Merge tag 'ceph-for-5.4-rc7' of git://github.com/ceph/ceph-client
[platform/kernel/linux-rpi.git] / drivers / cpufreq / acpi-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22
23 #include <linux/acpi.h>
24 #include <linux/io.h>
25 #include <linux/delay.h>
26 #include <linux/uaccess.h>
27
28 #include <acpi/processor.h>
29
30 #include <asm/msr.h>
31 #include <asm/processor.h>
32 #include <asm/cpufeature.h>
33
34 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
35 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
36 MODULE_LICENSE("GPL");
37
38 enum {
39         UNDEFINED_CAPABLE = 0,
40         SYSTEM_INTEL_MSR_CAPABLE,
41         SYSTEM_AMD_MSR_CAPABLE,
42         SYSTEM_IO_CAPABLE,
43 };
44
45 #define INTEL_MSR_RANGE         (0xffff)
46 #define AMD_MSR_RANGE           (0x7)
47 #define HYGON_MSR_RANGE         (0x7)
48
49 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
50
51 struct acpi_cpufreq_data {
52         unsigned int resume;
53         unsigned int cpu_feature;
54         unsigned int acpi_perf_cpu;
55         cpumask_var_t freqdomain_cpus;
56         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
57         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
58 };
59
60 /* acpi_perf_data is a pointer to percpu data. */
61 static struct acpi_processor_performance __percpu *acpi_perf_data;
62
63 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
64 {
65         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
66 }
67
68 static struct cpufreq_driver acpi_cpufreq_driver;
69
70 static unsigned int acpi_pstate_strict;
71
72 static bool boost_state(unsigned int cpu)
73 {
74         u32 lo, hi;
75         u64 msr;
76
77         switch (boot_cpu_data.x86_vendor) {
78         case X86_VENDOR_INTEL:
79                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
80                 msr = lo | ((u64)hi << 32);
81                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
82         case X86_VENDOR_HYGON:
83         case X86_VENDOR_AMD:
84                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
85                 msr = lo | ((u64)hi << 32);
86                 return !(msr & MSR_K7_HWCR_CPB_DIS);
87         }
88         return false;
89 }
90
91 static int boost_set_msr(bool enable)
92 {
93         u32 msr_addr;
94         u64 msr_mask, val;
95
96         switch (boot_cpu_data.x86_vendor) {
97         case X86_VENDOR_INTEL:
98                 msr_addr = MSR_IA32_MISC_ENABLE;
99                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
100                 break;
101         case X86_VENDOR_HYGON:
102         case X86_VENDOR_AMD:
103                 msr_addr = MSR_K7_HWCR;
104                 msr_mask = MSR_K7_HWCR_CPB_DIS;
105                 break;
106         default:
107                 return -EINVAL;
108         }
109
110         rdmsrl(msr_addr, val);
111
112         if (enable)
113                 val &= ~msr_mask;
114         else
115                 val |= msr_mask;
116
117         wrmsrl(msr_addr, val);
118         return 0;
119 }
120
121 static void boost_set_msr_each(void *p_en)
122 {
123         bool enable = (bool) p_en;
124
125         boost_set_msr(enable);
126 }
127
128 static int set_boost(int val)
129 {
130         get_online_cpus();
131         on_each_cpu(boost_set_msr_each, (void *)(long)val, 1);
132         put_online_cpus();
133         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
134
135         return 0;
136 }
137
138 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
139 {
140         struct acpi_cpufreq_data *data = policy->driver_data;
141
142         if (unlikely(!data))
143                 return -ENODEV;
144
145         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
146 }
147
148 cpufreq_freq_attr_ro(freqdomain_cpus);
149
150 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
151 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
152                          size_t count)
153 {
154         int ret;
155         unsigned int val = 0;
156
157         if (!acpi_cpufreq_driver.set_boost)
158                 return -EINVAL;
159
160         ret = kstrtouint(buf, 10, &val);
161         if (ret || val > 1)
162                 return -EINVAL;
163
164         set_boost(val);
165
166         return count;
167 }
168
169 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
170 {
171         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
172 }
173
174 cpufreq_freq_attr_rw(cpb);
175 #endif
176
177 static int check_est_cpu(unsigned int cpuid)
178 {
179         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
180
181         return cpu_has(cpu, X86_FEATURE_EST);
182 }
183
184 static int check_amd_hwpstate_cpu(unsigned int cpuid)
185 {
186         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
187
188         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
189 }
190
191 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
192 {
193         struct acpi_cpufreq_data *data = policy->driver_data;
194         struct acpi_processor_performance *perf;
195         int i;
196
197         perf = to_perf_data(data);
198
199         for (i = 0; i < perf->state_count; i++) {
200                 if (value == perf->states[i].status)
201                         return policy->freq_table[i].frequency;
202         }
203         return 0;
204 }
205
206 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
207 {
208         struct acpi_cpufreq_data *data = policy->driver_data;
209         struct cpufreq_frequency_table *pos;
210         struct acpi_processor_performance *perf;
211
212         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
213                 msr &= AMD_MSR_RANGE;
214         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
215                 msr &= HYGON_MSR_RANGE;
216         else
217                 msr &= INTEL_MSR_RANGE;
218
219         perf = to_perf_data(data);
220
221         cpufreq_for_each_entry(pos, policy->freq_table)
222                 if (msr == perf->states[pos->driver_data].status)
223                         return pos->frequency;
224         return policy->freq_table[0].frequency;
225 }
226
227 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
228 {
229         struct acpi_cpufreq_data *data = policy->driver_data;
230
231         switch (data->cpu_feature) {
232         case SYSTEM_INTEL_MSR_CAPABLE:
233         case SYSTEM_AMD_MSR_CAPABLE:
234                 return extract_msr(policy, val);
235         case SYSTEM_IO_CAPABLE:
236                 return extract_io(policy, val);
237         default:
238                 return 0;
239         }
240 }
241
242 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
243 {
244         u32 val, dummy;
245
246         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
247         return val;
248 }
249
250 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
251 {
252         u32 lo, hi;
253
254         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
255         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
256         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
257 }
258
259 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
260 {
261         u32 val, dummy;
262
263         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
264         return val;
265 }
266
267 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
268 {
269         wrmsr(MSR_AMD_PERF_CTL, val, 0);
270 }
271
272 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
273 {
274         u32 val;
275
276         acpi_os_read_port(reg->address, &val, reg->bit_width);
277         return val;
278 }
279
280 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
281 {
282         acpi_os_write_port(reg->address, val, reg->bit_width);
283 }
284
285 struct drv_cmd {
286         struct acpi_pct_register *reg;
287         u32 val;
288         union {
289                 void (*write)(struct acpi_pct_register *reg, u32 val);
290                 u32 (*read)(struct acpi_pct_register *reg);
291         } func;
292 };
293
294 /* Called via smp_call_function_single(), on the target CPU */
295 static void do_drv_read(void *_cmd)
296 {
297         struct drv_cmd *cmd = _cmd;
298
299         cmd->val = cmd->func.read(cmd->reg);
300 }
301
302 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
303 {
304         struct acpi_processor_performance *perf = to_perf_data(data);
305         struct drv_cmd cmd = {
306                 .reg = &perf->control_register,
307                 .func.read = data->cpu_freq_read,
308         };
309         int err;
310
311         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
312         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
313         return cmd.val;
314 }
315
316 /* Called via smp_call_function_many(), on the target CPUs */
317 static void do_drv_write(void *_cmd)
318 {
319         struct drv_cmd *cmd = _cmd;
320
321         cmd->func.write(cmd->reg, cmd->val);
322 }
323
324 static void drv_write(struct acpi_cpufreq_data *data,
325                       const struct cpumask *mask, u32 val)
326 {
327         struct acpi_processor_performance *perf = to_perf_data(data);
328         struct drv_cmd cmd = {
329                 .reg = &perf->control_register,
330                 .val = val,
331                 .func.write = data->cpu_freq_write,
332         };
333         int this_cpu;
334
335         this_cpu = get_cpu();
336         if (cpumask_test_cpu(this_cpu, mask))
337                 do_drv_write(&cmd);
338
339         smp_call_function_many(mask, do_drv_write, &cmd, 1);
340         put_cpu();
341 }
342
343 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
344 {
345         u32 val;
346
347         if (unlikely(cpumask_empty(mask)))
348                 return 0;
349
350         val = drv_read(data, mask);
351
352         pr_debug("%s = %u\n", __func__, val);
353
354         return val;
355 }
356
357 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
358 {
359         struct acpi_cpufreq_data *data;
360         struct cpufreq_policy *policy;
361         unsigned int freq;
362         unsigned int cached_freq;
363
364         pr_debug("%s (%d)\n", __func__, cpu);
365
366         policy = cpufreq_cpu_get_raw(cpu);
367         if (unlikely(!policy))
368                 return 0;
369
370         data = policy->driver_data;
371         if (unlikely(!data || !policy->freq_table))
372                 return 0;
373
374         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
375         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
376         if (freq != cached_freq) {
377                 /*
378                  * The dreaded BIOS frequency change behind our back.
379                  * Force set the frequency on next target call.
380                  */
381                 data->resume = 1;
382         }
383
384         pr_debug("cur freq = %u\n", freq);
385
386         return freq;
387 }
388
389 static unsigned int check_freqs(struct cpufreq_policy *policy,
390                                 const struct cpumask *mask, unsigned int freq)
391 {
392         struct acpi_cpufreq_data *data = policy->driver_data;
393         unsigned int cur_freq;
394         unsigned int i;
395
396         for (i = 0; i < 100; i++) {
397                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
398                 if (cur_freq == freq)
399                         return 1;
400                 udelay(10);
401         }
402         return 0;
403 }
404
405 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
406                                unsigned int index)
407 {
408         struct acpi_cpufreq_data *data = policy->driver_data;
409         struct acpi_processor_performance *perf;
410         const struct cpumask *mask;
411         unsigned int next_perf_state = 0; /* Index into perf table */
412         int result = 0;
413
414         if (unlikely(!data)) {
415                 return -ENODEV;
416         }
417
418         perf = to_perf_data(data);
419         next_perf_state = policy->freq_table[index].driver_data;
420         if (perf->state == next_perf_state) {
421                 if (unlikely(data->resume)) {
422                         pr_debug("Called after resume, resetting to P%d\n",
423                                 next_perf_state);
424                         data->resume = 0;
425                 } else {
426                         pr_debug("Already at target state (P%d)\n",
427                                 next_perf_state);
428                         return 0;
429                 }
430         }
431
432         /*
433          * The core won't allow CPUs to go away until the governor has been
434          * stopped, so we can rely on the stability of policy->cpus.
435          */
436         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
437                 cpumask_of(policy->cpu) : policy->cpus;
438
439         drv_write(data, mask, perf->states[next_perf_state].control);
440
441         if (acpi_pstate_strict) {
442                 if (!check_freqs(policy, mask,
443                                  policy->freq_table[index].frequency)) {
444                         pr_debug("%s (%d)\n", __func__, policy->cpu);
445                         result = -EAGAIN;
446                 }
447         }
448
449         if (!result)
450                 perf->state = next_perf_state;
451
452         return result;
453 }
454
455 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
456                                              unsigned int target_freq)
457 {
458         struct acpi_cpufreq_data *data = policy->driver_data;
459         struct acpi_processor_performance *perf;
460         struct cpufreq_frequency_table *entry;
461         unsigned int next_perf_state, next_freq, index;
462
463         /*
464          * Find the closest frequency above target_freq.
465          */
466         if (policy->cached_target_freq == target_freq)
467                 index = policy->cached_resolved_idx;
468         else
469                 index = cpufreq_table_find_index_dl(policy, target_freq);
470
471         entry = &policy->freq_table[index];
472         next_freq = entry->frequency;
473         next_perf_state = entry->driver_data;
474
475         perf = to_perf_data(data);
476         if (perf->state == next_perf_state) {
477                 if (unlikely(data->resume))
478                         data->resume = 0;
479                 else
480                         return next_freq;
481         }
482
483         data->cpu_freq_write(&perf->control_register,
484                              perf->states[next_perf_state].control);
485         perf->state = next_perf_state;
486         return next_freq;
487 }
488
489 static unsigned long
490 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
491 {
492         struct acpi_processor_performance *perf;
493
494         perf = to_perf_data(data);
495         if (cpu_khz) {
496                 /* search the closest match to cpu_khz */
497                 unsigned int i;
498                 unsigned long freq;
499                 unsigned long freqn = perf->states[0].core_frequency * 1000;
500
501                 for (i = 0; i < (perf->state_count-1); i++) {
502                         freq = freqn;
503                         freqn = perf->states[i+1].core_frequency * 1000;
504                         if ((2 * cpu_khz) > (freqn + freq)) {
505                                 perf->state = i;
506                                 return freq;
507                         }
508                 }
509                 perf->state = perf->state_count-1;
510                 return freqn;
511         } else {
512                 /* assume CPU is at P0... */
513                 perf->state = 0;
514                 return perf->states[0].core_frequency * 1000;
515         }
516 }
517
518 static void free_acpi_perf_data(void)
519 {
520         unsigned int i;
521
522         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
523         for_each_possible_cpu(i)
524                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
525                                  ->shared_cpu_map);
526         free_percpu(acpi_perf_data);
527 }
528
529 static int cpufreq_boost_online(unsigned int cpu)
530 {
531         /*
532          * On the CPU_UP path we simply keep the boost-disable flag
533          * in sync with the current global state.
534          */
535         return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
536 }
537
538 static int cpufreq_boost_down_prep(unsigned int cpu)
539 {
540         /*
541          * Clear the boost-disable bit on the CPU_DOWN path so that
542          * this cpu cannot block the remaining ones from boosting.
543          */
544         return boost_set_msr(1);
545 }
546
547 /*
548  * acpi_cpufreq_early_init - initialize ACPI P-States library
549  *
550  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
551  * in order to determine correct frequency and voltage pairings. We can
552  * do _PDC and _PSD and find out the processor dependency for the
553  * actual init that will happen later...
554  */
555 static int __init acpi_cpufreq_early_init(void)
556 {
557         unsigned int i;
558         pr_debug("%s\n", __func__);
559
560         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
561         if (!acpi_perf_data) {
562                 pr_debug("Memory allocation error for acpi_perf_data.\n");
563                 return -ENOMEM;
564         }
565         for_each_possible_cpu(i) {
566                 if (!zalloc_cpumask_var_node(
567                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
568                         GFP_KERNEL, cpu_to_node(i))) {
569
570                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
571                         free_acpi_perf_data();
572                         return -ENOMEM;
573                 }
574         }
575
576         /* Do initialization in ACPI core */
577         acpi_processor_preregister_performance(acpi_perf_data);
578         return 0;
579 }
580
581 #ifdef CONFIG_SMP
582 /*
583  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
584  * or do it in BIOS firmware and won't inform about it to OS. If not
585  * detected, this has a side effect of making CPU run at a different speed
586  * than OS intended it to run at. Detect it and handle it cleanly.
587  */
588 static int bios_with_sw_any_bug;
589
590 static int sw_any_bug_found(const struct dmi_system_id *d)
591 {
592         bios_with_sw_any_bug = 1;
593         return 0;
594 }
595
596 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
597         {
598                 .callback = sw_any_bug_found,
599                 .ident = "Supermicro Server X6DLP",
600                 .matches = {
601                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
602                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
603                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
604                 },
605         },
606         { }
607 };
608
609 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
610 {
611         /* Intel Xeon Processor 7100 Series Specification Update
612          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
613          * AL30: A Machine Check Exception (MCE) Occurring during an
614          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
615          * Both Processor Cores to Lock Up. */
616         if (c->x86_vendor == X86_VENDOR_INTEL) {
617                 if ((c->x86 == 15) &&
618                     (c->x86_model == 6) &&
619                     (c->x86_stepping == 8)) {
620                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
621                         return -ENODEV;
622                     }
623                 }
624         return 0;
625 }
626 #endif
627
628 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
629 {
630         unsigned int i;
631         unsigned int valid_states = 0;
632         unsigned int cpu = policy->cpu;
633         struct acpi_cpufreq_data *data;
634         unsigned int result = 0;
635         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
636         struct acpi_processor_performance *perf;
637         struct cpufreq_frequency_table *freq_table;
638 #ifdef CONFIG_SMP
639         static int blacklisted;
640 #endif
641
642         pr_debug("%s\n", __func__);
643
644 #ifdef CONFIG_SMP
645         if (blacklisted)
646                 return blacklisted;
647         blacklisted = acpi_cpufreq_blacklist(c);
648         if (blacklisted)
649                 return blacklisted;
650 #endif
651
652         data = kzalloc(sizeof(*data), GFP_KERNEL);
653         if (!data)
654                 return -ENOMEM;
655
656         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
657                 result = -ENOMEM;
658                 goto err_free;
659         }
660
661         perf = per_cpu_ptr(acpi_perf_data, cpu);
662         data->acpi_perf_cpu = cpu;
663         policy->driver_data = data;
664
665         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
666                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
667
668         result = acpi_processor_register_performance(perf, cpu);
669         if (result)
670                 goto err_free_mask;
671
672         policy->shared_type = perf->shared_type;
673
674         /*
675          * Will let policy->cpus know about dependency only when software
676          * coordination is required.
677          */
678         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
679             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
680                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
681         }
682         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
683
684 #ifdef CONFIG_SMP
685         dmi_check_system(sw_any_bug_dmi_table);
686         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
687                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
688                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
689         }
690
691         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
692                 cpumask_clear(policy->cpus);
693                 cpumask_set_cpu(cpu, policy->cpus);
694                 cpumask_copy(data->freqdomain_cpus,
695                              topology_sibling_cpumask(cpu));
696                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
697                 pr_info_once("overriding BIOS provided _PSD data\n");
698         }
699 #endif
700
701         /* capability check */
702         if (perf->state_count <= 1) {
703                 pr_debug("No P-States\n");
704                 result = -ENODEV;
705                 goto err_unreg;
706         }
707
708         if (perf->control_register.space_id != perf->status_register.space_id) {
709                 result = -ENODEV;
710                 goto err_unreg;
711         }
712
713         switch (perf->control_register.space_id) {
714         case ACPI_ADR_SPACE_SYSTEM_IO:
715                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
716                     boot_cpu_data.x86 == 0xf) {
717                         pr_debug("AMD K8 systems must use native drivers.\n");
718                         result = -ENODEV;
719                         goto err_unreg;
720                 }
721                 pr_debug("SYSTEM IO addr space\n");
722                 data->cpu_feature = SYSTEM_IO_CAPABLE;
723                 data->cpu_freq_read = cpu_freq_read_io;
724                 data->cpu_freq_write = cpu_freq_write_io;
725                 break;
726         case ACPI_ADR_SPACE_FIXED_HARDWARE:
727                 pr_debug("HARDWARE addr space\n");
728                 if (check_est_cpu(cpu)) {
729                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
730                         data->cpu_freq_read = cpu_freq_read_intel;
731                         data->cpu_freq_write = cpu_freq_write_intel;
732                         break;
733                 }
734                 if (check_amd_hwpstate_cpu(cpu)) {
735                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
736                         data->cpu_freq_read = cpu_freq_read_amd;
737                         data->cpu_freq_write = cpu_freq_write_amd;
738                         break;
739                 }
740                 result = -ENODEV;
741                 goto err_unreg;
742         default:
743                 pr_debug("Unknown addr space %d\n",
744                         (u32) (perf->control_register.space_id));
745                 result = -ENODEV;
746                 goto err_unreg;
747         }
748
749         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
750                              GFP_KERNEL);
751         if (!freq_table) {
752                 result = -ENOMEM;
753                 goto err_unreg;
754         }
755
756         /* detect transition latency */
757         policy->cpuinfo.transition_latency = 0;
758         for (i = 0; i < perf->state_count; i++) {
759                 if ((perf->states[i].transition_latency * 1000) >
760                     policy->cpuinfo.transition_latency)
761                         policy->cpuinfo.transition_latency =
762                             perf->states[i].transition_latency * 1000;
763         }
764
765         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
766         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
767             policy->cpuinfo.transition_latency > 20 * 1000) {
768                 policy->cpuinfo.transition_latency = 20 * 1000;
769                 pr_info_once("P-state transition latency capped at 20 uS\n");
770         }
771
772         /* table init */
773         for (i = 0; i < perf->state_count; i++) {
774                 if (i > 0 && perf->states[i].core_frequency >=
775                     freq_table[valid_states-1].frequency / 1000)
776                         continue;
777
778                 freq_table[valid_states].driver_data = i;
779                 freq_table[valid_states].frequency =
780                     perf->states[i].core_frequency * 1000;
781                 valid_states++;
782         }
783         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
784         policy->freq_table = freq_table;
785         perf->state = 0;
786
787         switch (perf->control_register.space_id) {
788         case ACPI_ADR_SPACE_SYSTEM_IO:
789                 /*
790                  * The core will not set policy->cur, because
791                  * cpufreq_driver->get is NULL, so we need to set it here.
792                  * However, we have to guess it, because the current speed is
793                  * unknown and not detectable via IO ports.
794                  */
795                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
796                 break;
797         case ACPI_ADR_SPACE_FIXED_HARDWARE:
798                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
799                 break;
800         default:
801                 break;
802         }
803
804         /* notify BIOS that we exist */
805         acpi_processor_notify_smm(THIS_MODULE);
806
807         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
808         for (i = 0; i < perf->state_count; i++)
809                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
810                         (i == perf->state ? '*' : ' '), i,
811                         (u32) perf->states[i].core_frequency,
812                         (u32) perf->states[i].power,
813                         (u32) perf->states[i].transition_latency);
814
815         /*
816          * the first call to ->target() should result in us actually
817          * writing something to the appropriate registers.
818          */
819         data->resume = 1;
820
821         policy->fast_switch_possible = !acpi_pstate_strict &&
822                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
823
824         return result;
825
826 err_unreg:
827         acpi_processor_unregister_performance(cpu);
828 err_free_mask:
829         free_cpumask_var(data->freqdomain_cpus);
830 err_free:
831         kfree(data);
832         policy->driver_data = NULL;
833
834         return result;
835 }
836
837 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
838 {
839         struct acpi_cpufreq_data *data = policy->driver_data;
840
841         pr_debug("%s\n", __func__);
842
843         policy->fast_switch_possible = false;
844         policy->driver_data = NULL;
845         acpi_processor_unregister_performance(data->acpi_perf_cpu);
846         free_cpumask_var(data->freqdomain_cpus);
847         kfree(policy->freq_table);
848         kfree(data);
849
850         return 0;
851 }
852
853 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
854 {
855         struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
856                                                               policy->cpu);
857
858         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
859                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
860 }
861
862 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
863 {
864         struct acpi_cpufreq_data *data = policy->driver_data;
865
866         pr_debug("%s\n", __func__);
867
868         data->resume = 1;
869
870         return 0;
871 }
872
873 static struct freq_attr *acpi_cpufreq_attr[] = {
874         &cpufreq_freq_attr_scaling_available_freqs,
875         &freqdomain_cpus,
876 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
877         &cpb,
878 #endif
879         NULL,
880 };
881
882 static struct cpufreq_driver acpi_cpufreq_driver = {
883         .verify         = cpufreq_generic_frequency_table_verify,
884         .target_index   = acpi_cpufreq_target,
885         .fast_switch    = acpi_cpufreq_fast_switch,
886         .bios_limit     = acpi_processor_get_bios_limit,
887         .init           = acpi_cpufreq_cpu_init,
888         .exit           = acpi_cpufreq_cpu_exit,
889         .ready          = acpi_cpufreq_cpu_ready,
890         .resume         = acpi_cpufreq_resume,
891         .name           = "acpi-cpufreq",
892         .attr           = acpi_cpufreq_attr,
893 };
894
895 static enum cpuhp_state acpi_cpufreq_online;
896
897 static void __init acpi_cpufreq_boost_init(void)
898 {
899         int ret;
900
901         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
902                 pr_debug("Boost capabilities not present in the processor\n");
903                 return;
904         }
905
906         acpi_cpufreq_driver.set_boost = set_boost;
907         acpi_cpufreq_driver.boost_enabled = boost_state(0);
908
909         /*
910          * This calls the online callback on all online cpu and forces all
911          * MSRs to the same value.
912          */
913         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
914                                 cpufreq_boost_online, cpufreq_boost_down_prep);
915         if (ret < 0) {
916                 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
917                 return;
918         }
919         acpi_cpufreq_online = ret;
920 }
921
922 static void acpi_cpufreq_boost_exit(void)
923 {
924         if (acpi_cpufreq_online > 0)
925                 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
926 }
927
928 static int __init acpi_cpufreq_init(void)
929 {
930         int ret;
931
932         if (acpi_disabled)
933                 return -ENODEV;
934
935         /* don't keep reloading if cpufreq_driver exists */
936         if (cpufreq_get_current_driver())
937                 return -EEXIST;
938
939         pr_debug("%s\n", __func__);
940
941         ret = acpi_cpufreq_early_init();
942         if (ret)
943                 return ret;
944
945 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
946         /* this is a sysfs file with a strange name and an even stranger
947          * semantic - per CPU instantiation, but system global effect.
948          * Lets enable it only on AMD CPUs for compatibility reasons and
949          * only if configured. This is considered legacy code, which
950          * will probably be removed at some point in the future.
951          */
952         if (!check_amd_hwpstate_cpu(0)) {
953                 struct freq_attr **attr;
954
955                 pr_debug("CPB unsupported, do not expose it\n");
956
957                 for (attr = acpi_cpufreq_attr; *attr; attr++)
958                         if (*attr == &cpb) {
959                                 *attr = NULL;
960                                 break;
961                         }
962         }
963 #endif
964         acpi_cpufreq_boost_init();
965
966         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
967         if (ret) {
968                 free_acpi_perf_data();
969                 acpi_cpufreq_boost_exit();
970         }
971         return ret;
972 }
973
974 static void __exit acpi_cpufreq_exit(void)
975 {
976         pr_debug("%s\n", __func__);
977
978         acpi_cpufreq_boost_exit();
979
980         cpufreq_unregister_driver(&acpi_cpufreq_driver);
981
982         free_acpi_perf_data();
983 }
984
985 module_param(acpi_pstate_strict, uint, 0644);
986 MODULE_PARM_DESC(acpi_pstate_strict,
987         "value 0 or non-zero. non-zero -> strict ACPI checks are "
988         "performed during frequency changes.");
989
990 late_initcall(acpi_cpufreq_init);
991 module_exit(acpi_cpufreq_exit);
992
993 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
994         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
995         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
996         {}
997 };
998 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
999
1000 static const struct acpi_device_id processor_device_ids[] = {
1001         {ACPI_PROCESSOR_OBJECT_HID, },
1002         {ACPI_PROCESSOR_DEVICE_HID, },
1003         {},
1004 };
1005 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1006
1007 MODULE_ALIAS("acpi");