Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / drivers / cpufreq / cppc_cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10
11 #define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/unaligned.h>
23
24 #include <acpi/cppc_acpi.h>
25
26 /* Minimum struct length needed for the DMI processor entry we want */
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
28
29 /* Offest in the DMI processor structure for the max frequency */
30 #define DMI_PROCESSOR_MAX_SPEED  0x14
31
32 /*
33  * These structs contain information parsed from per CPU
34  * ACPI _CPC structures.
35  * e.g. For each CPU the highest, lowest supported
36  * performance capabilities, desired performance level
37  * requested etc.
38  */
39 static struct cppc_cpudata **all_cpu_data;
40
41 struct cppc_workaround_oem_info {
42         char oem_id[ACPI_OEM_ID_SIZE +1];
43         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
44         u32 oem_revision;
45 };
46
47 static bool apply_hisi_workaround;
48
49 static struct cppc_workaround_oem_info wa_info[] = {
50         {
51                 .oem_id         = "HISI  ",
52                 .oem_table_id   = "HIP07   ",
53                 .oem_revision   = 0,
54         }, {
55                 .oem_id         = "HISI  ",
56                 .oem_table_id   = "HIP08   ",
57                 .oem_revision   = 0,
58         }
59 };
60
61 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
62                                         unsigned int perf);
63
64 /*
65  * HISI platform does not support delivered performance counter and
66  * reference performance counter. It can calculate the performance using the
67  * platform specific mechanism. We reuse the desired performance register to
68  * store the real performance calculated by the platform.
69  */
70 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
71 {
72         struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
73         u64 desired_perf;
74         int ret;
75
76         ret = cppc_get_desired_perf(cpunum, &desired_perf);
77         if (ret < 0)
78                 return -EIO;
79
80         return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
81 }
82
83 static void cppc_check_hisi_workaround(void)
84 {
85         struct acpi_table_header *tbl;
86         acpi_status status = AE_OK;
87         int i;
88
89         status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
90         if (ACPI_FAILURE(status) || !tbl)
91                 return;
92
93         for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
94                 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
95                     !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
96                     wa_info[i].oem_revision == tbl->oem_revision)
97                         apply_hisi_workaround = true;
98         }
99 }
100
101 /* Callback function used to retrieve the max frequency from DMI */
102 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
103 {
104         const u8 *dmi_data = (const u8 *)dm;
105         u16 *mhz = (u16 *)private;
106
107         if (dm->type == DMI_ENTRY_PROCESSOR &&
108             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
109                 u16 val = (u16)get_unaligned((const u16 *)
110                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
111                 *mhz = val > *mhz ? val : *mhz;
112         }
113 }
114
115 /* Look up the max frequency in DMI */
116 static u64 cppc_get_dmi_max_khz(void)
117 {
118         u16 mhz = 0;
119
120         dmi_walk(cppc_find_dmi_mhz, &mhz);
121
122         /*
123          * Real stupid fallback value, just in case there is no
124          * actual value set.
125          */
126         mhz = mhz ? mhz : 1;
127
128         return (1000 * mhz);
129 }
130
131 /*
132  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
133  * use them to convert perf to freq and vice versa
134  *
135  * If the perf/freq point lies between Nominal and Lowest, we can treat
136  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
137  * and extrapolate the rest
138  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
139  */
140 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
141                                         unsigned int perf)
142 {
143         static u64 max_khz;
144         struct cppc_perf_caps *caps = &cpu->perf_caps;
145         u64 mul, div;
146
147         if (caps->lowest_freq && caps->nominal_freq) {
148                 if (perf >= caps->nominal_perf) {
149                         mul = caps->nominal_freq;
150                         div = caps->nominal_perf;
151                 } else {
152                         mul = caps->nominal_freq - caps->lowest_freq;
153                         div = caps->nominal_perf - caps->lowest_perf;
154                 }
155         } else {
156                 if (!max_khz)
157                         max_khz = cppc_get_dmi_max_khz();
158                 mul = max_khz;
159                 div = cpu->perf_caps.highest_perf;
160         }
161         return (u64)perf * mul / div;
162 }
163
164 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
165                                         unsigned int freq)
166 {
167         static u64 max_khz;
168         struct cppc_perf_caps *caps = &cpu->perf_caps;
169         u64  mul, div;
170
171         if (caps->lowest_freq && caps->nominal_freq) {
172                 if (freq >= caps->nominal_freq) {
173                         mul = caps->nominal_perf;
174                         div = caps->nominal_freq;
175                 } else {
176                         mul = caps->lowest_perf;
177                         div = caps->lowest_freq;
178                 }
179         } else {
180                 if (!max_khz)
181                         max_khz = cppc_get_dmi_max_khz();
182                 mul = cpu->perf_caps.highest_perf;
183                 div = max_khz;
184         }
185
186         return (u64)freq * mul / div;
187 }
188
189 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
190                 unsigned int target_freq,
191                 unsigned int relation)
192 {
193         struct cppc_cpudata *cpu;
194         struct cpufreq_freqs freqs;
195         u32 desired_perf;
196         int ret = 0;
197
198         cpu = all_cpu_data[policy->cpu];
199
200         desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
201         /* Return if it is exactly the same perf */
202         if (desired_perf == cpu->perf_ctrls.desired_perf)
203                 return ret;
204
205         cpu->perf_ctrls.desired_perf = desired_perf;
206         freqs.old = policy->cur;
207         freqs.new = target_freq;
208
209         cpufreq_freq_transition_begin(policy, &freqs);
210         ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
211         cpufreq_freq_transition_end(policy, &freqs, ret != 0);
212
213         if (ret)
214                 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
215                                 cpu->cpu, ret);
216
217         return ret;
218 }
219
220 static int cppc_verify_policy(struct cpufreq_policy *policy)
221 {
222         cpufreq_verify_within_cpu_limits(policy);
223         return 0;
224 }
225
226 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
227 {
228         int cpu_num = policy->cpu;
229         struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
230         int ret;
231
232         cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
233
234         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
235         if (ret)
236                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
237                                 cpu->perf_caps.lowest_perf, cpu_num, ret);
238 }
239
240 /*
241  * The PCC subspace describes the rate at which platform can accept commands
242  * on the shared PCC channel (including READs which do not count towards freq
243  * trasition requests), so ideally we need to use the PCC values as a fallback
244  * if we don't have a platform specific transition_delay_us
245  */
246 #ifdef CONFIG_ARM64
247 #include <asm/cputype.h>
248
249 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
250 {
251         unsigned long implementor = read_cpuid_implementor();
252         unsigned long part_num = read_cpuid_part_number();
253         unsigned int delay_us = 0;
254
255         switch (implementor) {
256         case ARM_CPU_IMP_QCOM:
257                 switch (part_num) {
258                 case QCOM_CPU_PART_FALKOR_V1:
259                 case QCOM_CPU_PART_FALKOR:
260                         delay_us = 10000;
261                         break;
262                 default:
263                         delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
264                         break;
265                 }
266                 break;
267         default:
268                 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
269                 break;
270         }
271
272         return delay_us;
273 }
274
275 #else
276
277 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
278 {
279         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
280 }
281 #endif
282
283 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
284 {
285         struct cppc_cpudata *cpu;
286         unsigned int cpu_num = policy->cpu;
287         int ret = 0;
288
289         cpu = all_cpu_data[policy->cpu];
290
291         cpu->cpu = cpu_num;
292         ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
293
294         if (ret) {
295                 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
296                                 cpu_num, ret);
297                 return ret;
298         }
299
300         /* Convert the lowest and nominal freq from MHz to KHz */
301         cpu->perf_caps.lowest_freq *= 1000;
302         cpu->perf_caps.nominal_freq *= 1000;
303
304         /*
305          * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
306          * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
307          */
308         policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
309         policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
310
311         /*
312          * Set cpuinfo.min_freq to Lowest to make the full range of performance
313          * available if userspace wants to use any perf between lowest & lowest
314          * nonlinear perf
315          */
316         policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
317         policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
318
319         policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
320         policy->shared_type = cpu->shared_type;
321
322         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
323                 int i;
324
325                 cpumask_copy(policy->cpus, cpu->shared_cpu_map);
326
327                 for_each_cpu(i, policy->cpus) {
328                         if (unlikely(i == policy->cpu))
329                                 continue;
330
331                         memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
332                                sizeof(cpu->perf_caps));
333                 }
334         } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
335                 /* Support only SW_ANY for now. */
336                 pr_debug("Unsupported CPU co-ord type\n");
337                 return -EFAULT;
338         }
339
340         cpu->cur_policy = policy;
341
342         /* Set policy->cur to max now. The governors will adjust later. */
343         policy->cur = cppc_cpufreq_perf_to_khz(cpu,
344                                         cpu->perf_caps.highest_perf);
345         cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
346
347         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
348         if (ret)
349                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
350                                 cpu->perf_caps.highest_perf, cpu_num, ret);
351
352         return ret;
353 }
354
355 static inline u64 get_delta(u64 t1, u64 t0)
356 {
357         if (t1 > t0 || t0 > ~(u32)0)
358                 return t1 - t0;
359
360         return (u32)t1 - (u32)t0;
361 }
362
363 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
364                                      struct cppc_perf_fb_ctrs fb_ctrs_t0,
365                                      struct cppc_perf_fb_ctrs fb_ctrs_t1)
366 {
367         u64 delta_reference, delta_delivered;
368         u64 reference_perf, delivered_perf;
369
370         reference_perf = fb_ctrs_t0.reference_perf;
371
372         delta_reference = get_delta(fb_ctrs_t1.reference,
373                                     fb_ctrs_t0.reference);
374         delta_delivered = get_delta(fb_ctrs_t1.delivered,
375                                     fb_ctrs_t0.delivered);
376
377         /* Check to avoid divide-by zero */
378         if (delta_reference || delta_delivered)
379                 delivered_perf = (reference_perf * delta_delivered) /
380                                         delta_reference;
381         else
382                 delivered_perf = cpu->perf_ctrls.desired_perf;
383
384         return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
385 }
386
387 static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
388 {
389         struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
390         struct cppc_cpudata *cpu = all_cpu_data[cpunum];
391         int ret;
392
393         if (apply_hisi_workaround)
394                 return hisi_cppc_cpufreq_get_rate(cpunum);
395
396         ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
397         if (ret)
398                 return ret;
399
400         udelay(2); /* 2usec delay between sampling */
401
402         ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
403         if (ret)
404                 return ret;
405
406         return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
407 }
408
409 static struct cpufreq_driver cppc_cpufreq_driver = {
410         .flags = CPUFREQ_CONST_LOOPS,
411         .verify = cppc_verify_policy,
412         .target = cppc_cpufreq_set_target,
413         .get = cppc_cpufreq_get_rate,
414         .init = cppc_cpufreq_cpu_init,
415         .stop_cpu = cppc_cpufreq_stop_cpu,
416         .name = "cppc_cpufreq",
417 };
418
419 static int __init cppc_cpufreq_init(void)
420 {
421         int i, ret = 0;
422         struct cppc_cpudata *cpu;
423
424         if (acpi_disabled)
425                 return -ENODEV;
426
427         all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
428                                GFP_KERNEL);
429         if (!all_cpu_data)
430                 return -ENOMEM;
431
432         for_each_possible_cpu(i) {
433                 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
434                 if (!all_cpu_data[i])
435                         goto out;
436
437                 cpu = all_cpu_data[i];
438                 if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
439                         goto out;
440         }
441
442         ret = acpi_get_psd_map(all_cpu_data);
443         if (ret) {
444                 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
445                 goto out;
446         }
447
448         cppc_check_hisi_workaround();
449
450         ret = cpufreq_register_driver(&cppc_cpufreq_driver);
451         if (ret)
452                 goto out;
453
454         return ret;
455
456 out:
457         for_each_possible_cpu(i) {
458                 cpu = all_cpu_data[i];
459                 if (!cpu)
460                         break;
461                 free_cpumask_var(cpu->shared_cpu_map);
462                 kfree(cpu);
463         }
464
465         kfree(all_cpu_data);
466         return -ENODEV;
467 }
468
469 static void __exit cppc_cpufreq_exit(void)
470 {
471         struct cppc_cpudata *cpu;
472         int i;
473
474         cpufreq_unregister_driver(&cppc_cpufreq_driver);
475
476         for_each_possible_cpu(i) {
477                 cpu = all_cpu_data[i];
478                 free_cpumask_var(cpu->shared_cpu_map);
479                 kfree(cpu);
480         }
481
482         kfree(all_cpu_data);
483 }
484
485 module_exit(cppc_cpufreq_exit);
486 MODULE_AUTHOR("Ashwin Chaugule");
487 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
488 MODULE_LICENSE("GPL");
489
490 late_initcall(cppc_cpufreq_init);
491
492 static const struct acpi_device_id cppc_acpi_ids[] __used = {
493         {ACPI_PROCESSOR_DEVICE_HID, },
494         {}
495 };
496
497 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);