Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67         return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77
78 /**
79  * Two notifier lists: the "policy" list is involved in the
80  * validation process for a new CPU frequency policy; the
81  * "transition" list for kernel code that needs to handle
82  * changes to devices when the CPU clock speed changes.
83  * The mutex locks both lists.
84  */
85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
87
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91         return off;
92 }
93 void disable_cpufreq(void)
94 {
95         off = 1;
96 }
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99 bool have_governor_per_policy(void)
100 {
101         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107         if (have_governor_per_policy())
108                 return &policy->kobj;
109         else
110                 return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116         u64 idle_time;
117         u64 cur_wall_time;
118         u64 busy_time;
119
120         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
121
122         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129         idle_time = cur_wall_time - busy_time;
130         if (wall)
131                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
132
133         return div_u64(idle_time, NSEC_PER_USEC);
134 }
135
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140         if (idle_time == -1ULL)
141                 return get_cpu_idle_time_jiffy(cpu, wall);
142         else if (!io_busy)
143                 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145         return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
150                 unsigned long max_freq)
151 {
152 }
153 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
154
155 /*
156  * This is a generic cpufreq init() routine which can be used by cpufreq
157  * drivers of SMP systems. It will do following:
158  * - validate & show freq table passed
159  * - set policies transition latency
160  * - policy->cpus with all possible CPUs
161  */
162 void cpufreq_generic_init(struct cpufreq_policy *policy,
163                 struct cpufreq_frequency_table *table,
164                 unsigned int transition_latency)
165 {
166         policy->freq_table = table;
167         policy->cpuinfo.transition_latency = transition_latency;
168
169         /*
170          * The driver only supports the SMP configuration where all processors
171          * share the clock and voltage and clock.
172          */
173         cpumask_setall(policy->cpus);
174 }
175 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
176
177 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
178 {
179         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
180
181         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
184
185 unsigned int cpufreq_generic_get(unsigned int cpu)
186 {
187         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
188
189         if (!policy || IS_ERR(policy->clk)) {
190                 pr_err("%s: No %s associated to cpu: %d\n",
191                        __func__, policy ? "clk" : "policy", cpu);
192                 return 0;
193         }
194
195         return clk_get_rate(policy->clk) / 1000;
196 }
197 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
198
199 /**
200  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
201  * @cpu: CPU to find the policy for.
202  *
203  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
204  * the kobject reference counter of that policy.  Return a valid policy on
205  * success or NULL on failure.
206  *
207  * The policy returned by this function has to be released with the help of
208  * cpufreq_cpu_put() to balance its kobject reference counter properly.
209  */
210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
211 {
212         struct cpufreq_policy *policy = NULL;
213         unsigned long flags;
214
215         if (WARN_ON(cpu >= nr_cpu_ids))
216                 return NULL;
217
218         /* get the cpufreq driver */
219         read_lock_irqsave(&cpufreq_driver_lock, flags);
220
221         if (cpufreq_driver) {
222                 /* get the CPU */
223                 policy = cpufreq_cpu_get_raw(cpu);
224                 if (policy)
225                         kobject_get(&policy->kobj);
226         }
227
228         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
229
230         return policy;
231 }
232 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
233
234 /**
235  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
236  * @policy: cpufreq policy returned by cpufreq_cpu_get().
237  */
238 void cpufreq_cpu_put(struct cpufreq_policy *policy)
239 {
240         kobject_put(&policy->kobj);
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
243
244 /**
245  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
246  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
247  */
248 void cpufreq_cpu_release(struct cpufreq_policy *policy)
249 {
250         if (WARN_ON(!policy))
251                 return;
252
253         lockdep_assert_held(&policy->rwsem);
254
255         up_write(&policy->rwsem);
256
257         cpufreq_cpu_put(policy);
258 }
259
260 /**
261  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
262  * @cpu: CPU to find the policy for.
263  *
264  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
265  * if the policy returned by it is not NULL, acquire its rwsem for writing.
266  * Return the policy if it is active or release it and return NULL otherwise.
267  *
268  * The policy returned by this function has to be released with the help of
269  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
270  * counter properly.
271  */
272 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
273 {
274         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
275
276         if (!policy)
277                 return NULL;
278
279         down_write(&policy->rwsem);
280
281         if (policy_is_inactive(policy)) {
282                 cpufreq_cpu_release(policy);
283                 return NULL;
284         }
285
286         return policy;
287 }
288
289 /*********************************************************************
290  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
291  *********************************************************************/
292
293 /**
294  * adjust_jiffies - adjust the system "loops_per_jiffy"
295  *
296  * This function alters the system "loops_per_jiffy" for the clock
297  * speed change. Note that loops_per_jiffy cannot be updated on SMP
298  * systems as each CPU might be scaled differently. So, use the arch
299  * per-CPU loops_per_jiffy value wherever possible.
300  */
301 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
302 {
303 #ifndef CONFIG_SMP
304         static unsigned long l_p_j_ref;
305         static unsigned int l_p_j_ref_freq;
306
307         if (ci->flags & CPUFREQ_CONST_LOOPS)
308                 return;
309
310         if (!l_p_j_ref_freq) {
311                 l_p_j_ref = loops_per_jiffy;
312                 l_p_j_ref_freq = ci->old;
313                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
314                          l_p_j_ref, l_p_j_ref_freq);
315         }
316         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
317                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
318                                                                 ci->new);
319                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
320                          loops_per_jiffy, ci->new);
321         }
322 #endif
323 }
324
325 /**
326  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
327  * @policy: cpufreq policy to enable fast frequency switching for.
328  * @freqs: contain details of the frequency update.
329  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
330  *
331  * This function calls the transition notifiers and the "adjust_jiffies"
332  * function. It is called twice on all CPU frequency changes that have
333  * external effects.
334  */
335 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
336                                       struct cpufreq_freqs *freqs,
337                                       unsigned int state)
338 {
339         int cpu;
340
341         BUG_ON(irqs_disabled());
342
343         if (cpufreq_disabled())
344                 return;
345
346         freqs->policy = policy;
347         freqs->flags = cpufreq_driver->flags;
348         pr_debug("notification %u of frequency transition to %u kHz\n",
349                  state, freqs->new);
350
351         switch (state) {
352         case CPUFREQ_PRECHANGE:
353                 /*
354                  * Detect if the driver reported a value as "old frequency"
355                  * which is not equal to what the cpufreq core thinks is
356                  * "old frequency".
357                  */
358                 if (policy->cur && policy->cur != freqs->old) {
359                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
360                                  freqs->old, policy->cur);
361                         freqs->old = policy->cur;
362                 }
363
364                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
365                                          CPUFREQ_PRECHANGE, freqs);
366
367                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
368                 break;
369
370         case CPUFREQ_POSTCHANGE:
371                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
372                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
373                          cpumask_pr_args(policy->cpus));
374
375                 for_each_cpu(cpu, policy->cpus)
376                         trace_cpu_frequency(freqs->new, cpu);
377
378                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379                                          CPUFREQ_POSTCHANGE, freqs);
380
381                 cpufreq_stats_record_transition(policy, freqs->new);
382                 policy->cur = freqs->new;
383         }
384 }
385
386 /* Do post notifications when there are chances that transition has failed */
387 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
388                 struct cpufreq_freqs *freqs, int transition_failed)
389 {
390         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
391         if (!transition_failed)
392                 return;
393
394         swap(freqs->old, freqs->new);
395         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
396         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397 }
398
399 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
400                 struct cpufreq_freqs *freqs)
401 {
402
403         /*
404          * Catch double invocations of _begin() which lead to self-deadlock.
405          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
406          * doesn't invoke _begin() on their behalf, and hence the chances of
407          * double invocations are very low. Moreover, there are scenarios
408          * where these checks can emit false-positive warnings in these
409          * drivers; so we avoid that by skipping them altogether.
410          */
411         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
412                                 && current == policy->transition_task);
413
414 wait:
415         wait_event(policy->transition_wait, !policy->transition_ongoing);
416
417         spin_lock(&policy->transition_lock);
418
419         if (unlikely(policy->transition_ongoing)) {
420                 spin_unlock(&policy->transition_lock);
421                 goto wait;
422         }
423
424         policy->transition_ongoing = true;
425         policy->transition_task = current;
426
427         spin_unlock(&policy->transition_lock);
428
429         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
430 }
431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
432
433 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
434                 struct cpufreq_freqs *freqs, int transition_failed)
435 {
436         if (WARN_ON(!policy->transition_ongoing))
437                 return;
438
439         cpufreq_notify_post_transition(policy, freqs, transition_failed);
440
441         policy->transition_ongoing = false;
442         policy->transition_task = NULL;
443
444         wake_up(&policy->transition_wait);
445 }
446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
447
448 /*
449  * Fast frequency switching status count.  Positive means "enabled", negative
450  * means "disabled" and 0 means "not decided yet".
451  */
452 static int cpufreq_fast_switch_count;
453 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
454
455 static void cpufreq_list_transition_notifiers(void)
456 {
457         struct notifier_block *nb;
458
459         pr_info("Registered transition notifiers:\n");
460
461         mutex_lock(&cpufreq_transition_notifier_list.mutex);
462
463         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
464                 pr_info("%pS\n", nb->notifier_call);
465
466         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
467 }
468
469 /**
470  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
471  * @policy: cpufreq policy to enable fast frequency switching for.
472  *
473  * Try to enable fast frequency switching for @policy.
474  *
475  * The attempt will fail if there is at least one transition notifier registered
476  * at this point, as fast frequency switching is quite fundamentally at odds
477  * with transition notifiers.  Thus if successful, it will make registration of
478  * transition notifiers fail going forward.
479  */
480 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
481 {
482         lockdep_assert_held(&policy->rwsem);
483
484         if (!policy->fast_switch_possible)
485                 return;
486
487         mutex_lock(&cpufreq_fast_switch_lock);
488         if (cpufreq_fast_switch_count >= 0) {
489                 cpufreq_fast_switch_count++;
490                 policy->fast_switch_enabled = true;
491         } else {
492                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
493                         policy->cpu);
494                 cpufreq_list_transition_notifiers();
495         }
496         mutex_unlock(&cpufreq_fast_switch_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
499
500 /**
501  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
502  * @policy: cpufreq policy to disable fast frequency switching for.
503  */
504 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
505 {
506         mutex_lock(&cpufreq_fast_switch_lock);
507         if (policy->fast_switch_enabled) {
508                 policy->fast_switch_enabled = false;
509                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
510                         cpufreq_fast_switch_count--;
511         }
512         mutex_unlock(&cpufreq_fast_switch_lock);
513 }
514 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
515
516 /**
517  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
518  * one.
519  * @target_freq: target frequency to resolve.
520  *
521  * The target to driver frequency mapping is cached in the policy.
522  *
523  * Return: Lowest driver-supported frequency greater than or equal to the
524  * given target_freq, subject to policy (min/max) and driver limitations.
525  */
526 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
527                                          unsigned int target_freq)
528 {
529         target_freq = clamp_val(target_freq, policy->min, policy->max);
530         policy->cached_target_freq = target_freq;
531
532         if (cpufreq_driver->target_index) {
533                 int idx;
534
535                 idx = cpufreq_frequency_table_target(policy, target_freq,
536                                                      CPUFREQ_RELATION_L);
537                 policy->cached_resolved_idx = idx;
538                 return policy->freq_table[idx].frequency;
539         }
540
541         if (cpufreq_driver->resolve_freq)
542                 return cpufreq_driver->resolve_freq(policy, target_freq);
543
544         return target_freq;
545 }
546 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
547
548 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
549 {
550         unsigned int latency;
551
552         if (policy->transition_delay_us)
553                 return policy->transition_delay_us;
554
555         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
556         if (latency) {
557                 /*
558                  * For platforms that can change the frequency very fast (< 10
559                  * us), the above formula gives a decent transition delay. But
560                  * for platforms where transition_latency is in milliseconds, it
561                  * ends up giving unrealistic values.
562                  *
563                  * Cap the default transition delay to 10 ms, which seems to be
564                  * a reasonable amount of time after which we should reevaluate
565                  * the frequency.
566                  */
567                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
568         }
569
570         return LATENCY_MULTIPLIER;
571 }
572 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
573
574 /*********************************************************************
575  *                          SYSFS INTERFACE                          *
576  *********************************************************************/
577 static ssize_t show_boost(struct kobject *kobj,
578                           struct kobj_attribute *attr, char *buf)
579 {
580         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
581 }
582
583 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
584                            const char *buf, size_t count)
585 {
586         int ret, enable;
587
588         ret = sscanf(buf, "%d", &enable);
589         if (ret != 1 || enable < 0 || enable > 1)
590                 return -EINVAL;
591
592         if (cpufreq_boost_trigger_state(enable)) {
593                 pr_err("%s: Cannot %s BOOST!\n",
594                        __func__, enable ? "enable" : "disable");
595                 return -EINVAL;
596         }
597
598         pr_debug("%s: cpufreq BOOST %s\n",
599                  __func__, enable ? "enabled" : "disabled");
600
601         return count;
602 }
603 define_one_global_rw(boost);
604
605 static struct cpufreq_governor *find_governor(const char *str_governor)
606 {
607         struct cpufreq_governor *t;
608
609         for_each_governor(t)
610                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
611                         return t;
612
613         return NULL;
614 }
615
616 static int cpufreq_parse_policy(char *str_governor,
617                                 struct cpufreq_policy *policy)
618 {
619         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
620                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
621                 return 0;
622         }
623         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
624                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
625                 return 0;
626         }
627         return -EINVAL;
628 }
629
630 /**
631  * cpufreq_parse_governor - parse a governor string only for has_target()
632  */
633 static int cpufreq_parse_governor(char *str_governor,
634                                   struct cpufreq_policy *policy)
635 {
636         struct cpufreq_governor *t;
637
638         mutex_lock(&cpufreq_governor_mutex);
639
640         t = find_governor(str_governor);
641         if (!t) {
642                 int ret;
643
644                 mutex_unlock(&cpufreq_governor_mutex);
645
646                 ret = request_module("cpufreq_%s", str_governor);
647                 if (ret)
648                         return -EINVAL;
649
650                 mutex_lock(&cpufreq_governor_mutex);
651
652                 t = find_governor(str_governor);
653         }
654         if (t && !try_module_get(t->owner))
655                 t = NULL;
656
657         mutex_unlock(&cpufreq_governor_mutex);
658
659         if (t) {
660                 policy->governor = t;
661                 return 0;
662         }
663
664         return -EINVAL;
665 }
666
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674
675 #define show_one(file_name, object)                     \
676 static ssize_t show_##file_name                         \
677 (struct cpufreq_policy *policy, char *buf)              \
678 {                                                       \
679         return sprintf(buf, "%u\n", policy->object);    \
680 }
681
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690         return 0;
691 }
692
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695         ssize_t ret;
696         unsigned int freq;
697
698         freq = arch_freq_get_on_cpu(policy->cpu);
699         if (freq)
700                 ret = sprintf(buf, "%u\n", freq);
701         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702                         cpufreq_driver->get)
703                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704         else
705                 ret = sprintf(buf, "%u\n", policy->cur);
706         return ret;
707 }
708
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)                    \
713 static ssize_t store_##file_name                                        \
714 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
715 {                                                                       \
716         unsigned long val;                                              \
717         int ret;                                                        \
718                                                                         \
719         ret = sscanf(buf, "%lu", &val);                                 \
720         if (ret != 1)                                                   \
721                 return -EINVAL;                                         \
722                                                                         \
723         ret = freq_qos_update_request(policy->object##_freq_req, val);\
724         return ret >= 0 ? count : ret;                                  \
725 }
726
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734                                         char *buf)
735 {
736         unsigned int cur_freq = __cpufreq_get(policy);
737
738         if (cur_freq)
739                 return sprintf(buf, "%u\n", cur_freq);
740
741         return sprintf(buf, "<unknown>\n");
742 }
743
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750                 return sprintf(buf, "powersave\n");
751         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752                 return sprintf(buf, "performance\n");
753         else if (policy->governor)
754                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755                                 policy->governor->name);
756         return -EINVAL;
757 }
758
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763                                         const char *buf, size_t count)
764 {
765         int ret;
766         char    str_governor[16];
767         struct cpufreq_policy new_policy;
768
769         memcpy(&new_policy, policy, sizeof(*policy));
770
771         ret = sscanf(buf, "%15s", str_governor);
772         if (ret != 1)
773                 return -EINVAL;
774
775         if (cpufreq_driver->setpolicy) {
776                 if (cpufreq_parse_policy(str_governor, &new_policy))
777                         return -EINVAL;
778         } else {
779                 if (cpufreq_parse_governor(str_governor, &new_policy))
780                         return -EINVAL;
781         }
782
783         ret = cpufreq_set_policy(policy, &new_policy);
784
785         if (new_policy.governor)
786                 module_put(new_policy.governor->owner);
787
788         return ret ? ret : count;
789 }
790
791 /**
792  * show_scaling_driver - show the cpufreq driver currently loaded
793  */
794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
795 {
796         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
797 }
798
799 /**
800  * show_scaling_available_governors - show the available CPUfreq governors
801  */
802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
803                                                 char *buf)
804 {
805         ssize_t i = 0;
806         struct cpufreq_governor *t;
807
808         if (!has_target()) {
809                 i += sprintf(buf, "performance powersave");
810                 goto out;
811         }
812
813         for_each_governor(t) {
814                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
815                     - (CPUFREQ_NAME_LEN + 2)))
816                         goto out;
817                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
818         }
819 out:
820         i += sprintf(&buf[i], "\n");
821         return i;
822 }
823
824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
825 {
826         ssize_t i = 0;
827         unsigned int cpu;
828
829         for_each_cpu(cpu, mask) {
830                 if (i)
831                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
832                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
833                 if (i >= (PAGE_SIZE - 5))
834                         break;
835         }
836         i += sprintf(&buf[i], "\n");
837         return i;
838 }
839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
840
841 /**
842  * show_related_cpus - show the CPUs affected by each transition even if
843  * hw coordination is in use
844  */
845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
846 {
847         return cpufreq_show_cpus(policy->related_cpus, buf);
848 }
849
850 /**
851  * show_affected_cpus - show the CPUs affected by each transition
852  */
853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
854 {
855         return cpufreq_show_cpus(policy->cpus, buf);
856 }
857
858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
859                                         const char *buf, size_t count)
860 {
861         unsigned int freq = 0;
862         unsigned int ret;
863
864         if (!policy->governor || !policy->governor->store_setspeed)
865                 return -EINVAL;
866
867         ret = sscanf(buf, "%u", &freq);
868         if (ret != 1)
869                 return -EINVAL;
870
871         policy->governor->store_setspeed(policy, freq);
872
873         return count;
874 }
875
876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
877 {
878         if (!policy->governor || !policy->governor->show_setspeed)
879                 return sprintf(buf, "<unsupported>\n");
880
881         return policy->governor->show_setspeed(policy, buf);
882 }
883
884 /**
885  * show_bios_limit - show the current cpufreq HW/BIOS limitation
886  */
887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
888 {
889         unsigned int limit;
890         int ret;
891         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
892         if (!ret)
893                 return sprintf(buf, "%u\n", limit);
894         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
895 }
896
897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
898 cpufreq_freq_attr_ro(cpuinfo_min_freq);
899 cpufreq_freq_attr_ro(cpuinfo_max_freq);
900 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
901 cpufreq_freq_attr_ro(scaling_available_governors);
902 cpufreq_freq_attr_ro(scaling_driver);
903 cpufreq_freq_attr_ro(scaling_cur_freq);
904 cpufreq_freq_attr_ro(bios_limit);
905 cpufreq_freq_attr_ro(related_cpus);
906 cpufreq_freq_attr_ro(affected_cpus);
907 cpufreq_freq_attr_rw(scaling_min_freq);
908 cpufreq_freq_attr_rw(scaling_max_freq);
909 cpufreq_freq_attr_rw(scaling_governor);
910 cpufreq_freq_attr_rw(scaling_setspeed);
911
912 static struct attribute *default_attrs[] = {
913         &cpuinfo_min_freq.attr,
914         &cpuinfo_max_freq.attr,
915         &cpuinfo_transition_latency.attr,
916         &scaling_min_freq.attr,
917         &scaling_max_freq.attr,
918         &affected_cpus.attr,
919         &related_cpus.attr,
920         &scaling_governor.attr,
921         &scaling_driver.attr,
922         &scaling_available_governors.attr,
923         &scaling_setspeed.attr,
924         NULL
925 };
926
927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
928 #define to_attr(a) container_of(a, struct freq_attr, attr)
929
930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
931 {
932         struct cpufreq_policy *policy = to_policy(kobj);
933         struct freq_attr *fattr = to_attr(attr);
934         ssize_t ret;
935
936         down_read(&policy->rwsem);
937         ret = fattr->show(policy, buf);
938         up_read(&policy->rwsem);
939
940         return ret;
941 }
942
943 static ssize_t store(struct kobject *kobj, struct attribute *attr,
944                      const char *buf, size_t count)
945 {
946         struct cpufreq_policy *policy = to_policy(kobj);
947         struct freq_attr *fattr = to_attr(attr);
948         ssize_t ret = -EINVAL;
949
950         /*
951          * cpus_read_trylock() is used here to work around a circular lock
952          * dependency problem with respect to the cpufreq_register_driver().
953          */
954         if (!cpus_read_trylock())
955                 return -EBUSY;
956
957         if (cpu_online(policy->cpu)) {
958                 down_write(&policy->rwsem);
959                 ret = fattr->store(policy, buf, count);
960                 up_write(&policy->rwsem);
961         }
962
963         cpus_read_unlock();
964
965         return ret;
966 }
967
968 static void cpufreq_sysfs_release(struct kobject *kobj)
969 {
970         struct cpufreq_policy *policy = to_policy(kobj);
971         pr_debug("last reference is dropped\n");
972         complete(&policy->kobj_unregister);
973 }
974
975 static const struct sysfs_ops sysfs_ops = {
976         .show   = show,
977         .store  = store,
978 };
979
980 static struct kobj_type ktype_cpufreq = {
981         .sysfs_ops      = &sysfs_ops,
982         .default_attrs  = default_attrs,
983         .release        = cpufreq_sysfs_release,
984 };
985
986 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
987 {
988         struct device *dev = get_cpu_device(cpu);
989
990         if (unlikely(!dev))
991                 return;
992
993         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
994                 return;
995
996         dev_dbg(dev, "%s: Adding symlink\n", __func__);
997         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
998                 dev_err(dev, "cpufreq symlink creation failed\n");
999 }
1000
1001 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1002                                    struct device *dev)
1003 {
1004         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1005         sysfs_remove_link(&dev->kobj, "cpufreq");
1006 }
1007
1008 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1009 {
1010         struct freq_attr **drv_attr;
1011         int ret = 0;
1012
1013         /* set up files for this cpu device */
1014         drv_attr = cpufreq_driver->attr;
1015         while (drv_attr && *drv_attr) {
1016                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1017                 if (ret)
1018                         return ret;
1019                 drv_attr++;
1020         }
1021         if (cpufreq_driver->get) {
1022                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1023                 if (ret)
1024                         return ret;
1025         }
1026
1027         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1028         if (ret)
1029                 return ret;
1030
1031         if (cpufreq_driver->bios_limit) {
1032                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1033                 if (ret)
1034                         return ret;
1035         }
1036
1037         return 0;
1038 }
1039
1040 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1041 {
1042         return NULL;
1043 }
1044
1045 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1046 {
1047         struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1048         struct cpufreq_policy new_policy;
1049
1050         memcpy(&new_policy, policy, sizeof(*policy));
1051
1052         def_gov = cpufreq_default_governor();
1053
1054         if (has_target()) {
1055                 /*
1056                  * Update governor of new_policy to the governor used before
1057                  * hotplug
1058                  */
1059                 gov = find_governor(policy->last_governor);
1060                 if (gov) {
1061                         pr_debug("Restoring governor %s for cpu %d\n",
1062                                 policy->governor->name, policy->cpu);
1063                 } else {
1064                         if (!def_gov)
1065                                 return -ENODATA;
1066                         gov = def_gov;
1067                 }
1068                 new_policy.governor = gov;
1069         } else {
1070                 /* Use the default policy if there is no last_policy. */
1071                 if (policy->last_policy) {
1072                         new_policy.policy = policy->last_policy;
1073                 } else {
1074                         if (!def_gov)
1075                                 return -ENODATA;
1076                         cpufreq_parse_policy(def_gov->name, &new_policy);
1077                 }
1078         }
1079
1080         return cpufreq_set_policy(policy, &new_policy);
1081 }
1082
1083 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1084 {
1085         int ret = 0;
1086
1087         /* Has this CPU been taken care of already? */
1088         if (cpumask_test_cpu(cpu, policy->cpus))
1089                 return 0;
1090
1091         down_write(&policy->rwsem);
1092         if (has_target())
1093                 cpufreq_stop_governor(policy);
1094
1095         cpumask_set_cpu(cpu, policy->cpus);
1096
1097         if (has_target()) {
1098                 ret = cpufreq_start_governor(policy);
1099                 if (ret)
1100                         pr_err("%s: Failed to start governor\n", __func__);
1101         }
1102         up_write(&policy->rwsem);
1103         return ret;
1104 }
1105
1106 void refresh_frequency_limits(struct cpufreq_policy *policy)
1107 {
1108         struct cpufreq_policy new_policy;
1109
1110         if (!policy_is_inactive(policy)) {
1111                 new_policy = *policy;
1112                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1113
1114                 cpufreq_set_policy(policy, &new_policy);
1115         }
1116 }
1117 EXPORT_SYMBOL(refresh_frequency_limits);
1118
1119 static void handle_update(struct work_struct *work)
1120 {
1121         struct cpufreq_policy *policy =
1122                 container_of(work, struct cpufreq_policy, update);
1123
1124         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1125         down_write(&policy->rwsem);
1126         refresh_frequency_limits(policy);
1127         up_write(&policy->rwsem);
1128 }
1129
1130 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1131                                 void *data)
1132 {
1133         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1134
1135         schedule_work(&policy->update);
1136         return 0;
1137 }
1138
1139 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1140                                 void *data)
1141 {
1142         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1143
1144         schedule_work(&policy->update);
1145         return 0;
1146 }
1147
1148 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1149 {
1150         struct kobject *kobj;
1151         struct completion *cmp;
1152
1153         down_write(&policy->rwsem);
1154         cpufreq_stats_free_table(policy);
1155         kobj = &policy->kobj;
1156         cmp = &policy->kobj_unregister;
1157         up_write(&policy->rwsem);
1158         kobject_put(kobj);
1159
1160         /*
1161          * We need to make sure that the underlying kobj is
1162          * actually not referenced anymore by anybody before we
1163          * proceed with unloading.
1164          */
1165         pr_debug("waiting for dropping of refcount\n");
1166         wait_for_completion(cmp);
1167         pr_debug("wait complete\n");
1168 }
1169
1170 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1171 {
1172         struct cpufreq_policy *policy;
1173         struct device *dev = get_cpu_device(cpu);
1174         int ret;
1175
1176         if (!dev)
1177                 return NULL;
1178
1179         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1180         if (!policy)
1181                 return NULL;
1182
1183         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1184                 goto err_free_policy;
1185
1186         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1187                 goto err_free_cpumask;
1188
1189         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1190                 goto err_free_rcpumask;
1191
1192         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1193                                    cpufreq_global_kobject, "policy%u", cpu);
1194         if (ret) {
1195                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1196                 /*
1197                  * The entire policy object will be freed below, but the extra
1198                  * memory allocated for the kobject name needs to be freed by
1199                  * releasing the kobject.
1200                  */
1201                 kobject_put(&policy->kobj);
1202                 goto err_free_real_cpus;
1203         }
1204
1205         freq_constraints_init(&policy->constraints);
1206
1207         policy->nb_min.notifier_call = cpufreq_notifier_min;
1208         policy->nb_max.notifier_call = cpufreq_notifier_max;
1209
1210         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1211                                     &policy->nb_min);
1212         if (ret) {
1213                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1214                         ret, cpumask_pr_args(policy->cpus));
1215                 goto err_kobj_remove;
1216         }
1217
1218         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1219                                     &policy->nb_max);
1220         if (ret) {
1221                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1222                         ret, cpumask_pr_args(policy->cpus));
1223                 goto err_min_qos_notifier;
1224         }
1225
1226         INIT_LIST_HEAD(&policy->policy_list);
1227         init_rwsem(&policy->rwsem);
1228         spin_lock_init(&policy->transition_lock);
1229         init_waitqueue_head(&policy->transition_wait);
1230         init_completion(&policy->kobj_unregister);
1231         INIT_WORK(&policy->update, handle_update);
1232
1233         policy->cpu = cpu;
1234         return policy;
1235
1236 err_min_qos_notifier:
1237         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1238                                  &policy->nb_min);
1239 err_kobj_remove:
1240         cpufreq_policy_put_kobj(policy);
1241 err_free_real_cpus:
1242         free_cpumask_var(policy->real_cpus);
1243 err_free_rcpumask:
1244         free_cpumask_var(policy->related_cpus);
1245 err_free_cpumask:
1246         free_cpumask_var(policy->cpus);
1247 err_free_policy:
1248         kfree(policy);
1249
1250         return NULL;
1251 }
1252
1253 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1254 {
1255         unsigned long flags;
1256         int cpu;
1257
1258         /* Remove policy from list */
1259         write_lock_irqsave(&cpufreq_driver_lock, flags);
1260         list_del(&policy->policy_list);
1261
1262         for_each_cpu(cpu, policy->related_cpus)
1263                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1264         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265
1266         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1267                                  &policy->nb_max);
1268         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1269                                  &policy->nb_min);
1270
1271         /* Cancel any pending policy->update work before freeing the policy. */
1272         cancel_work_sync(&policy->update);
1273
1274         if (policy->max_freq_req) {
1275                 /*
1276                  * CPUFREQ_CREATE_POLICY notification is sent only after
1277                  * successfully adding max_freq_req request.
1278                  */
1279                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1280                                              CPUFREQ_REMOVE_POLICY, policy);
1281                 freq_qos_remove_request(policy->max_freq_req);
1282         }
1283
1284         freq_qos_remove_request(policy->min_freq_req);
1285         kfree(policy->min_freq_req);
1286
1287         cpufreq_policy_put_kobj(policy);
1288         free_cpumask_var(policy->real_cpus);
1289         free_cpumask_var(policy->related_cpus);
1290         free_cpumask_var(policy->cpus);
1291         kfree(policy);
1292 }
1293
1294 static int cpufreq_online(unsigned int cpu)
1295 {
1296         struct cpufreq_policy *policy;
1297         bool new_policy;
1298         unsigned long flags;
1299         unsigned int j;
1300         int ret;
1301
1302         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1303
1304         /* Check if this CPU already has a policy to manage it */
1305         policy = per_cpu(cpufreq_cpu_data, cpu);
1306         if (policy) {
1307                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1308                 if (!policy_is_inactive(policy))
1309                         return cpufreq_add_policy_cpu(policy, cpu);
1310
1311                 /* This is the only online CPU for the policy.  Start over. */
1312                 new_policy = false;
1313                 down_write(&policy->rwsem);
1314                 policy->cpu = cpu;
1315                 policy->governor = NULL;
1316                 up_write(&policy->rwsem);
1317         } else {
1318                 new_policy = true;
1319                 policy = cpufreq_policy_alloc(cpu);
1320                 if (!policy)
1321                         return -ENOMEM;
1322         }
1323
1324         if (!new_policy && cpufreq_driver->online) {
1325                 ret = cpufreq_driver->online(policy);
1326                 if (ret) {
1327                         pr_debug("%s: %d: initialization failed\n", __func__,
1328                                  __LINE__);
1329                         goto out_exit_policy;
1330                 }
1331
1332                 /* Recover policy->cpus using related_cpus */
1333                 cpumask_copy(policy->cpus, policy->related_cpus);
1334         } else {
1335                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1336
1337                 /*
1338                  * Call driver. From then on the cpufreq must be able
1339                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1340                  */
1341                 ret = cpufreq_driver->init(policy);
1342                 if (ret) {
1343                         pr_debug("%s: %d: initialization failed\n", __func__,
1344                                  __LINE__);
1345                         goto out_free_policy;
1346                 }
1347
1348                 ret = cpufreq_table_validate_and_sort(policy);
1349                 if (ret)
1350                         goto out_exit_policy;
1351
1352                 /* related_cpus should at least include policy->cpus. */
1353                 cpumask_copy(policy->related_cpus, policy->cpus);
1354         }
1355
1356         down_write(&policy->rwsem);
1357         /*
1358          * affected cpus must always be the one, which are online. We aren't
1359          * managing offline cpus here.
1360          */
1361         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1362
1363         if (new_policy) {
1364                 for_each_cpu(j, policy->related_cpus) {
1365                         per_cpu(cpufreq_cpu_data, j) = policy;
1366                         add_cpu_dev_symlink(policy, j);
1367                 }
1368
1369                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1370                                                GFP_KERNEL);
1371                 if (!policy->min_freq_req)
1372                         goto out_destroy_policy;
1373
1374                 ret = freq_qos_add_request(&policy->constraints,
1375                                            policy->min_freq_req, FREQ_QOS_MIN,
1376                                            policy->min);
1377                 if (ret < 0) {
1378                         /*
1379                          * So we don't call freq_qos_remove_request() for an
1380                          * uninitialized request.
1381                          */
1382                         kfree(policy->min_freq_req);
1383                         policy->min_freq_req = NULL;
1384                         goto out_destroy_policy;
1385                 }
1386
1387                 /*
1388                  * This must be initialized right here to avoid calling
1389                  * freq_qos_remove_request() on uninitialized request in case
1390                  * of errors.
1391                  */
1392                 policy->max_freq_req = policy->min_freq_req + 1;
1393
1394                 ret = freq_qos_add_request(&policy->constraints,
1395                                            policy->max_freq_req, FREQ_QOS_MAX,
1396                                            policy->max);
1397                 if (ret < 0) {
1398                         policy->max_freq_req = NULL;
1399                         goto out_destroy_policy;
1400                 }
1401
1402                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1403                                 CPUFREQ_CREATE_POLICY, policy);
1404         }
1405
1406         if (cpufreq_driver->get && has_target()) {
1407                 policy->cur = cpufreq_driver->get(policy->cpu);
1408                 if (!policy->cur) {
1409                         pr_err("%s: ->get() failed\n", __func__);
1410                         goto out_destroy_policy;
1411                 }
1412         }
1413
1414         /*
1415          * Sometimes boot loaders set CPU frequency to a value outside of
1416          * frequency table present with cpufreq core. In such cases CPU might be
1417          * unstable if it has to run on that frequency for long duration of time
1418          * and so its better to set it to a frequency which is specified in
1419          * freq-table. This also makes cpufreq stats inconsistent as
1420          * cpufreq-stats would fail to register because current frequency of CPU
1421          * isn't found in freq-table.
1422          *
1423          * Because we don't want this change to effect boot process badly, we go
1424          * for the next freq which is >= policy->cur ('cur' must be set by now,
1425          * otherwise we will end up setting freq to lowest of the table as 'cur'
1426          * is initialized to zero).
1427          *
1428          * We are passing target-freq as "policy->cur - 1" otherwise
1429          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1430          * equal to target-freq.
1431          */
1432         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1433             && has_target()) {
1434                 /* Are we running at unknown frequency ? */
1435                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1436                 if (ret == -EINVAL) {
1437                         /* Warn user and fix it */
1438                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1439                                 __func__, policy->cpu, policy->cur);
1440                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1441                                 CPUFREQ_RELATION_L);
1442
1443                         /*
1444                          * Reaching here after boot in a few seconds may not
1445                          * mean that system will remain stable at "unknown"
1446                          * frequency for longer duration. Hence, a BUG_ON().
1447                          */
1448                         BUG_ON(ret);
1449                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1450                                 __func__, policy->cpu, policy->cur);
1451                 }
1452         }
1453
1454         if (new_policy) {
1455                 ret = cpufreq_add_dev_interface(policy);
1456                 if (ret)
1457                         goto out_destroy_policy;
1458
1459                 cpufreq_stats_create_table(policy);
1460
1461                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1462                 list_add(&policy->policy_list, &cpufreq_policy_list);
1463                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1464         }
1465
1466         ret = cpufreq_init_policy(policy);
1467         if (ret) {
1468                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1469                        __func__, cpu, ret);
1470                 goto out_destroy_policy;
1471         }
1472
1473         up_write(&policy->rwsem);
1474
1475         kobject_uevent(&policy->kobj, KOBJ_ADD);
1476
1477         /* Callback for handling stuff after policy is ready */
1478         if (cpufreq_driver->ready)
1479                 cpufreq_driver->ready(policy);
1480
1481         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1482                 policy->cdev = of_cpufreq_cooling_register(policy);
1483
1484         pr_debug("initialization complete\n");
1485
1486         return 0;
1487
1488 out_destroy_policy:
1489         for_each_cpu(j, policy->real_cpus)
1490                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1491
1492         up_write(&policy->rwsem);
1493
1494 out_exit_policy:
1495         if (cpufreq_driver->exit)
1496                 cpufreq_driver->exit(policy);
1497
1498 out_free_policy:
1499         cpufreq_policy_free(policy);
1500         return ret;
1501 }
1502
1503 /**
1504  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1505  * @dev: CPU device.
1506  * @sif: Subsystem interface structure pointer (not used)
1507  */
1508 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1509 {
1510         struct cpufreq_policy *policy;
1511         unsigned cpu = dev->id;
1512         int ret;
1513
1514         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1515
1516         if (cpu_online(cpu)) {
1517                 ret = cpufreq_online(cpu);
1518                 if (ret)
1519                         return ret;
1520         }
1521
1522         /* Create sysfs link on CPU registration */
1523         policy = per_cpu(cpufreq_cpu_data, cpu);
1524         if (policy)
1525                 add_cpu_dev_symlink(policy, cpu);
1526
1527         return 0;
1528 }
1529
1530 static int cpufreq_offline(unsigned int cpu)
1531 {
1532         struct cpufreq_policy *policy;
1533         int ret;
1534
1535         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1536
1537         policy = cpufreq_cpu_get_raw(cpu);
1538         if (!policy) {
1539                 pr_debug("%s: No cpu_data found\n", __func__);
1540                 return 0;
1541         }
1542
1543         down_write(&policy->rwsem);
1544         if (has_target())
1545                 cpufreq_stop_governor(policy);
1546
1547         cpumask_clear_cpu(cpu, policy->cpus);
1548
1549         if (policy_is_inactive(policy)) {
1550                 if (has_target())
1551                         strncpy(policy->last_governor, policy->governor->name,
1552                                 CPUFREQ_NAME_LEN);
1553                 else
1554                         policy->last_policy = policy->policy;
1555         } else if (cpu == policy->cpu) {
1556                 /* Nominate new CPU */
1557                 policy->cpu = cpumask_any(policy->cpus);
1558         }
1559
1560         /* Start governor again for active policy */
1561         if (!policy_is_inactive(policy)) {
1562                 if (has_target()) {
1563                         ret = cpufreq_start_governor(policy);
1564                         if (ret)
1565                                 pr_err("%s: Failed to start governor\n", __func__);
1566                 }
1567
1568                 goto unlock;
1569         }
1570
1571         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1572                 cpufreq_cooling_unregister(policy->cdev);
1573                 policy->cdev = NULL;
1574         }
1575
1576         if (cpufreq_driver->stop_cpu)
1577                 cpufreq_driver->stop_cpu(policy);
1578
1579         if (has_target())
1580                 cpufreq_exit_governor(policy);
1581
1582         /*
1583          * Perform the ->offline() during light-weight tear-down, as
1584          * that allows fast recovery when the CPU comes back.
1585          */
1586         if (cpufreq_driver->offline) {
1587                 cpufreq_driver->offline(policy);
1588         } else if (cpufreq_driver->exit) {
1589                 cpufreq_driver->exit(policy);
1590                 policy->freq_table = NULL;
1591         }
1592
1593 unlock:
1594         up_write(&policy->rwsem);
1595         return 0;
1596 }
1597
1598 /**
1599  * cpufreq_remove_dev - remove a CPU device
1600  *
1601  * Removes the cpufreq interface for a CPU device.
1602  */
1603 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1604 {
1605         unsigned int cpu = dev->id;
1606         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1607
1608         if (!policy)
1609                 return;
1610
1611         if (cpu_online(cpu))
1612                 cpufreq_offline(cpu);
1613
1614         cpumask_clear_cpu(cpu, policy->real_cpus);
1615         remove_cpu_dev_symlink(policy, dev);
1616
1617         if (cpumask_empty(policy->real_cpus)) {
1618                 /* We did light-weight exit earlier, do full tear down now */
1619                 if (cpufreq_driver->offline)
1620                         cpufreq_driver->exit(policy);
1621
1622                 cpufreq_policy_free(policy);
1623         }
1624 }
1625
1626 /**
1627  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1628  *      in deep trouble.
1629  *      @policy: policy managing CPUs
1630  *      @new_freq: CPU frequency the CPU actually runs at
1631  *
1632  *      We adjust to current frequency first, and need to clean up later.
1633  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1634  */
1635 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1636                                 unsigned int new_freq)
1637 {
1638         struct cpufreq_freqs freqs;
1639
1640         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1641                  policy->cur, new_freq);
1642
1643         freqs.old = policy->cur;
1644         freqs.new = new_freq;
1645
1646         cpufreq_freq_transition_begin(policy, &freqs);
1647         cpufreq_freq_transition_end(policy, &freqs, 0);
1648 }
1649
1650 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1651 {
1652         unsigned int new_freq;
1653
1654         new_freq = cpufreq_driver->get(policy->cpu);
1655         if (!new_freq)
1656                 return 0;
1657
1658         /*
1659          * If fast frequency switching is used with the given policy, the check
1660          * against policy->cur is pointless, so skip it in that case.
1661          */
1662         if (policy->fast_switch_enabled || !has_target())
1663                 return new_freq;
1664
1665         if (policy->cur != new_freq) {
1666                 cpufreq_out_of_sync(policy, new_freq);
1667                 if (update)
1668                         schedule_work(&policy->update);
1669         }
1670
1671         return new_freq;
1672 }
1673
1674 /**
1675  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1676  * @cpu: CPU number
1677  *
1678  * This is the last known freq, without actually getting it from the driver.
1679  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1680  */
1681 unsigned int cpufreq_quick_get(unsigned int cpu)
1682 {
1683         struct cpufreq_policy *policy;
1684         unsigned int ret_freq = 0;
1685         unsigned long flags;
1686
1687         read_lock_irqsave(&cpufreq_driver_lock, flags);
1688
1689         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1690                 ret_freq = cpufreq_driver->get(cpu);
1691                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1692                 return ret_freq;
1693         }
1694
1695         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1696
1697         policy = cpufreq_cpu_get(cpu);
1698         if (policy) {
1699                 ret_freq = policy->cur;
1700                 cpufreq_cpu_put(policy);
1701         }
1702
1703         return ret_freq;
1704 }
1705 EXPORT_SYMBOL(cpufreq_quick_get);
1706
1707 /**
1708  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1709  * @cpu: CPU number
1710  *
1711  * Just return the max possible frequency for a given CPU.
1712  */
1713 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1714 {
1715         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1716         unsigned int ret_freq = 0;
1717
1718         if (policy) {
1719                 ret_freq = policy->max;
1720                 cpufreq_cpu_put(policy);
1721         }
1722
1723         return ret_freq;
1724 }
1725 EXPORT_SYMBOL(cpufreq_quick_get_max);
1726
1727 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1728 {
1729         if (unlikely(policy_is_inactive(policy)))
1730                 return 0;
1731
1732         return cpufreq_verify_current_freq(policy, true);
1733 }
1734
1735 /**
1736  * cpufreq_get - get the current CPU frequency (in kHz)
1737  * @cpu: CPU number
1738  *
1739  * Get the CPU current (static) CPU frequency
1740  */
1741 unsigned int cpufreq_get(unsigned int cpu)
1742 {
1743         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1744         unsigned int ret_freq = 0;
1745
1746         if (policy) {
1747                 down_read(&policy->rwsem);
1748                 if (cpufreq_driver->get)
1749                         ret_freq = __cpufreq_get(policy);
1750                 up_read(&policy->rwsem);
1751
1752                 cpufreq_cpu_put(policy);
1753         }
1754
1755         return ret_freq;
1756 }
1757 EXPORT_SYMBOL(cpufreq_get);
1758
1759 static struct subsys_interface cpufreq_interface = {
1760         .name           = "cpufreq",
1761         .subsys         = &cpu_subsys,
1762         .add_dev        = cpufreq_add_dev,
1763         .remove_dev     = cpufreq_remove_dev,
1764 };
1765
1766 /*
1767  * In case platform wants some specific frequency to be configured
1768  * during suspend..
1769  */
1770 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1771 {
1772         int ret;
1773
1774         if (!policy->suspend_freq) {
1775                 pr_debug("%s: suspend_freq not defined\n", __func__);
1776                 return 0;
1777         }
1778
1779         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1780                         policy->suspend_freq);
1781
1782         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1783                         CPUFREQ_RELATION_H);
1784         if (ret)
1785                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1786                                 __func__, policy->suspend_freq, ret);
1787
1788         return ret;
1789 }
1790 EXPORT_SYMBOL(cpufreq_generic_suspend);
1791
1792 /**
1793  * cpufreq_suspend() - Suspend CPUFreq governors
1794  *
1795  * Called during system wide Suspend/Hibernate cycles for suspending governors
1796  * as some platforms can't change frequency after this point in suspend cycle.
1797  * Because some of the devices (like: i2c, regulators, etc) they use for
1798  * changing frequency are suspended quickly after this point.
1799  */
1800 void cpufreq_suspend(void)
1801 {
1802         struct cpufreq_policy *policy;
1803
1804         if (!cpufreq_driver)
1805                 return;
1806
1807         if (!has_target() && !cpufreq_driver->suspend)
1808                 goto suspend;
1809
1810         pr_debug("%s: Suspending Governors\n", __func__);
1811
1812         for_each_active_policy(policy) {
1813                 if (has_target()) {
1814                         down_write(&policy->rwsem);
1815                         cpufreq_stop_governor(policy);
1816                         up_write(&policy->rwsem);
1817                 }
1818
1819                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1820                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1821                                 cpufreq_driver->name);
1822         }
1823
1824 suspend:
1825         cpufreq_suspended = true;
1826 }
1827
1828 /**
1829  * cpufreq_resume() - Resume CPUFreq governors
1830  *
1831  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1832  * are suspended with cpufreq_suspend().
1833  */
1834 void cpufreq_resume(void)
1835 {
1836         struct cpufreq_policy *policy;
1837         int ret;
1838
1839         if (!cpufreq_driver)
1840                 return;
1841
1842         if (unlikely(!cpufreq_suspended))
1843                 return;
1844
1845         cpufreq_suspended = false;
1846
1847         if (!has_target() && !cpufreq_driver->resume)
1848                 return;
1849
1850         pr_debug("%s: Resuming Governors\n", __func__);
1851
1852         for_each_active_policy(policy) {
1853                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1854                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1855                                 policy);
1856                 } else if (has_target()) {
1857                         down_write(&policy->rwsem);
1858                         ret = cpufreq_start_governor(policy);
1859                         up_write(&policy->rwsem);
1860
1861                         if (ret)
1862                                 pr_err("%s: Failed to start governor for policy: %p\n",
1863                                        __func__, policy);
1864                 }
1865         }
1866 }
1867
1868 /**
1869  *      cpufreq_get_current_driver - return current driver's name
1870  *
1871  *      Return the name string of the currently loaded cpufreq driver
1872  *      or NULL, if none.
1873  */
1874 const char *cpufreq_get_current_driver(void)
1875 {
1876         if (cpufreq_driver)
1877                 return cpufreq_driver->name;
1878
1879         return NULL;
1880 }
1881 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1882
1883 /**
1884  *      cpufreq_get_driver_data - return current driver data
1885  *
1886  *      Return the private data of the currently loaded cpufreq
1887  *      driver, or NULL if no cpufreq driver is loaded.
1888  */
1889 void *cpufreq_get_driver_data(void)
1890 {
1891         if (cpufreq_driver)
1892                 return cpufreq_driver->driver_data;
1893
1894         return NULL;
1895 }
1896 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1897
1898 /*********************************************************************
1899  *                     NOTIFIER LISTS INTERFACE                      *
1900  *********************************************************************/
1901
1902 /**
1903  *      cpufreq_register_notifier - register a driver with cpufreq
1904  *      @nb: notifier function to register
1905  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1906  *
1907  *      Add a driver to one of two lists: either a list of drivers that
1908  *      are notified about clock rate changes (once before and once after
1909  *      the transition), or a list of drivers that are notified about
1910  *      changes in cpufreq policy.
1911  *
1912  *      This function may sleep, and has the same return conditions as
1913  *      blocking_notifier_chain_register.
1914  */
1915 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1916 {
1917         int ret;
1918
1919         if (cpufreq_disabled())
1920                 return -EINVAL;
1921
1922         switch (list) {
1923         case CPUFREQ_TRANSITION_NOTIFIER:
1924                 mutex_lock(&cpufreq_fast_switch_lock);
1925
1926                 if (cpufreq_fast_switch_count > 0) {
1927                         mutex_unlock(&cpufreq_fast_switch_lock);
1928                         return -EBUSY;
1929                 }
1930                 ret = srcu_notifier_chain_register(
1931                                 &cpufreq_transition_notifier_list, nb);
1932                 if (!ret)
1933                         cpufreq_fast_switch_count--;
1934
1935                 mutex_unlock(&cpufreq_fast_switch_lock);
1936                 break;
1937         case CPUFREQ_POLICY_NOTIFIER:
1938                 ret = blocking_notifier_chain_register(
1939                                 &cpufreq_policy_notifier_list, nb);
1940                 break;
1941         default:
1942                 ret = -EINVAL;
1943         }
1944
1945         return ret;
1946 }
1947 EXPORT_SYMBOL(cpufreq_register_notifier);
1948
1949 /**
1950  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1951  *      @nb: notifier block to be unregistered
1952  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1953  *
1954  *      Remove a driver from the CPU frequency notifier list.
1955  *
1956  *      This function may sleep, and has the same return conditions as
1957  *      blocking_notifier_chain_unregister.
1958  */
1959 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1960 {
1961         int ret;
1962
1963         if (cpufreq_disabled())
1964                 return -EINVAL;
1965
1966         switch (list) {
1967         case CPUFREQ_TRANSITION_NOTIFIER:
1968                 mutex_lock(&cpufreq_fast_switch_lock);
1969
1970                 ret = srcu_notifier_chain_unregister(
1971                                 &cpufreq_transition_notifier_list, nb);
1972                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1973                         cpufreq_fast_switch_count++;
1974
1975                 mutex_unlock(&cpufreq_fast_switch_lock);
1976                 break;
1977         case CPUFREQ_POLICY_NOTIFIER:
1978                 ret = blocking_notifier_chain_unregister(
1979                                 &cpufreq_policy_notifier_list, nb);
1980                 break;
1981         default:
1982                 ret = -EINVAL;
1983         }
1984
1985         return ret;
1986 }
1987 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1988
1989
1990 /*********************************************************************
1991  *                              GOVERNORS                            *
1992  *********************************************************************/
1993
1994 /**
1995  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1996  * @policy: cpufreq policy to switch the frequency for.
1997  * @target_freq: New frequency to set (may be approximate).
1998  *
1999  * Carry out a fast frequency switch without sleeping.
2000  *
2001  * The driver's ->fast_switch() callback invoked by this function must be
2002  * suitable for being called from within RCU-sched read-side critical sections
2003  * and it is expected to select the minimum available frequency greater than or
2004  * equal to @target_freq (CPUFREQ_RELATION_L).
2005  *
2006  * This function must not be called if policy->fast_switch_enabled is unset.
2007  *
2008  * Governors calling this function must guarantee that it will never be invoked
2009  * twice in parallel for the same policy and that it will never be called in
2010  * parallel with either ->target() or ->target_index() for the same policy.
2011  *
2012  * Returns the actual frequency set for the CPU.
2013  *
2014  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2015  * error condition, the hardware configuration must be preserved.
2016  */
2017 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2018                                         unsigned int target_freq)
2019 {
2020         target_freq = clamp_val(target_freq, policy->min, policy->max);
2021
2022         return cpufreq_driver->fast_switch(policy, target_freq);
2023 }
2024 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2025
2026 /* Must set freqs->new to intermediate frequency */
2027 static int __target_intermediate(struct cpufreq_policy *policy,
2028                                  struct cpufreq_freqs *freqs, int index)
2029 {
2030         int ret;
2031
2032         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2033
2034         /* We don't need to switch to intermediate freq */
2035         if (!freqs->new)
2036                 return 0;
2037
2038         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2039                  __func__, policy->cpu, freqs->old, freqs->new);
2040
2041         cpufreq_freq_transition_begin(policy, freqs);
2042         ret = cpufreq_driver->target_intermediate(policy, index);
2043         cpufreq_freq_transition_end(policy, freqs, ret);
2044
2045         if (ret)
2046                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2047                        __func__, ret);
2048
2049         return ret;
2050 }
2051
2052 static int __target_index(struct cpufreq_policy *policy, int index)
2053 {
2054         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2055         unsigned int intermediate_freq = 0;
2056         unsigned int newfreq = policy->freq_table[index].frequency;
2057         int retval = -EINVAL;
2058         bool notify;
2059
2060         if (newfreq == policy->cur)
2061                 return 0;
2062
2063         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2064         if (notify) {
2065                 /* Handle switching to intermediate frequency */
2066                 if (cpufreq_driver->get_intermediate) {
2067                         retval = __target_intermediate(policy, &freqs, index);
2068                         if (retval)
2069                                 return retval;
2070
2071                         intermediate_freq = freqs.new;
2072                         /* Set old freq to intermediate */
2073                         if (intermediate_freq)
2074                                 freqs.old = freqs.new;
2075                 }
2076
2077                 freqs.new = newfreq;
2078                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2079                          __func__, policy->cpu, freqs.old, freqs.new);
2080
2081                 cpufreq_freq_transition_begin(policy, &freqs);
2082         }
2083
2084         retval = cpufreq_driver->target_index(policy, index);
2085         if (retval)
2086                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2087                        retval);
2088
2089         if (notify) {
2090                 cpufreq_freq_transition_end(policy, &freqs, retval);
2091
2092                 /*
2093                  * Failed after setting to intermediate freq? Driver should have
2094                  * reverted back to initial frequency and so should we. Check
2095                  * here for intermediate_freq instead of get_intermediate, in
2096                  * case we haven't switched to intermediate freq at all.
2097                  */
2098                 if (unlikely(retval && intermediate_freq)) {
2099                         freqs.old = intermediate_freq;
2100                         freqs.new = policy->restore_freq;
2101                         cpufreq_freq_transition_begin(policy, &freqs);
2102                         cpufreq_freq_transition_end(policy, &freqs, 0);
2103                 }
2104         }
2105
2106         return retval;
2107 }
2108
2109 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2110                             unsigned int target_freq,
2111                             unsigned int relation)
2112 {
2113         unsigned int old_target_freq = target_freq;
2114         int index;
2115
2116         if (cpufreq_disabled())
2117                 return -ENODEV;
2118
2119         /* Make sure that target_freq is within supported range */
2120         target_freq = clamp_val(target_freq, policy->min, policy->max);
2121
2122         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2123                  policy->cpu, target_freq, relation, old_target_freq);
2124
2125         /*
2126          * This might look like a redundant call as we are checking it again
2127          * after finding index. But it is left intentionally for cases where
2128          * exactly same freq is called again and so we can save on few function
2129          * calls.
2130          */
2131         if (target_freq == policy->cur)
2132                 return 0;
2133
2134         /* Save last value to restore later on errors */
2135         policy->restore_freq = policy->cur;
2136
2137         if (cpufreq_driver->target)
2138                 return cpufreq_driver->target(policy, target_freq, relation);
2139
2140         if (!cpufreq_driver->target_index)
2141                 return -EINVAL;
2142
2143         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2144
2145         return __target_index(policy, index);
2146 }
2147 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2148
2149 int cpufreq_driver_target(struct cpufreq_policy *policy,
2150                           unsigned int target_freq,
2151                           unsigned int relation)
2152 {
2153         int ret;
2154
2155         down_write(&policy->rwsem);
2156
2157         ret = __cpufreq_driver_target(policy, target_freq, relation);
2158
2159         up_write(&policy->rwsem);
2160
2161         return ret;
2162 }
2163 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2164
2165 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2166 {
2167         return NULL;
2168 }
2169
2170 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2171 {
2172         int ret;
2173
2174         /* Don't start any governor operations if we are entering suspend */
2175         if (cpufreq_suspended)
2176                 return 0;
2177         /*
2178          * Governor might not be initiated here if ACPI _PPC changed
2179          * notification happened, so check it.
2180          */
2181         if (!policy->governor)
2182                 return -EINVAL;
2183
2184         /* Platform doesn't want dynamic frequency switching ? */
2185         if (policy->governor->dynamic_switching &&
2186             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2187                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2188
2189                 if (gov) {
2190                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2191                                 policy->governor->name, gov->name);
2192                         policy->governor = gov;
2193                 } else {
2194                         return -EINVAL;
2195                 }
2196         }
2197
2198         if (!try_module_get(policy->governor->owner))
2199                 return -EINVAL;
2200
2201         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2202
2203         if (policy->governor->init) {
2204                 ret = policy->governor->init(policy);
2205                 if (ret) {
2206                         module_put(policy->governor->owner);
2207                         return ret;
2208                 }
2209         }
2210
2211         return 0;
2212 }
2213
2214 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2215 {
2216         if (cpufreq_suspended || !policy->governor)
2217                 return;
2218
2219         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2220
2221         if (policy->governor->exit)
2222                 policy->governor->exit(policy);
2223
2224         module_put(policy->governor->owner);
2225 }
2226
2227 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2228 {
2229         int ret;
2230
2231         if (cpufreq_suspended)
2232                 return 0;
2233
2234         if (!policy->governor)
2235                 return -EINVAL;
2236
2237         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2238
2239         if (cpufreq_driver->get)
2240                 cpufreq_verify_current_freq(policy, false);
2241
2242         if (policy->governor->start) {
2243                 ret = policy->governor->start(policy);
2244                 if (ret)
2245                         return ret;
2246         }
2247
2248         if (policy->governor->limits)
2249                 policy->governor->limits(policy);
2250
2251         return 0;
2252 }
2253
2254 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2255 {
2256         if (cpufreq_suspended || !policy->governor)
2257                 return;
2258
2259         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2260
2261         if (policy->governor->stop)
2262                 policy->governor->stop(policy);
2263 }
2264
2265 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2266 {
2267         if (cpufreq_suspended || !policy->governor)
2268                 return;
2269
2270         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2271
2272         if (policy->governor->limits)
2273                 policy->governor->limits(policy);
2274 }
2275
2276 int cpufreq_register_governor(struct cpufreq_governor *governor)
2277 {
2278         int err;
2279
2280         if (!governor)
2281                 return -EINVAL;
2282
2283         if (cpufreq_disabled())
2284                 return -ENODEV;
2285
2286         mutex_lock(&cpufreq_governor_mutex);
2287
2288         err = -EBUSY;
2289         if (!find_governor(governor->name)) {
2290                 err = 0;
2291                 list_add(&governor->governor_list, &cpufreq_governor_list);
2292         }
2293
2294         mutex_unlock(&cpufreq_governor_mutex);
2295         return err;
2296 }
2297 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2298
2299 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2300 {
2301         struct cpufreq_policy *policy;
2302         unsigned long flags;
2303
2304         if (!governor)
2305                 return;
2306
2307         if (cpufreq_disabled())
2308                 return;
2309
2310         /* clear last_governor for all inactive policies */
2311         read_lock_irqsave(&cpufreq_driver_lock, flags);
2312         for_each_inactive_policy(policy) {
2313                 if (!strcmp(policy->last_governor, governor->name)) {
2314                         policy->governor = NULL;
2315                         strcpy(policy->last_governor, "\0");
2316                 }
2317         }
2318         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2319
2320         mutex_lock(&cpufreq_governor_mutex);
2321         list_del(&governor->governor_list);
2322         mutex_unlock(&cpufreq_governor_mutex);
2323 }
2324 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2325
2326
2327 /*********************************************************************
2328  *                          POLICY INTERFACE                         *
2329  *********************************************************************/
2330
2331 /**
2332  * cpufreq_get_policy - get the current cpufreq_policy
2333  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2334  *      is written
2335  *
2336  * Reads the current cpufreq policy.
2337  */
2338 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2339 {
2340         struct cpufreq_policy *cpu_policy;
2341         if (!policy)
2342                 return -EINVAL;
2343
2344         cpu_policy = cpufreq_cpu_get(cpu);
2345         if (!cpu_policy)
2346                 return -EINVAL;
2347
2348         memcpy(policy, cpu_policy, sizeof(*policy));
2349
2350         cpufreq_cpu_put(cpu_policy);
2351         return 0;
2352 }
2353 EXPORT_SYMBOL(cpufreq_get_policy);
2354
2355 /**
2356  * cpufreq_set_policy - Modify cpufreq policy parameters.
2357  * @policy: Policy object to modify.
2358  * @new_policy: New policy data.
2359  *
2360  * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the
2361  * min and max parameters of @new_policy to @policy and either invoke the
2362  * driver's ->setpolicy() callback (if present) or carry out a governor update
2363  * for @policy.  That is, run the current governor's ->limits() callback (if the
2364  * governor field in @new_policy points to the same object as the one in
2365  * @policy) or replace the governor for @policy with the new one stored in
2366  * @new_policy.
2367  *
2368  * The cpuinfo part of @policy is not updated by this function.
2369  */
2370 int cpufreq_set_policy(struct cpufreq_policy *policy,
2371                        struct cpufreq_policy *new_policy)
2372 {
2373         struct cpufreq_governor *old_gov;
2374         int ret;
2375
2376         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2377                  new_policy->cpu, new_policy->min, new_policy->max);
2378
2379         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2380
2381         /*
2382          * PM QoS framework collects all the requests from users and provide us
2383          * the final aggregated value here.
2384          */
2385         new_policy->min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2386         new_policy->max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2387
2388         /* verify the cpu speed can be set within this limit */
2389         ret = cpufreq_driver->verify(new_policy);
2390         if (ret)
2391                 return ret;
2392
2393         policy->min = new_policy->min;
2394         policy->max = new_policy->max;
2395         trace_cpu_frequency_limits(policy);
2396
2397         policy->cached_target_freq = UINT_MAX;
2398
2399         pr_debug("new min and max freqs are %u - %u kHz\n",
2400                  policy->min, policy->max);
2401
2402         if (cpufreq_driver->setpolicy) {
2403                 policy->policy = new_policy->policy;
2404                 pr_debug("setting range\n");
2405                 return cpufreq_driver->setpolicy(policy);
2406         }
2407
2408         if (new_policy->governor == policy->governor) {
2409                 pr_debug("governor limits update\n");
2410                 cpufreq_governor_limits(policy);
2411                 return 0;
2412         }
2413
2414         pr_debug("governor switch\n");
2415
2416         /* save old, working values */
2417         old_gov = policy->governor;
2418         /* end old governor */
2419         if (old_gov) {
2420                 cpufreq_stop_governor(policy);
2421                 cpufreq_exit_governor(policy);
2422         }
2423
2424         /* start new governor */
2425         policy->governor = new_policy->governor;
2426         ret = cpufreq_init_governor(policy);
2427         if (!ret) {
2428                 ret = cpufreq_start_governor(policy);
2429                 if (!ret) {
2430                         pr_debug("governor change\n");
2431                         sched_cpufreq_governor_change(policy, old_gov);
2432                         return 0;
2433                 }
2434                 cpufreq_exit_governor(policy);
2435         }
2436
2437         /* new governor failed, so re-start old one */
2438         pr_debug("starting governor %s failed\n", policy->governor->name);
2439         if (old_gov) {
2440                 policy->governor = old_gov;
2441                 if (cpufreq_init_governor(policy))
2442                         policy->governor = NULL;
2443                 else
2444                         cpufreq_start_governor(policy);
2445         }
2446
2447         return ret;
2448 }
2449
2450 /**
2451  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2452  * @cpu: CPU to re-evaluate the policy for.
2453  *
2454  * Update the current frequency for the cpufreq policy of @cpu and use
2455  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2456  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2457  * for the policy in question, among other things.
2458  */
2459 void cpufreq_update_policy(unsigned int cpu)
2460 {
2461         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2462
2463         if (!policy)
2464                 return;
2465
2466         /*
2467          * BIOS might change freq behind our back
2468          * -> ask driver for current freq and notify governors about a change
2469          */
2470         if (cpufreq_driver->get && has_target() &&
2471             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2472                 goto unlock;
2473
2474         refresh_frequency_limits(policy);
2475
2476 unlock:
2477         cpufreq_cpu_release(policy);
2478 }
2479 EXPORT_SYMBOL(cpufreq_update_policy);
2480
2481 /**
2482  * cpufreq_update_limits - Update policy limits for a given CPU.
2483  * @cpu: CPU to update the policy limits for.
2484  *
2485  * Invoke the driver's ->update_limits callback if present or call
2486  * cpufreq_update_policy() for @cpu.
2487  */
2488 void cpufreq_update_limits(unsigned int cpu)
2489 {
2490         if (cpufreq_driver->update_limits)
2491                 cpufreq_driver->update_limits(cpu);
2492         else
2493                 cpufreq_update_policy(cpu);
2494 }
2495 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2496
2497 /*********************************************************************
2498  *               BOOST                                               *
2499  *********************************************************************/
2500 static int cpufreq_boost_set_sw(int state)
2501 {
2502         struct cpufreq_policy *policy;
2503         int ret = -EINVAL;
2504
2505         for_each_active_policy(policy) {
2506                 if (!policy->freq_table)
2507                         continue;
2508
2509                 ret = cpufreq_frequency_table_cpuinfo(policy,
2510                                                       policy->freq_table);
2511                 if (ret) {
2512                         pr_err("%s: Policy frequency update failed\n",
2513                                __func__);
2514                         break;
2515                 }
2516
2517                 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2518                 if (ret < 0)
2519                         break;
2520         }
2521
2522         return ret;
2523 }
2524
2525 int cpufreq_boost_trigger_state(int state)
2526 {
2527         unsigned long flags;
2528         int ret = 0;
2529
2530         if (cpufreq_driver->boost_enabled == state)
2531                 return 0;
2532
2533         write_lock_irqsave(&cpufreq_driver_lock, flags);
2534         cpufreq_driver->boost_enabled = state;
2535         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2536
2537         ret = cpufreq_driver->set_boost(state);
2538         if (ret) {
2539                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2540                 cpufreq_driver->boost_enabled = !state;
2541                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2542
2543                 pr_err("%s: Cannot %s BOOST\n",
2544                        __func__, state ? "enable" : "disable");
2545         }
2546
2547         return ret;
2548 }
2549
2550 static bool cpufreq_boost_supported(void)
2551 {
2552         return cpufreq_driver->set_boost;
2553 }
2554
2555 static int create_boost_sysfs_file(void)
2556 {
2557         int ret;
2558
2559         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2560         if (ret)
2561                 pr_err("%s: cannot register global BOOST sysfs file\n",
2562                        __func__);
2563
2564         return ret;
2565 }
2566
2567 static void remove_boost_sysfs_file(void)
2568 {
2569         if (cpufreq_boost_supported())
2570                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2571 }
2572
2573 int cpufreq_enable_boost_support(void)
2574 {
2575         if (!cpufreq_driver)
2576                 return -EINVAL;
2577
2578         if (cpufreq_boost_supported())
2579                 return 0;
2580
2581         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2582
2583         /* This will get removed on driver unregister */
2584         return create_boost_sysfs_file();
2585 }
2586 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2587
2588 int cpufreq_boost_enabled(void)
2589 {
2590         return cpufreq_driver->boost_enabled;
2591 }
2592 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2593
2594 /*********************************************************************
2595  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2596  *********************************************************************/
2597 static enum cpuhp_state hp_online;
2598
2599 static int cpuhp_cpufreq_online(unsigned int cpu)
2600 {
2601         cpufreq_online(cpu);
2602
2603         return 0;
2604 }
2605
2606 static int cpuhp_cpufreq_offline(unsigned int cpu)
2607 {
2608         cpufreq_offline(cpu);
2609
2610         return 0;
2611 }
2612
2613 /**
2614  * cpufreq_register_driver - register a CPU Frequency driver
2615  * @driver_data: A struct cpufreq_driver containing the values#
2616  * submitted by the CPU Frequency driver.
2617  *
2618  * Registers a CPU Frequency driver to this core code. This code
2619  * returns zero on success, -EEXIST when another driver got here first
2620  * (and isn't unregistered in the meantime).
2621  *
2622  */
2623 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2624 {
2625         unsigned long flags;
2626         int ret;
2627
2628         if (cpufreq_disabled())
2629                 return -ENODEV;
2630
2631         if (!driver_data || !driver_data->verify || !driver_data->init ||
2632             !(driver_data->setpolicy || driver_data->target_index ||
2633                     driver_data->target) ||
2634              (driver_data->setpolicy && (driver_data->target_index ||
2635                     driver_data->target)) ||
2636              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2637              (!driver_data->online != !driver_data->offline))
2638                 return -EINVAL;
2639
2640         pr_debug("trying to register driver %s\n", driver_data->name);
2641
2642         /* Protect against concurrent CPU online/offline. */
2643         cpus_read_lock();
2644
2645         write_lock_irqsave(&cpufreq_driver_lock, flags);
2646         if (cpufreq_driver) {
2647                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2648                 ret = -EEXIST;
2649                 goto out;
2650         }
2651         cpufreq_driver = driver_data;
2652         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2653
2654         if (driver_data->setpolicy)
2655                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2656
2657         if (cpufreq_boost_supported()) {
2658                 ret = create_boost_sysfs_file();
2659                 if (ret)
2660                         goto err_null_driver;
2661         }
2662
2663         ret = subsys_interface_register(&cpufreq_interface);
2664         if (ret)
2665                 goto err_boost_unreg;
2666
2667         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2668             list_empty(&cpufreq_policy_list)) {
2669                 /* if all ->init() calls failed, unregister */
2670                 ret = -ENODEV;
2671                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2672                          driver_data->name);
2673                 goto err_if_unreg;
2674         }
2675
2676         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2677                                                    "cpufreq:online",
2678                                                    cpuhp_cpufreq_online,
2679                                                    cpuhp_cpufreq_offline);
2680         if (ret < 0)
2681                 goto err_if_unreg;
2682         hp_online = ret;
2683         ret = 0;
2684
2685         pr_debug("driver %s up and running\n", driver_data->name);
2686         goto out;
2687
2688 err_if_unreg:
2689         subsys_interface_unregister(&cpufreq_interface);
2690 err_boost_unreg:
2691         remove_boost_sysfs_file();
2692 err_null_driver:
2693         write_lock_irqsave(&cpufreq_driver_lock, flags);
2694         cpufreq_driver = NULL;
2695         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2696 out:
2697         cpus_read_unlock();
2698         return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2701
2702 /**
2703  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2704  *
2705  * Unregister the current CPUFreq driver. Only call this if you have
2706  * the right to do so, i.e. if you have succeeded in initialising before!
2707  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2708  * currently not initialised.
2709  */
2710 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2711 {
2712         unsigned long flags;
2713
2714         if (!cpufreq_driver || (driver != cpufreq_driver))
2715                 return -EINVAL;
2716
2717         pr_debug("unregistering driver %s\n", driver->name);
2718
2719         /* Protect against concurrent cpu hotplug */
2720         cpus_read_lock();
2721         subsys_interface_unregister(&cpufreq_interface);
2722         remove_boost_sysfs_file();
2723         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2724
2725         write_lock_irqsave(&cpufreq_driver_lock, flags);
2726
2727         cpufreq_driver = NULL;
2728
2729         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2730         cpus_read_unlock();
2731
2732         return 0;
2733 }
2734 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2735
2736 struct kobject *cpufreq_global_kobject;
2737 EXPORT_SYMBOL(cpufreq_global_kobject);
2738
2739 static int __init cpufreq_core_init(void)
2740 {
2741         if (cpufreq_disabled())
2742                 return -ENODEV;
2743
2744         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2745         BUG_ON(!cpufreq_global_kobject);
2746
2747         return 0;
2748 }
2749 module_param(off, int, 0444);
2750 core_initcall(cpufreq_core_init);