (ret || enable < 0 || enable > 1)
639                 return -EINVAL;
640
641         if (!cpufreq_driver->boost_enabled)
642                 return -EINVAL;
643
644         if (policy->boost_enabled == enable)
645                 return count;
646
647         cpus_read_lock();
648         ret = cpufreq_driver->set_boost(policy, enable);
649         cpus_read_unlock();
650
651         if (ret)
652                 return ret;
653
654         policy->boost_enabled = enable;
655
656         return count;
657 }
658
659 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
660
661 static struct cpufreq_governor *find_governor(const char *str_governor)
662 {
663         struct cpufreq_governor *t;
664
665         for_each_governor(t)
666                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
667                         return t;
668
669         return NULL;
670 }
671
672 static struct cpufreq_governor *get_governor(const char *str_governor)
673 {
674         struct cpufreq_governor *t;
675
676         mutex_lock(&cpufreq_governor_mutex);
677         t = find_governor(str_governor);
678         if (!t)
679                 goto unlock;
680
681         if (!try_module_get(t->owner))
682                 t = NULL;
683
684 unlock:
685         mutex_unlock(&cpufreq_governor_mutex);
686
687         return t;
688 }
689
690 static unsigned int cpufreq_parse_policy(char *str_governor)
691 {
692         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
693                 return CPUFREQ_POLICY_PERFORMANCE;
694
695         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
696                 return CPUFREQ_POLICY_POWERSAVE;
697
698         return CPUFREQ_POLICY_UNKNOWN;
699 }
700
701 /**
702  * cpufreq_parse_governor - parse a governor string only for has_target()
703  * @str_governor: Governor name.
704  */
705 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
706 {
707         struct cpufreq_governor *t;
708
709         t = get_governor(str_governor);
710         if (t)
711                 return t;
712
713         if (request_module("cpufreq_%s", str_governor))
714                 return NULL;
715
716         return get_governor(str_governor);
717 }
718
719 /*
720  * cpufreq_per_cpu_attr_read() / show_##file_name() -
721  * print out cpufreq information
722  *
723  * Write out information from cpufreq_driver->policy[cpu]; object must be
724  * "unsigned int".
725  */
726
727 #define show_one(file_name, object)                     \
728 static ssize_t show_##file_name                         \
729 (struct cpufreq_policy *policy, char *buf)              \
730 {                                                       \
731         return sprintf(buf, "%u\n", policy->object);    \
732 }
733
734 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
735 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
736 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
737 show_one(scaling_min_freq, min);
738 show_one(scaling_max_freq, max);
739
740 __weak unsigned int arch_freq_get_on_cpu(int cpu)
741 {
742         return 0;
743 }
744
745 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
746 {
747         ssize_t ret;
748         unsigned int freq;
749
750         freq = arch_freq_get_on_cpu(policy->cpu);
751         if (freq)
752                 ret = sprintf(buf, "%u\n", freq);
753         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
754                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
755         else
756                 ret = sprintf(buf, "%u\n", policy->cur);
757         return ret;
758 }
759
760 /*
761  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
762  */
763 #define store_one(file_name, object)                    \
764 static ssize_t store_##file_name                                        \
765 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
766 {                                                                       \
767         unsigned long val;                                              \
768         int ret;                                                        \
769                                                                         \
770         ret = kstrtoul(buf, 0, &val);                                   \
771         if (ret)                                                        \
772                 return ret;                                             \
773                                                                         \
774         ret = freq_qos_update_request(policy->object##_freq_req, val);\
775         return ret >= 0 ? count : ret;                                  \
776 }
777
778 store_one(scaling_min_freq, min);
779 store_one(scaling_max_freq, max);
780
781 /*
782  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
783  */
784 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
785                                         char *buf)
786 {
787         unsigned int cur_freq = __cpufreq_get(policy);
788
789         if (cur_freq)
790                 return sprintf(buf, "%u\n", cur_freq);
791
792         return sprintf(buf, "<unknown>\n");
793 }
794
795 /*
796  * show_scaling_governor - show the current policy for the specified CPU
797  */
798 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
799 {
800         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
801                 return sprintf(buf, "powersave\n");
802         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
803                 return sprintf(buf, "performance\n");
804         else if (policy->governor)
805                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
806                                 policy->governor->name);
807         return -EINVAL;
808 }
809
810 /*
811  * store_scaling_governor - store policy for the specified CPU
812  */
813 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
814                                         const char *buf, size_t count)
815 {
816         char str_governor[16];
817         int ret;
818
819         ret = sscanf(buf, "%15s", str_governor);
820         if (ret != 1)
821                 return -EINVAL;
822
823         if (cpufreq_driver->setpolicy) {
824                 unsigned int new_pol;
825
826                 new_pol = cpufreq_parse_policy(str_governor);
827                 if (!new_pol)
828                         return -EINVAL;
829
830                 ret = cpufreq_set_policy(policy, NULL, new_pol);
831         } else {
832                 struct cpufreq_governor *new_gov;
833
834                 new_gov = cpufreq_parse_governor(str_governor);
835                 if (!new_gov)
836                         return -EINVAL;
837
838                 ret = cpufreq_set_policy(policy, new_gov,
839                                          CPUFREQ_POLICY_UNKNOWN);
840
841                 module_put(new_gov->owner);
842         }
843
844         return ret ? ret : count;
845 }
846
847 /*
848  * show_scaling_driver - show the cpufreq driver currently loaded
849  */
850 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
851 {
852         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
853 }
854
855 /*
856  * show_scaling_available_governors - show the available CPUfreq governors
857  */
858 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
859                                                 char *buf)
860 {
861         ssize_t i = 0;
862         struct cpufreq_governor *t;
863
864         if (!has_target()) {
865                 i += sprintf(buf, "performance powersave");
866                 goto out;
867         }
868
869         mutex_lock(&cpufreq_governor_mutex);
870         for_each_governor(t) {
871                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
872                     - (CPUFREQ_NAME_LEN + 2)))
873                         break;
874                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
875         }
876         mutex_unlock(&cpufreq_governor_mutex);
877 out:
878         i += sprintf(&buf[i], "\n");
879         return i;
880 }
881
882 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
883 {
884         ssize_t i = 0;
885         unsigned int cpu;
886
887         for_each_cpu(cpu, mask) {
888                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
889                 if (i >= (PAGE_SIZE - 5))
890                         break;
891         }
892
893         /* Remove the extra space at the end */
894         i--;
895
896         i += sprintf(&buf[i], "\n");
897         return i;
898 }
899 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
900
901 /*
902  * show_related_cpus - show the CPUs affected by each transition even if
903  * hw coordination is in use
904  */
905 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
906 {
907         return cpufreq_show_cpus(policy->related_cpus, buf);
908 }
909
910 /*
911  * show_affected_cpus - show the CPUs affected by each transition
912  */
913 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
914 {
915         return cpufreq_show_cpus(policy->cpus, buf);
916 }
917
918 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
919                                         const char *buf, size_t count)
920 {
921         unsigned int freq = 0;
922         unsigned int ret;
923
924         if (!policy->governor || !policy->governor->store_setspeed)
925                 return -EINVAL;
926
927         ret = sscanf(buf, "%u", &freq);
928         if (ret != 1)
929                 return -EINVAL;
930
931         policy->governor->store_setspeed(policy, freq);
932
933         return count;
934 }
935
936 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
937 {
938         if (!policy->governor || !policy->governor->show_setspeed)
939                 return sprintf(buf, "<unsupported>\n");
940
941         return policy->governor->show_setspeed(policy, buf);
942 }
943
944 /*
945  * show_bios_limit - show the current cpufreq HW/BIOS limitation
946  */
947 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
948 {
949         unsigned int limit;
950         int ret;
951         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
952         if (!ret)
953                 return sprintf(buf, "%u\n", limit);
954         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
955 }
956
957 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
958 cpufreq_freq_attr_ro(cpuinfo_min_freq);
959 cpufreq_freq_attr_ro(cpuinfo_max_freq);
960 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
961 cpufreq_freq_attr_ro(scaling_available_governors);
962 cpufreq_freq_attr_ro(scaling_driver);
963 cpufreq_freq_attr_ro(scaling_cur_freq);
964 cpufreq_freq_attr_ro(bios_limit);
965 cpufreq_freq_attr_ro(related_cpus);
966 cpufreq_freq_attr_ro(affected_cpus);
967 cpufreq_freq_attr_rw(scaling_min_freq);
968 cpufreq_freq_attr_rw(scaling_max_freq);
969 cpufreq_freq_attr_rw(scaling_governor);
970 cpufreq_freq_attr_rw(scaling_setspeed);
971
972 static struct attribute *cpufreq_attrs[] = {
973         &cpuinfo_min_freq.attr,
974         &cpuinfo_max_freq.attr,
975         &cpuinfo_transition_latency.attr,
976         &scaling_min_freq.attr,
977         &scaling_max_freq.attr,
978         &affected_cpus.attr,
979         &related_cpus.attr,
980         &scaling_governor.attr,
981         &scaling_driver.attr,
982         &scaling_available_governors.attr,
983         &scaling_setspeed.attr,
984         NULL
985 };
986 ATTRIBUTE_GROUPS(cpufreq);
987
988 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
989 #define to_attr(a) container_of(a, struct freq_attr, attr)
990
991 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
992 {
993         struct cpufreq_policy *policy = to_policy(kobj);
994         struct freq_attr *fattr = to_attr(attr);
995         ssize_t ret = -EBUSY;
996
997         if (!fattr->show)
998                 return -EIO;
999
1000         down_read(&policy->rwsem);
1001         if (likely(!policy_is_inactive(policy)))
1002                 ret = fattr->show(policy, buf);
1003         up_read(&policy->rwsem);
1004
1005         return ret;
1006 }
1007
1008 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009                      const char *buf, size_t count)
1010 {
1011         struct cpufreq_policy *policy = to_policy(kobj);
1012         struct freq_attr *fattr = to_attr(attr);
1013         ssize_t ret = -EBUSY;
1014
1015         if (!fattr->store)
1016                 return -EIO;
1017
1018         down_write(&policy->rwsem);
1019         if (likely(!policy_is_inactive(policy)))
1020                 ret = fattr->store(policy, buf, count);
1021         up_write(&policy->rwsem);
1022
1023         return ret;
1024 }
1025
1026 static void cpufreq_sysfs_release(struct kobject *kobj)
1027 {
1028         struct cpufreq_policy *policy = to_policy(kobj);
1029         pr_debug("last reference is dropped\n");
1030         complete(&policy->kobj_unregister);
1031 }
1032
1033 static const struct sysfs_ops sysfs_ops = {
1034         .show   = show,
1035         .store  = store,
1036 };
1037
1038 static const struct kobj_type ktype_cpufreq = {
1039         .sysfs_ops      = &sysfs_ops,
1040         .default_groups = cpufreq_groups,
1041         .release        = cpufreq_sysfs_release,
1042 };
1043
1044 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045                                 struct device *dev)
1046 {
1047         if (unlikely(!dev))
1048                 return;
1049
1050         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051                 return;
1052
1053         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055                 dev_err(dev, "cpufreq symlink creation failed\n");
1056 }
1057
1058 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059                                    struct device *dev)
1060 {
1061         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062         sysfs_remove_link(&dev->kobj, "cpufreq");
1063         cpumask_clear_cpu(cpu, policy->real_cpus);
1064 }
1065
1066 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1067 {
1068         struct freq_attr **drv_attr;
1069         int ret = 0;
1070
1071         /* set up files for this cpu device */
1072         drv_attr = cpufreq_driver->attr;
1073         while (drv_attr && *drv_attr) {
1074                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075                 if (ret)
1076                         return ret;
1077                 drv_attr++;
1078         }
1079         if (cpufreq_driver->get) {
1080                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081                 if (ret)
1082                         return ret;
1083         }
1084
1085         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086         if (ret)
1087                 return ret;
1088
1089         if (cpufreq_driver->bios_limit) {
1090                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091                 if (ret)
1092                         return ret;
1093         }
1094
1095         if (cpufreq_boost_supported()) {
1096                 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097                 if (ret)
1098                         return ret;
1099         }
1100
1101         return 0;
1102 }
1103
1104 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105 {
1106         struct cpufreq_governor *gov = NULL;
1107         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108         int ret;
1109
1110         if (has_target()) {
1111                 /* Update policy governor to the one used before hotplug. */
1112                 gov = get_governor(policy->last_governor);
1113                 if (gov) {
1114                         pr_debug("Restoring governor %s for cpu %d\n",
1115                                  gov->name, policy->cpu);
1116                 } else {
1117                         gov = get_governor(default_governor);
1118                 }
1119
1120                 if (!gov) {
1121                         gov = cpufreq_default_governor();
1122                         __module_get(gov->owner);
1123                 }
1124
1125         } else {
1126
1127                 /* Use the default policy if there is no last_policy. */
1128                 if (policy->last_policy) {
1129                         pol = policy->last_policy;
1130                 } else {
1131                         pol = cpufreq_parse_policy(default_governor);
1132                         /*
1133                          * In case the default governor is neither "performance"
1134                          * nor "powersave", fall back to the initial policy
1135                          * value set by the driver.
1136                          */
1137                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1138                                 pol = policy->policy;
1139                 }
1140                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141                     pol != CPUFREQ_POLICY_POWERSAVE)
1142                         return -ENODATA;
1143         }
1144
1145         ret = cpufreq_set_policy(policy, gov, pol);
1146         if (gov)
1147                 module_put(gov->owner);
1148
1149         return ret;
1150 }
1151
1152 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1153 {
1154         int ret = 0;
1155
1156         /* Has this CPU been taken care of already? */
1157         if (cpumask_test_cpu(cpu, policy->cpus))
1158                 return 0;
1159
1160         down_write(&policy->rwsem);
1161         if (has_target())
1162                 cpufreq_stop_governor(policy);
1163
1164         cpumask_set_cpu(cpu, policy->cpus);
1165
1166         if (has_target()) {
1167                 ret = cpufreq_start_governor(policy);
1168                 if (ret)
1169                         pr_err("%s: Failed to start governor\n", __func__);
1170         }
1171         up_write(&policy->rwsem);
1172         return ret;
1173 }
1174
1175 void refresh_frequency_limits(struct cpufreq_policy *policy)
1176 {
1177         if (!policy_is_inactive(policy)) {
1178                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1181         }
1182 }
1183 EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185 static void handle_update(struct work_struct *work)
1186 {
1187         struct cpufreq_policy *policy =
1188                 container_of(work, struct cpufreq_policy, update);
1189
1190         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191         down_write(&policy->rwsem);
1192         refresh_frequency_limits(policy);
1193         up_write(&policy->rwsem);
1194 }
1195
1196 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197                                 void *data)
1198 {
1199         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201         schedule_work(&policy->update);
1202         return 0;
1203 }
1204
1205 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206                                 void *data)
1207 {
1208         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210         schedule_work(&policy->update);
1211         return 0;
1212 }
1213
1214 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215 {
1216         struct kobject *kobj;
1217         struct completion *cmp;
1218
1219         down_write(&policy->rwsem);
1220         cpufreq_stats_free_table(policy);
1221         kobj = &policy->kobj;
1222         cmp = &policy->kobj_unregister;
1223         up_write(&policy->rwsem);
1224         kobject_put(kobj);
1225
1226         /*
1227          * We need to make sure that the underlying kobj is
1228          * actually not referenced anymore by anybody before we
1229          * proceed with unloading.
1230          */
1231         pr_debug("waiting for dropping of refcount\n");
1232         wait_for_completion(cmp);
1233         pr_debug("wait complete\n");
1234 }
1235
1236 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237 {
1238         struct cpufreq_policy *policy;
1239         struct device *dev = get_cpu_device(cpu);
1240         int ret;
1241
1242         if (!dev)
1243                 return NULL;
1244
1245         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246         if (!policy)
1247                 return NULL;
1248
1249         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250                 goto err_free_policy;
1251
1252         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253                 goto err_free_cpumask;
1254
1255         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256                 goto err_free_rcpumask;
1257
1258         init_completion(&policy->kobj_unregister);
1259         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260                                    cpufreq_global_kobject, "policy%u", cpu);
1261         if (ret) {
1262                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263                 /*
1264                  * The entire policy object will be freed below, but the extra
1265                  * memory allocated for the kobject name needs to be freed by
1266                  * releasing the kobject.
1267                  */
1268                 kobject_put(&policy->kobj);
1269                 goto err_free_real_cpus;
1270         }
1271
1272         freq_constraints_init(&policy->constraints);
1273
1274         policy->nb_min.notifier_call = cpufreq_notifier_min;
1275         policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278                                     &policy->nb_min);
1279         if (ret) {
1280                 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281                         ret, cpu);
1282                 goto err_kobj_remove;
1283         }
1284
1285         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286                                     &policy->nb_max);
1287         if (ret) {
1288                 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289                         ret, cpu);
1290                 goto err_min_qos_notifier;
1291         }
1292
1293         INIT_LIST_HEAD(&policy->policy_list);
1294         init_rwsem(&policy->rwsem);
1295         spin_lock_init(&policy->transition_lock);
1296         init_waitqueue_head(&policy->transition_wait);
1297         INIT_WORK(&policy->update, handle_update);
1298
1299         policy->cpu = cpu;
1300         return policy;
1301
1302 err_min_qos_notifier:
1303         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304                                  &policy->nb_min);
1305 err_kobj_remove:
1306         cpufreq_policy_put_kobj(policy);
1307 err_free_real_cpus:
1308         free_cpumask_var(policy->real_cpus);
1309 err_free_rcpumask:
1310         free_cpumask_var(policy->related_cpus);
1311 err_free_cpumask:
1312         free_cpumask_var(policy->cpus);
1313 err_free_policy:
1314         kfree(policy);
1315
1316         return NULL;
1317 }
1318
1319 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320 {
1321         unsigned long flags;
1322         int cpu;
1323
1324         /*
1325          * The callers must ensure the policy is inactive by now, to avoid any
1326          * races with show()/store() callbacks.
1327          */
1328         if (unlikely(!policy_is_inactive(policy)))
1329                 pr_warn("%s: Freeing active policy\n", __func__);
1330
1331         /* Remove policy from list */
1332         write_lock_irqsave(&cpufreq_driver_lock, flags);
1333         list_del(&policy->policy_list);
1334
1335         for_each_cpu(cpu, policy->related_cpus)
1336                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340                                  &policy->nb_max);
1341         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342                                  &policy->nb_min);
1343
1344         /* Cancel any pending policy->update work before freeing the policy. */
1345         cancel_work_sync(&policy->update);
1346
1347         if (policy->max_freq_req) {
1348                 /*
1349                  * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350                  * notification, since CPUFREQ_CREATE_POLICY notification was
1351                  * sent after adding max_freq_req earlier.
1352                  */
1353                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354                                              CPUFREQ_REMOVE_POLICY, policy);
1355                 freq_qos_remove_request(policy->max_freq_req);
1356         }
1357
1358         freq_qos_remove_request(policy->min_freq_req);
1359         kfree(policy->min_freq_req);
1360
1361         cpufreq_policy_put_kobj(policy);
1362         free_cpumask_var(policy->real_cpus);
1363         free_cpumask_var(policy->related_cpus);
1364         free_cpumask_var(policy->cpus);
1365         kfree(policy);
1366 }
1367
1368 static int cpufreq_online(unsigned int cpu)
1369 {
1370         struct cpufreq_policy *policy;
1371         bool new_policy;
1372         unsigned long flags;
1373         unsigned int j;
1374         int ret;
1375
1376         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1377
1378         /* Check if this CPU already has a policy to manage it */
1379         policy = per_cpu(cpufreq_cpu_data, cpu);
1380         if (policy) {
1381                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382                 if (!policy_is_inactive(policy))
1383                         return cpufreq_add_policy_cpu(policy, cpu);
1384
1385                 /* This is the only online CPU for the policy.  Start over. */
1386                 new_policy = false;
1387                 down_write(&policy->rwsem);
1388                 policy->cpu = cpu;
1389                 policy->governor = NULL;
1390         } else {
1391                 new_policy = true;
1392                 policy = cpufreq_policy_alloc(cpu);
1393                 if (!policy)
1394                         return -ENOMEM;
1395                 down_write(&policy->rwsem);
1396         }
1397
1398         if (!new_policy && cpufreq_driver->online) {
1399                 /* Recover policy->cpus using related_cpus */
1400                 cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402                 ret = cpufreq_driver->online(policy);
1403                 if (ret) {
1404                         pr_debug("%s: %d: initialization failed\n", __func__,
1405                                  __LINE__);
1406                         goto out_exit_policy;
1407                 }
1408         } else {
1409                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411                 /*
1412                  * Call driver. From then on the cpufreq must be able
1413                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1414                  */
1415                 ret = cpufreq_driver->init(policy);
1416                 if (ret) {
1417                         pr_debug("%s: %d: initialization failed\n", __func__,
1418                                  __LINE__);
1419                         goto out_free_policy;
1420                 }
1421
1422                 /*
1423                  * The initialization has succeeded and the policy is online.
1424                  * If there is a problem with its frequency table, take it
1425                  * offline and drop it.
1426                  */
1427                 ret = cpufreq_table_validate_and_sort(policy);
1428                 if (ret)
1429                         goto out_offline_policy;
1430
1431                 /* related_cpus should at least include policy->cpus. */
1432                 cpumask_copy(policy->related_cpus, policy->cpus);
1433         }
1434
1435         /*
1436          * affected cpus must always be the one, which are online. We aren't
1437          * managing offline cpus here.
1438          */
1439         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441         if (new_policy) {
1442                 for_each_cpu(j, policy->related_cpus) {
1443                         per_cpu(cpufreq_cpu_data, j) = policy;
1444                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445                 }
1446
1447                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448                                                GFP_KERNEL);
1449                 if (!policy->min_freq_req) {
1450                         ret = -ENOMEM;
1451                         goto out_destroy_policy;
1452                 }
1453
1454                 ret = freq_qos_add_request(&policy->constraints,
1455                                            policy->min_freq_req, FREQ_QOS_MIN,
1456                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1457                 if (ret < 0) {
1458                         /*
1459                          * So we don't call freq_qos_remove_request() for an
1460                          * uninitialized request.
1461                          */
1462                         kfree(policy->min_freq_req);
1463                         policy->min_freq_req = NULL;
1464                         goto out_destroy_policy;
1465                 }
1466
1467                 /*
1468                  * This must be initialized right here to avoid calling
1469                  * freq_qos_remove_request() on uninitialized request in case
1470                  * of errors.
1471                  */
1472                 policy->max_freq_req = policy->min_freq_req + 1;
1473
1474                 ret = freq_qos_add_request(&policy->constraints,
1475                                            policy->max_freq_req, FREQ_QOS_MAX,
1476                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1477                 if (ret < 0) {
1478                         policy->max_freq_req = NULL;
1479                         goto out_destroy_policy;
1480                 }
1481
1482                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483                                 CPUFREQ_CREATE_POLICY, policy);
1484         }
1485
1486         if (cpufreq_driver->get && has_target()) {
1487                 policy->cur = cpufreq_driver->get(policy->cpu);
1488                 if (!policy->cur) {
1489                         ret = -EIO;
1490                         pr_err("%s: ->get() failed\n", __func__);
1491                         goto out_destroy_policy;
1492                 }
1493         }
1494
1495         /*
1496          * Sometimes boot loaders set CPU frequency to a value outside of
1497          * frequency table present with cpufreq core. In such cases CPU might be
1498          * unstable if it has to run on that frequency for long duration of time
1499          * and so its better to set it to a frequency which is specified in
1500          * freq-table. This also makes cpufreq stats inconsistent as
1501          * cpufreq-stats would fail to register because current frequency of CPU
1502          * isn't found in freq-table.
1503          *
1504          * Because we don't want this change to effect boot process badly, we go
1505          * for the next freq which is >= policy->cur ('cur' must be set by now,
1506          * otherwise we will end up setting freq to lowest of the table as 'cur'
1507          * is initialized to zero).
1508          *
1509          * We are passing target-freq as "policy->cur - 1" otherwise
1510          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511          * equal to target-freq.
1512          */
1513         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514             && has_target()) {
1515                 unsigned int old_freq = policy->cur;
1516
1517                 /* Are we running at unknown frequency ? */
1518                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519                 if (ret == -EINVAL) {
1520                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1521                                                       CPUFREQ_RELATION_L);
1522
1523                         /*
1524                          * Reaching here after boot in a few seconds may not
1525                          * mean that system will remain stable at "unknown"
1526                          * frequency for longer duration. Hence, a BUG_ON().
1527                          */
1528                         BUG_ON(ret);
1529                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530                                 __func__, policy->cpu, old_freq, policy->cur);
1531                 }
1532         }
1533
1534         if (new_policy) {
1535                 ret = cpufreq_add_dev_interface(policy);
1536                 if (ret)
1537                         goto out_destroy_policy;
1538
1539                 cpufreq_stats_create_table(policy);
1540
1541                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1542                 list_add(&policy->policy_list, &cpufreq_policy_list);
1543                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545                 /*
1546                  * Register with the energy model before
1547                  * sched_cpufreq_governor_change() is called, which will result
1548                  * in rebuilding of the sched domains, which should only be done
1549                  * once the energy model is properly initialized for the policy
1550                  * first.
1551                  *
1552                  * Also, this should be called before the policy is registered
1553                  * with cooling framework.
1554                  */
1555                 if (cpufreq_driver->register_em)
1556                         cpufreq_driver->register_em(policy);
1557         }
1558
1559         ret = cpufreq_init_policy(policy);
1560         if (ret) {
1561                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562                        __func__, cpu, ret);
1563                 goto out_destroy_policy;
1564         }
1565
1566         up_write(&policy->rwsem);
1567
1568         kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570         /* Callback for handling stuff after policy is ready */
1571         if (cpufreq_driver->ready)
1572                 cpufreq_driver->ready(policy);
1573
1574         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575                 policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577         pr_debug("initialization complete\n");
1578
1579         return 0;
1580
1581 out_destroy_policy:
1582         for_each_cpu(j, policy->real_cpus)
1583                 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585 out_offline_policy:
1586         if (cpufreq_driver->offline)
1587                 cpufreq_driver->offline(policy);
1588
1589 out_exit_policy:
1590         if (cpufreq_driver->exit)
1591                 cpufreq_driver->exit(policy);
1592
1593 out_free_policy:
1594         cpumask_clear(policy->cpus);
1595         up_write(&policy->rwsem);
1596
1597         cpufreq_policy_free(policy);
1598         return ret;
1599 }
1600
1601 /**
1602  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603  * @dev: CPU device.
1604  * @sif: Subsystem interface structure pointer (not used)
1605  */
1606 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607 {
1608         struct cpufreq_policy *policy;
1609         unsigned cpu = dev->id;
1610         int ret;
1611
1612         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614         if (cpu_online(cpu)) {
1615                 ret = cpufreq_online(cpu);
1616                 if (ret)
1617                         return ret;
1618         }
1619
1620         /* Create sysfs link on CPU registration */
1621         policy = per_cpu(cpufreq_cpu_data, cpu);
1622         if (policy)
1623                 add_cpu_dev_symlink(policy, cpu, dev);
1624
1625         return 0;
1626 }
1627
1628 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629 {
1630         int ret;
1631
1632         if (has_target())
1633                 cpufreq_stop_governor(policy);
1634
1635         cpumask_clear_cpu(cpu, policy->cpus);
1636
1637         if (!policy_is_inactive(policy)) {
1638                 /* Nominate a new CPU if necessary. */
1639                 if (cpu == policy->cpu)
1640                         policy->cpu = cpumask_any(policy->cpus);
1641
1642                 /* Start the governor again for the active policy. */
1643                 if (has_target()) {
1644                         ret = cpufreq_start_governor(policy);
1645                         if (ret)
1646                                 pr_err("%s: Failed to start governor\n", __func__);
1647                 }
1648
1649                 return;
1650         }
1651
1652         if (has_target())
1653                 strncpy(policy->last_governor, policy->governor->name,
1654                         CPUFREQ_NAME_LEN);
1655         else
1656                 policy->last_policy = policy->policy;
1657
1658         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659                 cpufreq_cooling_unregister(policy->cdev);
1660                 policy->cdev = NULL;
1661         }
1662
1663         if (has_target())
1664                 cpufreq_exit_governor(policy);
1665
1666         /*
1667          * Perform the ->offline() during light-weight tear-down, as
1668          * that allows fast recovery when the CPU comes back.
1669          */
1670         if (cpufreq_driver->offline) {
1671                 cpufreq_driver->offline(policy);
1672         } else if (cpufreq_driver->exit) {
1673                 cpufreq_driver->exit(policy);
1674                 policy->freq_table = NULL;
1675         }
1676 }
1677
1678 static int cpufreq_offline(unsigned int cpu)
1679 {
1680         struct cpufreq_policy *policy;
1681
1682         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684         policy = cpufreq_cpu_get_raw(cpu);
1685         if (!policy) {
1686                 pr_debug("%s: No cpu_data found\n", __func__);
1687                 return 0;
1688         }
1689
1690         down_write(&policy->rwsem);
1691
1692         __cpufreq_offline(cpu, policy);
1693
1694         up_write(&policy->rwsem);
1695         return 0;
1696 }
1697
1698 /*
1699  * cpufreq_remove_dev - remove a CPU device
1700  *
1701  * Removes the cpufreq interface for a CPU device.
1702  */
1703 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704 {
1705         unsigned int cpu = dev->id;
1706         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708         if (!policy)
1709                 return;
1710
1711         down_write(&policy->rwsem);
1712
1713         if (cpu_online(cpu))
1714                 __cpufreq_offline(cpu, policy);
1715
1716         remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718         if (!cpumask_empty(policy->real_cpus)) {
1719                 up_write(&policy->rwsem);
1720                 return;
1721         }
1722
1723         /* We did light-weight exit earlier, do full tear down now */
1724         if (cpufreq_driver->offline)
1725                 cpufreq_driver->exit(policy);
1726
1727         up_write(&policy->rwsem);
1728
1729         cpufreq_policy_free(policy);
1730 }
1731
1732 /**
1733  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734  * @policy: Policy managing CPUs.
1735  * @new_freq: New CPU frequency.
1736  *
1737  * Adjust to the current frequency first and clean up later by either calling
1738  * cpufreq_update_policy(), or scheduling handle_update().
1739  */
1740 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741                                 unsigned int new_freq)
1742 {
1743         struct cpufreq_freqs freqs;
1744
1745         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746                  policy->cur, new_freq);
1747
1748         freqs.old = policy->cur;
1749         freqs.new = new_freq;
1750
1751         cpufreq_freq_transition_begin(policy, &freqs);
1752         cpufreq_freq_transition_end(policy, &freqs, 0);
1753 }
1754
1755 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756 {
1757         unsigned int new_freq;
1758
1759         new_freq = cpufreq_driver->get(policy->cpu);
1760         if (!new_freq)
1761                 return 0;
1762
1763         /*
1764          * If fast frequency switching is used with the given policy, the check
1765          * against policy->cur is pointless, so skip it in that case.
1766          */
1767         if (policy->fast_switch_enabled || !has_target())
1768                 return new_freq;
1769
1770         if (policy->cur != new_freq) {
1771                 /*
1772                  * For some platforms, the frequency returned by hardware may be
1773                  * slightly different from what is provided in the frequency
1774                  * table, for example hardware may return 499 MHz instead of 500
1775                  * MHz. In such cases it is better to avoid getting into
1776                  * unnecessary frequency updates.
1777                  */
1778                 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779                         return policy->cur;
1780
1781                 cpufreq_out_of_sync(policy, new_freq);
1782                 if (update)
1783                         schedule_work(&policy->update);
1784         }
1785
1786         return new_freq;
1787 }
1788
1789 /**
1790  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791  * @cpu: CPU number
1792  *
1793  * This is the last known freq, without actually getting it from the driver.
1794  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795  */
1796 unsigned int cpufreq_quick_get(unsigned int cpu)
1797 {
1798         struct cpufreq_policy *policy;
1799         unsigned int ret_freq = 0;
1800         unsigned long flags;
1801
1802         read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805                 ret_freq = cpufreq_driver->get(cpu);
1806                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807                 return ret_freq;
1808         }
1809
1810         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812         policy = cpufreq_cpu_get(cpu);
1813         if (policy) {
1814                 ret_freq = policy->cur;
1815                 cpufreq_cpu_put(policy);
1816         }
1817
1818         return ret_freq;
1819 }
1820 EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822 /**
1823  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824  * @cpu: CPU number
1825  *
1826  * Just return the max possible frequency for a given CPU.
1827  */
1828 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829 {
1830         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831         unsigned int ret_freq = 0;
1832
1833         if (policy) {
1834                 ret_freq = policy->max;
1835                 cpufreq_cpu_put(policy);
1836         }
1837
1838         return ret_freq;
1839 }
1840 EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842 /**
1843  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844  * @cpu: CPU number
1845  *
1846  * The default return value is the max_freq field of cpuinfo.
1847  */
1848 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849 {
1850         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851         unsigned int ret_freq = 0;
1852
1853         if (policy) {
1854                 ret_freq = policy->cpuinfo.max_freq;
1855                 cpufreq_cpu_put(policy);
1856         }
1857
1858         return ret_freq;
1859 }
1860 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863 {
1864         if (unlikely(policy_is_inactive(policy)))
1865                 return 0;
1866
1867         return cpufreq_verify_current_freq(policy, true);
1868 }
1869
1870 /**
1871  * cpufreq_get - get the current CPU frequency (in kHz)
1872  * @cpu: CPU number
1873  *
1874  * Get the CPU current (static) CPU frequency
1875  */
1876 unsigned int cpufreq_get(unsigned int cpu)
1877 {
1878         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879         unsigned int ret_freq = 0;
1880
1881         if (policy) {
1882                 down_read(&policy->rwsem);
1883                 if (cpufreq_driver->get)
1884                         ret_freq = __cpufreq_get(policy);
1885                 up_read(&policy->rwsem);
1886
1887                 cpufreq_cpu_put(policy);
1888         }
1889
1890         return ret_freq;
1891 }
1892 EXPORT_SYMBOL(cpufreq_get);
1893
1894 static struct subsys_interface cpufreq_interface = {
1895         .name           = "cpufreq",
1896         .subsys         = &cpu_subsys,
1897         .add_dev        = cpufreq_add_dev,
1898         .remove_dev     = cpufreq_remove_dev,
1899 };
1900
1901 /*
1902  * In case platform wants some specific frequency to be configured
1903  * during suspend..
1904  */
1905 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906 {
1907         int ret;
1908
1909         if (!policy->suspend_freq) {
1910                 pr_debug("%s: suspend_freq not defined\n", __func__);
1911                 return 0;
1912         }
1913
1914         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915                         policy->suspend_freq);
1916
1917         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918                         CPUFREQ_RELATION_H);
1919         if (ret)
1920                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921                                 __func__, policy->suspend_freq, ret);
1922
1923         return ret;
1924 }
1925 EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927 /**
1928  * cpufreq_suspend() - Suspend CPUFreq governors.
1929  *
1930  * Called during system wide Suspend/Hibernate cycles for suspending governors
1931  * as some platforms can't change frequency after this point in suspend cycle.
1932  * Because some of the devices (like: i2c, regulators, etc) they use for
1933  * changing frequency are suspended quickly after this point.
1934  */
1935 void cpufreq_suspend(void)
1936 {
1937         struct cpufreq_policy *policy;
1938
1939         if (!cpufreq_driver)
1940                 return;
1941
1942         if (!has_target() && !cpufreq_driver->suspend)
1943                 goto suspend;
1944
1945         pr_debug("%s: Suspending Governors\n", __func__);
1946
1947         for_each_active_policy(policy) {
1948                 if (has_target()) {
1949                         down_write(&policy->rwsem);
1950                         cpufreq_stop_governor(policy);
1951                         up_write(&policy->rwsem);
1952                 }
1953
1954                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956                                 cpufreq_driver->name);
1957         }
1958
1959 suspend:
1960         cpufreq_suspended = true;
1961 }
1962
1963 /**
1964  * cpufreq_resume() - Resume CPUFreq governors.
1965  *
1966  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967  * are suspended with cpufreq_suspend().
1968  */
1969 void cpufreq_resume(void)
1970 {
1971         struct cpufreq_policy *policy;
1972         int ret;
1973
1974         if (!cpufreq_driver)
1975                 return;
1976
1977         if (unlikely(!cpufreq_suspended))
1978                 return;
1979
1980         cpufreq_suspended = false;
1981
1982         if (!has_target() && !cpufreq_driver->resume)
1983                 return;
1984
1985         pr_debug("%s: Resuming Governors\n", __func__);
1986
1987         for_each_active_policy(policy) {
1988                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989                         pr_err("%s: Failed to resume driver: %s\n", __func__,
1990                                 cpufreq_driver->name);
1991                 } else if (has_target()) {
1992                         down_write(&policy->rwsem);
1993                         ret = cpufreq_start_governor(policy);
1994                         up_write(&policy->rwsem);
1995
1996                         if (ret)
1997                                 pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998                                        __func__, policy->cpu);
1999                 }
2000         }
2001 }
2002
2003 /**
2004  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005  * @flags: Flags to test against the current cpufreq driver's flags.
2006  *
2007  * Assumes that the driver is there, so callers must ensure that this is the
2008  * case.
2009  */
2010 bool cpufreq_driver_test_flags(u16 flags)
2011 {
2012         return !!(cpufreq_driver->flags & flags);
2013 }
2014
2015 /**
2016  * cpufreq_get_current_driver - Return the current driver's name.
2017  *
2018  * Return the name string of the currently registered cpufreq driver or NULL if
2019  * none.
2020  */
2021 const char *cpufreq_get_current_driver(void)
2022 {
2023         if (cpufreq_driver)
2024                 return cpufreq_driver->name;
2025
2026         return NULL;
2027 }
2028 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030 /**
2031  * cpufreq_get_driver_data - Return current driver data.
2032  *
2033  * Return the private data of the currently registered cpufreq driver, or NULL
2034  * if no cpufreq driver has been registered.
2035  */
2036 void *cpufreq_get_driver_data(void)
2037 {
2038         if (cpufreq_driver)
2039                 return cpufreq_driver->driver_data;
2040
2041         return NULL;
2042 }
2043 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045 /*********************************************************************
2046  *                     NOTIFIER LISTS INTERFACE                      *
2047  *********************************************************************/
2048
2049 /**
2050  * cpufreq_register_notifier - Register a notifier with cpufreq.
2051  * @nb: notifier function to register.
2052  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053  *
2054  * Add a notifier to one of two lists: either a list of notifiers that run on
2055  * clock rate changes (once before and once after every transition), or a list
2056  * of notifiers that ron on cpufreq policy changes.
2057  *
2058  * This function may sleep and it has the same return values as
2059  * blocking_notifier_chain_register().
2060  */
2061 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062 {
2063         int ret;
2064
2065         if (cpufreq_disabled())
2066                 return -EINVAL;
2067
2068         switch (list) {
2069         case CPUFREQ_TRANSITION_NOTIFIER:
2070                 mutex_lock(&cpufreq_fast_switch_lock);
2071
2072                 if (cpufreq_fast_switch_count > 0) {
2073                         mutex_unlock(&cpufreq_fast_switch_lock);
2074                         return -EBUSY;
2075                 }
2076                 ret = srcu_notifier_chain_register(
2077                                 &cpufreq_transition_notifier_list, nb);
2078                 if (!ret)
2079                         cpufreq_fast_switch_count--;
2080
2081                 mutex_unlock(&cpufreq_fast_switch_lock);
2082                 break;
2083         case CPUFREQ_POLICY_NOTIFIER:
2084                 ret = blocking_notifier_chain_register(
2085                                 &cpufreq_policy_notifier_list, nb);
2086                 break;
2087         default:
2088                 ret = -EINVAL;
2089         }
2090
2091         return ret;
2092 }
2093 EXPORT_SYMBOL(cpufreq_register_notifier);
2094
2095 /**
2096  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097  * @nb: notifier block to be unregistered.
2098  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099  *
2100  * Remove a notifier from one of the cpufreq notifier lists.
2101  *
2102  * This function may sleep and it has the same return values as
2103  * blocking_notifier_chain_unregister().
2104  */
2105 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106 {
2107         int ret;
2108
2109         if (cpufreq_disabled())
2110                 return -EINVAL;
2111
2112         switch (list) {
2113         case CPUFREQ_TRANSITION_NOTIFIER:
2114                 mutex_lock(&cpufreq_fast_switch_lock);
2115
2116                 ret = srcu_notifier_chain_unregister(
2117                                 &cpufreq_transition_notifier_list, nb);
2118                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119                         cpufreq_fast_switch_count++;
2120
2121                 mutex_unlock(&cpufreq_fast_switch_lock);
2122                 break;
2123         case CPUFREQ_POLICY_NOTIFIER:
2124                 ret = blocking_notifier_chain_unregister(
2125                                 &cpufreq_policy_notifier_list, nb);
2126                 break;
2127         default:
2128                 ret = -EINVAL;
2129         }
2130
2131         return ret;
2132 }
2133 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136 /*********************************************************************
2137  *                              GOVERNORS                            *
2138  *********************************************************************/
2139
2140 /**
2141  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142  * @policy: cpufreq policy to switch the frequency for.
2143  * @target_freq: New frequency to set (may be approximate).
2144  *
2145  * Carry out a fast frequency switch without sleeping.
2146  *
2147  * The driver's ->fast_switch() callback invoked by this function must be
2148  * suitable for being called from within RCU-sched read-side critical sections
2149  * and it is expected to select the minimum available frequency greater than or
2150  * equal to @target_freq (CPUFREQ_RELATION_L).
2151  *
2152  * This function must not be called if policy->fast_switch_enabled is unset.
2153  *
2154  * Governors calling this function must guarantee that it will never be invoked
2155  * twice in parallel for the same policy and that it will never be called in
2156  * parallel with either ->target() or ->target_index() for the same policy.
2157  *
2158  * Returns the actual frequency set for the CPU.
2159  *
2160  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161  * error condition, the hardware configuration must be preserved.
2162  */
2163 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164                                         unsigned int target_freq)
2165 {
2166         unsigned int freq;
2167         int cpu;
2168
2169         target_freq = clamp_val(target_freq, policy->min, policy->max);
2170         freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172         if (!freq)
2173                 return 0;
2174
2175         policy->cur = freq;
2176         arch_set_freq_scale(policy->related_cpus, freq,
2177                             policy->cpuinfo.max_freq);
2178         cpufreq_stats_record_transition(policy, freq);
2179
2180         if (trace_cpu_frequency_enabled()) {
2181                 for_each_cpu(cpu, policy->cpus)
2182                         trace_cpu_frequency(freq, cpu);
2183         }
2184
2185         return freq;
2186 }
2187 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189 /**
2190  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191  * @cpu: Target CPU.
2192  * @min_perf: Minimum (required) performance level (units of @capacity).
2193  * @target_perf: Target (desired) performance level (units of @capacity).
2194  * @capacity: Capacity of the target CPU.
2195  *
2196  * Carry out a fast performance level switch of @cpu without sleeping.
2197  *
2198  * The driver's ->adjust_perf() callback invoked by this function must be
2199  * suitable for being called from within RCU-sched read-side critical sections
2200  * and it is expected to select a suitable performance level equal to or above
2201  * @min_perf and preferably equal to or below @target_perf.
2202  *
2203  * This function must not be called if policy->fast_switch_enabled is unset.
2204  *
2205  * Governors calling this function must guarantee that it will never be invoked
2206  * twice in parallel for the same CPU and that it will never be called in
2207  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208  * the same CPU.
2209  */
2210 void cpufreq_driver_adjust_perf(unsigned int cpu,
2211                                  unsigned long min_perf,
2212                                  unsigned long target_perf,
2213                                  unsigned long capacity)
2214 {
2215         cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216 }
2217
2218 /**
2219  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220  *
2221  * Return 'true' if the ->adjust_perf callback is present for the
2222  * current driver or 'false' otherwise.
2223  */
2224 bool cpufreq_driver_has_adjust_perf(void)
2225 {
2226         return !!cpufreq_driver->adjust_perf;
2227 }
2228
2229 /* Must set freqs->new to intermediate frequency */
2230 static int __target_intermediate(struct cpufreq_policy *policy,
2231                                  struct cpufreq_freqs *freqs, int index)
2232 {
2233         int ret;
2234
2235         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237         /* We don't need to switch to intermediate freq */
2238         if (!freqs->new)
2239                 return 0;
2240
2241         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242                  __func__, policy->cpu, freqs->old, freqs->new);
2243
2244         cpufreq_freq_transition_begin(policy, freqs);
2245         ret = cpufreq_driver->target_intermediate(policy, index);
2246         cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248         if (ret)
2249                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250                        __func__, ret);
2251
2252         return ret;
2253 }
2254
2255 static int __target_index(struct cpufreq_policy *policy, int index)
2256 {
2257         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258         unsigned int restore_freq, intermediate_freq = 0;
2259         unsigned int newfreq = policy->freq_table[index].frequency;
2260         int retval = -EINVAL;
2261         bool notify;
2262
2263         if (newfreq == policy->cur)
2264                 return 0;
2265
2266         /* Save last value to restore later on errors */
2267         restore_freq = policy->cur;
2268
2269         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270         if (notify) {
2271                 /* Handle switching to intermediate frequency */
2272                 if (cpufreq_driver->get_intermediate) {
2273                         retval = __target_intermediate(policy, &freqs, index);
2274                         if (retval)
2275                                 return retval;
2276
2277                         intermediate_freq = freqs.new;
2278                         /* Set old freq to intermediate */
2279                         if (intermediate_freq)
2280                                 freqs.old = freqs.new;
2281                 }
2282
2283                 freqs.new = newfreq;
2284                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285                          __func__, policy->cpu, freqs.old, freqs.new);
2286
2287                 cpufreq_freq_transition_begin(policy, &freqs);
2288         }
2289
2290         retval = cpufreq_driver->target_index(policy, index);
2291         if (retval)
2292                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293                        retval);
2294
2295         if (notify) {
2296                 cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298                 /*
2299                  * Failed after setting to intermediate freq? Driver should have
2300                  * reverted back to initial frequency and so should we. Check
2301                  * here for intermediate_freq instead of get_intermediate, in
2302                  * case we haven't switched to intermediate freq at all.
2303                  */
2304                 if (unlikely(retval && intermediate_freq)) {
2305                         freqs.old = intermediate_freq;
2306                         freqs.new = restore_freq;
2307                         cpufreq_freq_transition_begin(policy, &freqs);
2308                         cpufreq_freq_transition_end(policy, &freqs, 0);
2309                 }
2310         }
2311
2312         return retval;
2313 }
2314
2315 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316                             unsigned int target_freq,
2317                             unsigned int relation)
2318 {
2319         unsigned int old_target_freq = target_freq;
2320
2321         if (cpufreq_disabled())
2322                 return -ENODEV;
2323
2324         target_freq = __resolve_freq(policy, target_freq, relation);
2325
2326         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327                  policy->cpu, target_freq, relation, old_target_freq);
2328
2329         /*
2330          * This might look like a redundant call as we are checking it again
2331          * after finding index. But it is left intentionally for cases where
2332          * exactly same freq is called again and so we can save on few function
2333          * calls.
2334          */
2335         if (target_freq == policy->cur &&
2336             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337                 return 0;
2338
2339         if (cpufreq_driver->target) {
2340                 /*
2341                  * If the driver hasn't setup a single inefficient frequency,
2342                  * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343                  */
2344                 if (!policy->efficiencies_available)
2345                         relation &= ~CPUFREQ_RELATION_E;
2346
2347                 return cpufreq_driver->target(policy, target_freq, relation);
2348         }
2349
2350         if (!cpufreq_driver->target_index)
2351                 return -EINVAL;
2352
2353         return __target_index(policy, policy->cached_resolved_idx);
2354 }
2355 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357 int cpufreq_driver_target(struct cpufreq_policy *policy,
2358                           unsigned int target_freq,
2359                           unsigned int relation)
2360 {
2361         int ret;
2362
2363         down_write(&policy->rwsem);
2364
2365         ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367         up_write(&policy->rwsem);
2368
2369         return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374 {
2375         return NULL;
2376 }
2377
2378 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379 {
2380         int ret;
2381
2382         /* Don't start any governor operations if we are entering suspend */
2383         if (cpufreq_suspended)
2384                 return 0;
2385         /*
2386          * Governor might not be initiated here if ACPI _PPC changed
2387          * notification happened, so check it.
2388          */
2389         if (!policy->governor)
2390                 return -EINVAL;
2391
2392         /* Platform doesn't want dynamic frequency switching ? */
2393         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397                 if (gov) {
2398                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399                                 policy->governor->name, gov->name);
2400                         policy->governor = gov;
2401                 } else {
2402                         return -EINVAL;
2403                 }
2404         }
2405
2406         if (!try_module_get(policy->governor->owner))
2407                 return -EINVAL;
2408
2409         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411         if (policy->governor->init) {
2412                 ret = policy->governor->init(policy);
2413                 if (ret) {
2414                         module_put(policy->governor->owner);
2415                         return ret;
2416                 }
2417         }
2418
2419         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421         return 0;
2422 }
2423
2424 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425 {
2426         if (cpufreq_suspended || !policy->governor)
2427                 return;
2428
2429         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431         if (policy->governor->exit)
2432                 policy->governor->exit(policy);
2433
2434         module_put(policy->governor->owner);
2435 }
2436
2437 int cpufreq_start_governor(struct cpufreq_policy *policy)
2438 {
2439         int ret;
2440
2441         if (cpufreq_suspended)
2442                 return 0;
2443
2444         if (!policy->governor)
2445                 return -EINVAL;
2446
2447         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449         if (cpufreq_driver->get)
2450                 cpufreq_verify_current_freq(policy, false);
2451
2452         if (policy->governor->start) {
2453                 ret = policy->governor->start(policy);
2454                 if (ret)
2455                         return ret;
2456         }
2457
2458         if (policy->governor->limits)
2459                 policy->governor->limits(policy);
2460
2461         return 0;
2462 }
2463
2464 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465 {
2466         if (cpufreq_suspended || !policy->governor)
2467                 return;
2468
2469         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471         if (policy->governor->stop)
2472                 policy->governor->stop(policy);
2473 }
2474
2475 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476 {
2477         if (cpufreq_suspended || !policy->governor)
2478                 return;
2479
2480         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482         if (policy->governor->limits)
2483                 policy->governor->limits(policy);
2484 }
2485
2486 int cpufreq_register_governor(struct cpufreq_governor *governor)
2487 {
2488         int err;
2489
2490         if (!governor)
2491                 return -EINVAL;
2492
2493         if (cpufreq_disabled())
2494                 return -ENODEV;
2495
2496         mutex_lock(&cpufreq_governor_mutex);
2497
2498         err = -EBUSY;
2499         if (!find_governor(governor->name)) {
2500                 err = 0;
2501                 list_add(&governor->governor_list, &cpufreq_governor_list);
2502         }
2503
2504         mutex_unlock(&cpufreq_governor_mutex);
2505         return err;
2506 }
2507 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
2509 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510 {
2511         struct cpufreq_policy *policy;
2512         unsigned long flags;
2513
2514         if (!governor)
2515                 return;
2516
2517         if (cpufreq_disabled())
2518                 return;
2519
2520         /* clear last_governor for all inactive policies */
2521         read_lock_irqsave(&cpufreq_driver_lock, flags);
2522         for_each_inactive_policy(policy) {
2523                 if (!strcmp(policy->last_governor, governor->name)) {
2524                         policy->governor = NULL;
2525                         strcpy(policy->last_governor, "\0");
2526                 }
2527         }
2528         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530         mutex_lock(&cpufreq_governor_mutex);
2531         list_del(&governor->governor_list);
2532         mutex_unlock(&cpufreq_governor_mutex);
2533 }
2534 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
2537 /*********************************************************************
2538  *                          POLICY INTERFACE                         *
2539  *********************************************************************/
2540
2541 /**
2542  * cpufreq_get_policy - get the current cpufreq_policy
2543  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544  *      is written
2545  * @cpu: CPU to find the policy for
2546  *
2547  * Reads the current cpufreq policy.
2548  */
2549 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550 {
2551         struct cpufreq_policy *cpu_policy;
2552         if (!policy)
2553                 return -EINVAL;
2554
2555         cpu_policy = cpufreq_cpu_get(cpu);
2556         if (!cpu_policy)
2557                 return -EINVAL;
2558
2559         memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561         cpufreq_cpu_put(cpu_policy);
2562         return 0;
2563 }
2564 EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566 /**
2567  * cpufreq_set_policy - Modify cpufreq policy parameters.
2568  * @policy: Policy object to modify.
2569  * @new_gov: Policy governor pointer.
2570  * @new_pol: Policy value (for drivers with built-in governors).
2571  *
2572  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573  * limits to be set for the policy, update @policy with the verified limits
2574  * values and either invoke the driver's ->setpolicy() callback (if present) or
2575  * carry out a governor update for @policy.  That is, run the current governor's
2576  * ->limits() callback (if @new_gov points to the same object as the one in
2577  * @policy) or replace the governor for @policy with @new_gov.
2578  *
2579  * The cpuinfo part of @policy is not updated by this function.
2580  */
2581 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582                               struct cpufreq_governor *new_gov,
2583                               unsigned int new_pol)
2584 {
2585         struct cpufreq_policy_data new_data;
2586         struct cpufreq_governor *old_gov;
2587         int ret;
2588
2589         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590         new_data.freq_table = policy->freq_table;
2591         new_data.cpu = policy->cpu;
2592         /*
2593          * PM QoS framework collects all the requests from users and provide us
2594          * the final aggregated value here.
2595          */
2596         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600                  new_data.cpu, new_data.min, new_data.max);
2601
2602         /*
2603          * Verify that the CPU speed can be set within these limits and make sure
2604          * that min <= max.
2605          */
2606         ret = cpufreq_driver->verify(&new_data);
2607         if (ret)
2608                 return ret;
2609
2610         /*
2611          * Resolve policy min/max to available frequencies. It ensures
2612          * no frequency resolution will neither overshoot the requested maximum
2613          * nor undershoot the requested minimum.
2614          */
2615         policy->min = new_data.min;
2616         policy->max = new_data.max;
2617         policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618         policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619         trace_cpu_frequency_limits(policy);
2620
2621         policy->cached_target_freq = UINT_MAX;
2622
2623         pr_debug("new min and max freqs are %u - %u kHz\n",
2624                  policy->min, policy->max);
2625
2626         if (cpufreq_driver->setpolicy) {
2627                 policy->policy = new_pol;
2628                 pr_debug("setting range\n");
2629                 return cpufreq_driver->setpolicy(policy);
2630         }
2631
2632         if (new_gov == policy->governor) {
2633                 pr_debug("governor limits update\n");
2634                 cpufreq_governor_limits(policy);
2635                 return 0;
2636         }
2637
2638         pr_debug("governor switch\n");
2639
2640         /* save old, working values */
2641         old_gov = policy->governor;
2642         /* end old governor */
2643         if (old_gov) {
2644                 cpufreq_stop_governor(policy);
2645                 cpufreq_exit_governor(policy);
2646         }
2647
2648         /* start new governor */
2649         policy->governor = new_gov;
2650         ret = cpufreq_init_governor(policy);
2651         if (!ret) {
2652                 ret = cpufreq_start_governor(policy);
2653                 if (!ret) {
2654                         pr_debug("governor change\n");
2655                         sched_cpufreq_governor_change(policy, old_gov);
2656                         return 0;
2657                 }
2658                 cpufreq_exit_governor(policy);
2659         }
2660
2661         /* new governor failed, so re-start old one */
2662         pr_debug("starting governor %s failed\n", policy->governor->name);
2663         if (old_gov) {
2664                 policy->governor = old_gov;
2665                 if (cpufreq_init_governor(policy))
2666                         policy->governor = NULL;
2667                 else
2668                         cpufreq_start_governor(policy);
2669         }
2670
2671         return ret;
2672 }
2673
2674 /**
2675  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2676  * @cpu: CPU to re-evaluate the policy for.
2677  *
2678  * Update the current frequency for the cpufreq policy of @cpu and use
2679  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2680  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2681  * for the policy in question, among other things.
2682  */
2683 void cpufreq_update_policy(unsigned int cpu)
2684 {
2685         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2686
2687         if (!policy)
2688                 return;
2689
2690         /*
2691          * BIOS might change freq behind our back
2692          * -> ask driver for current freq and notify governors about a change
2693          */
2694         if (cpufreq_driver->get && has_target() &&
2695             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2696                 goto unlock;
2697
2698         refresh_frequency_limits(policy);
2699
2700 unlock:
2701         cpufreq_cpu_release(policy);
2702 }
2703 EXPORT_SYMBOL(cpufreq_update_policy);
2704
2705 /**
2706  * cpufreq_update_limits - Update policy limits for a given CPU.
2707  * @cpu: CPU to update the policy limits for.
2708  *
2709  * Invoke the driver's ->update_limits callback if present or call
2710  * cpufreq_update_policy() for @cpu.
2711  */
2712 void cpufreq_update_limits(unsigned int cpu)
2713 {
2714         if (cpufreq_driver->update_limits)
2715                 cpufreq_driver->update_limits(cpu);
2716         else
2717                 cpufreq_update_policy(cpu);
2718 }
2719 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2720
2721 /*********************************************************************
2722  *               BOOST                                               *
2723  *********************************************************************/
2724 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2725 {
2726         int ret;
2727
2728         if (!policy->freq_table)
2729                 return -ENXIO;
2730
2731         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2732         if (ret) {
2733                 pr_err("%s: Policy frequency update failed\n", __func__);
2734                 return ret;
2735         }
2736
2737         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2738         if (ret < 0)
2739                 return ret;
2740
2741         return 0;
2742 }
2743
2744 int cpufreq_boost_trigger_state(int state)
2745 {
2746         struct cpufreq_policy *policy;
2747         unsigned long flags;
2748         int ret = 0;
2749
2750         if (cpufreq_driver->boost_enabled == state)
2751                 return 0;
2752
2753         write_lock_irqsave(&cpufreq_driver_lock, flags);
2754         cpufreq_driver->boost_enabled = state;
2755         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2756
2757         cpus_read_lock();
2758         for_each_active_policy(policy) {
2759                 ret = cpufreq_driver->set_boost(policy, state);
2760                 if (ret)
2761                         goto err_reset_state;
2762
2763                 policy->boost_enabled = state;
2764         }
2765         cpus_read_unlock();
2766
2767         return 0;
2768
2769 err_reset_state:
2770         cpus_read_unlock();
2771
2772         write_lock_irqsave(&cpufreq_driver_lock, flags);
2773         cpufreq_driver->boost_enabled = !state;
2774         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2775
2776         pr_err("%s: Cannot %s BOOST\n",
2777                __func__, state ? "enable" : "disable");
2778
2779         return ret;
2780 }
2781
2782 static bool cpufreq_boost_supported(void)
2783 {
2784         return cpufreq_driver->set_boost;
2785 }
2786
2787 static int create_boost_sysfs_file(void)
2788 {
2789         int ret;
2790
2791         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2792         if (ret)
2793                 pr_err("%s: cannot register global BOOST sysfs file\n",
2794                        __func__);
2795
2796         return ret;
2797 }
2798
2799 static void remove_boost_sysfs_file(void)
2800 {
2801         if (cpufreq_boost_supported())
2802                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2803 }
2804
2805 int cpufreq_enable_boost_support(void)
2806 {
2807         if (!cpufreq_driver)
2808                 return -EINVAL;
2809
2810         if (cpufreq_boost_supported())
2811                 return 0;
2812
2813         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2814
2815         /* This will get removed on driver unregister */
2816         return create_boost_sysfs_file();
2817 }
2818 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2819
2820 int cpufreq_boost_enabled(void)
2821 {
2822         return cpufreq_driver->boost_enabled;
2823 }
2824 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2825
2826 /*********************************************************************
2827  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2828  *********************************************************************/
2829 static enum cpuhp_state hp_online;
2830
2831 static int cpuhp_cpufreq_online(unsigned int cpu)
2832 {
2833         cpufreq_online(cpu);
2834
2835         return 0;
2836 }
2837
2838 static int cpuhp_cpufreq_offline(unsigned int cpu)
2839 {
2840         cpufreq_offline(cpu);
2841
2842         return 0;
2843 }
2844
2845 /**
2846  * cpufreq_register_driver - register a CPU Frequency driver
2847  * @driver_data: A struct cpufreq_driver containing the values#
2848  * submitted by the CPU Frequency driver.
2849  *
2850  * Registers a CPU Frequency driver to this core code. This code
2851  * returns zero on success, -EEXIST when another driver got here first
2852  * (and isn't unregistered in the meantime).
2853  *
2854  */
2855 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2856 {
2857         unsigned long flags;
2858         int ret;
2859
2860         if (cpufreq_disabled())
2861                 return -ENODEV;
2862
2863         /*
2864          * The cpufreq core depends heavily on the availability of device
2865          * structure, make sure they are available before proceeding further.
2866          */
2867         if (!get_cpu_device(0))
2868                 return -EPROBE_DEFER;
2869
2870         if (!driver_data || !driver_data->verify || !driver_data->init ||
2871             !(driver_data->setpolicy || driver_data->target_index ||
2872                     driver_data->target) ||
2873              (driver_data->setpolicy && (driver_data->target_index ||
2874                     driver_data->target)) ||
2875              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2876              (!driver_data->online != !driver_data->offline) ||
2877                  (driver_data->adjust_perf && !driver_data->fast_switch))
2878                 return -EINVAL;
2879
2880         pr_debug("trying to register driver %s\n", driver_data->name);
2881
2882         /* Protect against concurrent CPU online/offline. */
2883         cpus_read_lock();
2884
2885         write_lock_irqsave(&cpufreq_driver_lock, flags);
2886         if (cpufreq_driver) {
2887                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2888                 ret = -EEXIST;
2889                 goto out;
2890         }
2891         cpufreq_driver = driver_data;
2892         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2893
2894         /*
2895          * Mark support for the scheduler's frequency invariance engine for
2896          * drivers that implement target(), target_index() or fast_switch().
2897          */
2898         if (!cpufreq_driver->setpolicy) {
2899                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2900                 pr_debug("supports frequency invariance");
2901         }
2902
2903         if (driver_data->setpolicy)
2904                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2905
2906         if (cpufreq_boost_supported()) {
2907                 ret = create_boost_sysfs_file();
2908                 if (ret)
2909                         goto err_null_driver;
2910         }
2911
2912         ret = subsys_interface_register(&cpufreq_interface);
2913         if (ret)
2914                 goto err_boost_unreg;
2915
2916         if (unlikely(list_empty(&cpufreq_policy_list))) {
2917                 /* if all ->init() calls failed, unregister */
2918                 ret = -ENODEV;
2919                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2920                          driver_data->name);
2921                 goto err_if_unreg;
2922         }
2923
2924         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2925                                                    "cpufreq:online",
2926                                                    cpuhp_cpufreq_online,
2927                                                    cpuhp_cpufreq_offline);
2928         if (ret < 0)
2929                 goto err_if_unreg;
2930         hp_online = ret;
2931         ret = 0;
2932
2933         pr_debug("driver %s up and running\n", driver_data->name);
2934         goto out;
2935
2936 err_if_unreg:
2937         subsys_interface_unregister(&cpufreq_interface);
2938 err_boost_unreg:
2939         remove_boost_sysfs_file();
2940 err_null_driver:
2941         write_lock_irqsave(&cpufreq_driver_lock, flags);
2942         cpufreq_driver = NULL;
2943         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2944 out:
2945         cpus_read_unlock();
2946         return ret;
2947 }
2948 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2949
2950 /*
2951  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2952  *
2953  * Unregister the current CPUFreq driver. Only call this if you have
2954  * the right to do so, i.e. if you have succeeded in initialising before!
2955  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2956  * currently not initialised.
2957  */
2958 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2959 {
2960         unsigned long flags;
2961
2962         if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2963                 return;
2964
2965         pr_debug("unregistering driver %s\n", driver->name);
2966
2967         /* Protect against concurrent cpu hotplug */
2968         cpus_read_lock();
2969         subsys_interface_unregister(&cpufreq_interface);
2970         remove_boost_sysfs_file();
2971         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2972         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2973
2974         write_lock_irqsave(&cpufreq_driver_lock, flags);
2975
2976         cpufreq_driver = NULL;
2977
2978         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2979         cpus_read_unlock();
2980 }
2981 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2982
2983 static int __init cpufreq_core_init(void)
2984 {
2985         struct cpufreq_governor *gov = cpufreq_default_governor();
2986         struct device *dev_root;
2987
2988         if (cpufreq_disabled())
2989                 return -ENODEV;
2990
2991         dev_root = bus_get_dev_root(&cpu_subsys);
2992         if (dev_root) {
2993                 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2994                 put_device(dev_root);
2995         }
2996         BUG_ON(!cpufreq_global_kobject);
2997
2998         if (!strlen(default_governor))
2999                 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3000
3001         return 0;
3002 }
3003 module_param(off, int, 0444);
3004 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3005 core_initcall(cpufreq_core_init);