Merge tag 'irq_urgent_for_v6.5_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / drivers / cpufreq / acpi-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
23 #include <linux/platform_device.h>
24
25 #include <linux/acpi.h>
26 #include <linux/io.h>
27 #include <linux/delay.h>
28 #include <linux/uaccess.h>
29
30 #include <acpi/processor.h>
31 #include <acpi/cppc_acpi.h>
32
33 #include <asm/msr.h>
34 #include <asm/processor.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cpu_device_id.h>
37
38 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
39 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
40 MODULE_LICENSE("GPL");
41
42 enum {
43         UNDEFINED_CAPABLE = 0,
44         SYSTEM_INTEL_MSR_CAPABLE,
45         SYSTEM_AMD_MSR_CAPABLE,
46         SYSTEM_IO_CAPABLE,
47 };
48
49 #define INTEL_MSR_RANGE         (0xffff)
50 #define AMD_MSR_RANGE           (0x7)
51 #define HYGON_MSR_RANGE         (0x7)
52
53 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
54
55 struct acpi_cpufreq_data {
56         unsigned int resume;
57         unsigned int cpu_feature;
58         unsigned int acpi_perf_cpu;
59         cpumask_var_t freqdomain_cpus;
60         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
61         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
62 };
63
64 /* acpi_perf_data is a pointer to percpu data. */
65 static struct acpi_processor_performance __percpu *acpi_perf_data;
66
67 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
68 {
69         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
70 }
71
72 static struct cpufreq_driver acpi_cpufreq_driver;
73
74 static unsigned int acpi_pstate_strict;
75
76 static bool boost_state(unsigned int cpu)
77 {
78         u32 lo, hi;
79         u64 msr;
80
81         switch (boot_cpu_data.x86_vendor) {
82         case X86_VENDOR_INTEL:
83         case X86_VENDOR_CENTAUR:
84         case X86_VENDOR_ZHAOXIN:
85                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
86                 msr = lo | ((u64)hi << 32);
87                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
88         case X86_VENDOR_HYGON:
89         case X86_VENDOR_AMD:
90                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
91                 msr = lo | ((u64)hi << 32);
92                 return !(msr & MSR_K7_HWCR_CPB_DIS);
93         }
94         return false;
95 }
96
97 static int boost_set_msr(bool enable)
98 {
99         u32 msr_addr;
100         u64 msr_mask, val;
101
102         switch (boot_cpu_data.x86_vendor) {
103         case X86_VENDOR_INTEL:
104         case X86_VENDOR_CENTAUR:
105         case X86_VENDOR_ZHAOXIN:
106                 msr_addr = MSR_IA32_MISC_ENABLE;
107                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
108                 break;
109         case X86_VENDOR_HYGON:
110         case X86_VENDOR_AMD:
111                 msr_addr = MSR_K7_HWCR;
112                 msr_mask = MSR_K7_HWCR_CPB_DIS;
113                 break;
114         default:
115                 return -EINVAL;
116         }
117
118         rdmsrl(msr_addr, val);
119
120         if (enable)
121                 val &= ~msr_mask;
122         else
123                 val |= msr_mask;
124
125         wrmsrl(msr_addr, val);
126         return 0;
127 }
128
129 static void boost_set_msr_each(void *p_en)
130 {
131         bool enable = (bool) p_en;
132
133         boost_set_msr(enable);
134 }
135
136 static int set_boost(struct cpufreq_policy *policy, int val)
137 {
138         on_each_cpu_mask(policy->cpus, boost_set_msr_each,
139                          (void *)(long)val, 1);
140         pr_debug("CPU %*pbl: Core Boosting %s.\n",
141                  cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
142
143         return 0;
144 }
145
146 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
147 {
148         struct acpi_cpufreq_data *data = policy->driver_data;
149
150         if (unlikely(!data))
151                 return -ENODEV;
152
153         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
154 }
155
156 cpufreq_freq_attr_ro(freqdomain_cpus);
157
158 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
159 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
160                          size_t count)
161 {
162         int ret;
163         unsigned int val = 0;
164
165         if (!acpi_cpufreq_driver.set_boost)
166                 return -EINVAL;
167
168         ret = kstrtouint(buf, 10, &val);
169         if (ret || val > 1)
170                 return -EINVAL;
171
172         cpus_read_lock();
173         set_boost(policy, val);
174         cpus_read_unlock();
175
176         return count;
177 }
178
179 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
180 {
181         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
182 }
183
184 cpufreq_freq_attr_rw(cpb);
185 #endif
186
187 static int check_est_cpu(unsigned int cpuid)
188 {
189         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
190
191         return cpu_has(cpu, X86_FEATURE_EST);
192 }
193
194 static int check_amd_hwpstate_cpu(unsigned int cpuid)
195 {
196         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
197
198         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
199 }
200
201 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
202 {
203         struct acpi_cpufreq_data *data = policy->driver_data;
204         struct acpi_processor_performance *perf;
205         int i;
206
207         perf = to_perf_data(data);
208
209         for (i = 0; i < perf->state_count; i++) {
210                 if (value == perf->states[i].status)
211                         return policy->freq_table[i].frequency;
212         }
213         return 0;
214 }
215
216 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
217 {
218         struct acpi_cpufreq_data *data = policy->driver_data;
219         struct cpufreq_frequency_table *pos;
220         struct acpi_processor_performance *perf;
221
222         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223                 msr &= AMD_MSR_RANGE;
224         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
225                 msr &= HYGON_MSR_RANGE;
226         else
227                 msr &= INTEL_MSR_RANGE;
228
229         perf = to_perf_data(data);
230
231         cpufreq_for_each_entry(pos, policy->freq_table)
232                 if (msr == perf->states[pos->driver_data].status)
233                         return pos->frequency;
234         return policy->freq_table[0].frequency;
235 }
236
237 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
238 {
239         struct acpi_cpufreq_data *data = policy->driver_data;
240
241         switch (data->cpu_feature) {
242         case SYSTEM_INTEL_MSR_CAPABLE:
243         case SYSTEM_AMD_MSR_CAPABLE:
244                 return extract_msr(policy, val);
245         case SYSTEM_IO_CAPABLE:
246                 return extract_io(policy, val);
247         default:
248                 return 0;
249         }
250 }
251
252 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
253 {
254         u32 val, dummy __always_unused;
255
256         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
257         return val;
258 }
259
260 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
261 {
262         u32 lo, hi;
263
264         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
265         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
266         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
267 }
268
269 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
270 {
271         u32 val, dummy __always_unused;
272
273         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
274         return val;
275 }
276
277 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
278 {
279         wrmsr(MSR_AMD_PERF_CTL, val, 0);
280 }
281
282 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
283 {
284         u32 val;
285
286         acpi_os_read_port(reg->address, &val, reg->bit_width);
287         return val;
288 }
289
290 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
291 {
292         acpi_os_write_port(reg->address, val, reg->bit_width);
293 }
294
295 struct drv_cmd {
296         struct acpi_pct_register *reg;
297         u32 val;
298         union {
299                 void (*write)(struct acpi_pct_register *reg, u32 val);
300                 u32 (*read)(struct acpi_pct_register *reg);
301         } func;
302 };
303
304 /* Called via smp_call_function_single(), on the target CPU */
305 static void do_drv_read(void *_cmd)
306 {
307         struct drv_cmd *cmd = _cmd;
308
309         cmd->val = cmd->func.read(cmd->reg);
310 }
311
312 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
313 {
314         struct acpi_processor_performance *perf = to_perf_data(data);
315         struct drv_cmd cmd = {
316                 .reg = &perf->control_register,
317                 .func.read = data->cpu_freq_read,
318         };
319         int err;
320
321         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
322         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
323         return cmd.val;
324 }
325
326 /* Called via smp_call_function_many(), on the target CPUs */
327 static void do_drv_write(void *_cmd)
328 {
329         struct drv_cmd *cmd = _cmd;
330
331         cmd->func.write(cmd->reg, cmd->val);
332 }
333
334 static void drv_write(struct acpi_cpufreq_data *data,
335                       const struct cpumask *mask, u32 val)
336 {
337         struct acpi_processor_performance *perf = to_perf_data(data);
338         struct drv_cmd cmd = {
339                 .reg = &perf->control_register,
340                 .val = val,
341                 .func.write = data->cpu_freq_write,
342         };
343         int this_cpu;
344
345         this_cpu = get_cpu();
346         if (cpumask_test_cpu(this_cpu, mask))
347                 do_drv_write(&cmd);
348
349         smp_call_function_many(mask, do_drv_write, &cmd, 1);
350         put_cpu();
351 }
352
353 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
354 {
355         u32 val;
356
357         if (unlikely(cpumask_empty(mask)))
358                 return 0;
359
360         val = drv_read(data, mask);
361
362         pr_debug("%s = %u\n", __func__, val);
363
364         return val;
365 }
366
367 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
368 {
369         struct acpi_cpufreq_data *data;
370         struct cpufreq_policy *policy;
371         unsigned int freq;
372         unsigned int cached_freq;
373
374         pr_debug("%s (%d)\n", __func__, cpu);
375
376         policy = cpufreq_cpu_get_raw(cpu);
377         if (unlikely(!policy))
378                 return 0;
379
380         data = policy->driver_data;
381         if (unlikely(!data || !policy->freq_table))
382                 return 0;
383
384         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
385         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
386         if (freq != cached_freq) {
387                 /*
388                  * The dreaded BIOS frequency change behind our back.
389                  * Force set the frequency on next target call.
390                  */
391                 data->resume = 1;
392         }
393
394         pr_debug("cur freq = %u\n", freq);
395
396         return freq;
397 }
398
399 static unsigned int check_freqs(struct cpufreq_policy *policy,
400                                 const struct cpumask *mask, unsigned int freq)
401 {
402         struct acpi_cpufreq_data *data = policy->driver_data;
403         unsigned int cur_freq;
404         unsigned int i;
405
406         for (i = 0; i < 100; i++) {
407                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
408                 if (cur_freq == freq)
409                         return 1;
410                 udelay(10);
411         }
412         return 0;
413 }
414
415 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
416                                unsigned int index)
417 {
418         struct acpi_cpufreq_data *data = policy->driver_data;
419         struct acpi_processor_performance *perf;
420         const struct cpumask *mask;
421         unsigned int next_perf_state = 0; /* Index into perf table */
422         int result = 0;
423
424         if (unlikely(!data)) {
425                 return -ENODEV;
426         }
427
428         perf = to_perf_data(data);
429         next_perf_state = policy->freq_table[index].driver_data;
430         if (perf->state == next_perf_state) {
431                 if (unlikely(data->resume)) {
432                         pr_debug("Called after resume, resetting to P%d\n",
433                                 next_perf_state);
434                         data->resume = 0;
435                 } else {
436                         pr_debug("Already at target state (P%d)\n",
437                                 next_perf_state);
438                         return 0;
439                 }
440         }
441
442         /*
443          * The core won't allow CPUs to go away until the governor has been
444          * stopped, so we can rely on the stability of policy->cpus.
445          */
446         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
447                 cpumask_of(policy->cpu) : policy->cpus;
448
449         drv_write(data, mask, perf->states[next_perf_state].control);
450
451         if (acpi_pstate_strict) {
452                 if (!check_freqs(policy, mask,
453                                  policy->freq_table[index].frequency)) {
454                         pr_debug("%s (%d)\n", __func__, policy->cpu);
455                         result = -EAGAIN;
456                 }
457         }
458
459         if (!result)
460                 perf->state = next_perf_state;
461
462         return result;
463 }
464
465 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
466                                              unsigned int target_freq)
467 {
468         struct acpi_cpufreq_data *data = policy->driver_data;
469         struct acpi_processor_performance *perf;
470         struct cpufreq_frequency_table *entry;
471         unsigned int next_perf_state, next_freq, index;
472
473         /*
474          * Find the closest frequency above target_freq.
475          */
476         if (policy->cached_target_freq == target_freq)
477                 index = policy->cached_resolved_idx;
478         else
479                 index = cpufreq_table_find_index_dl(policy, target_freq,
480                                                     false);
481
482         entry = &policy->freq_table[index];
483         next_freq = entry->frequency;
484         next_perf_state = entry->driver_data;
485
486         perf = to_perf_data(data);
487         if (perf->state == next_perf_state) {
488                 if (unlikely(data->resume))
489                         data->resume = 0;
490                 else
491                         return next_freq;
492         }
493
494         data->cpu_freq_write(&perf->control_register,
495                              perf->states[next_perf_state].control);
496         perf->state = next_perf_state;
497         return next_freq;
498 }
499
500 static unsigned long
501 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
502 {
503         struct acpi_processor_performance *perf;
504
505         perf = to_perf_data(data);
506         if (cpu_khz) {
507                 /* search the closest match to cpu_khz */
508                 unsigned int i;
509                 unsigned long freq;
510                 unsigned long freqn = perf->states[0].core_frequency * 1000;
511
512                 for (i = 0; i < (perf->state_count-1); i++) {
513                         freq = freqn;
514                         freqn = perf->states[i+1].core_frequency * 1000;
515                         if ((2 * cpu_khz) > (freqn + freq)) {
516                                 perf->state = i;
517                                 return freq;
518                         }
519                 }
520                 perf->state = perf->state_count-1;
521                 return freqn;
522         } else {
523                 /* assume CPU is at P0... */
524                 perf->state = 0;
525                 return perf->states[0].core_frequency * 1000;
526         }
527 }
528
529 static void free_acpi_perf_data(void)
530 {
531         unsigned int i;
532
533         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
534         for_each_possible_cpu(i)
535                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
536                                  ->shared_cpu_map);
537         free_percpu(acpi_perf_data);
538 }
539
540 static int cpufreq_boost_down_prep(unsigned int cpu)
541 {
542         /*
543          * Clear the boost-disable bit on the CPU_DOWN path so that
544          * this cpu cannot block the remaining ones from boosting.
545          */
546         return boost_set_msr(1);
547 }
548
549 /*
550  * acpi_cpufreq_early_init - initialize ACPI P-States library
551  *
552  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
553  * in order to determine correct frequency and voltage pairings. We can
554  * do _PDC and _PSD and find out the processor dependency for the
555  * actual init that will happen later...
556  */
557 static int __init acpi_cpufreq_early_init(void)
558 {
559         unsigned int i;
560         pr_debug("%s\n", __func__);
561
562         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
563         if (!acpi_perf_data) {
564                 pr_debug("Memory allocation error for acpi_perf_data.\n");
565                 return -ENOMEM;
566         }
567         for_each_possible_cpu(i) {
568                 if (!zalloc_cpumask_var_node(
569                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
570                         GFP_KERNEL, cpu_to_node(i))) {
571
572                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
573                         free_acpi_perf_data();
574                         return -ENOMEM;
575                 }
576         }
577
578         /* Do initialization in ACPI core */
579         acpi_processor_preregister_performance(acpi_perf_data);
580         return 0;
581 }
582
583 #ifdef CONFIG_SMP
584 /*
585  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
586  * or do it in BIOS firmware and won't inform about it to OS. If not
587  * detected, this has a side effect of making CPU run at a different speed
588  * than OS intended it to run at. Detect it and handle it cleanly.
589  */
590 static int bios_with_sw_any_bug;
591
592 static int sw_any_bug_found(const struct dmi_system_id *d)
593 {
594         bios_with_sw_any_bug = 1;
595         return 0;
596 }
597
598 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
599         {
600                 .callback = sw_any_bug_found,
601                 .ident = "Supermicro Server X6DLP",
602                 .matches = {
603                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
604                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
605                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
606                 },
607         },
608         { }
609 };
610
611 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
612 {
613         /* Intel Xeon Processor 7100 Series Specification Update
614          * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
615          * AL30: A Machine Check Exception (MCE) Occurring during an
616          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
617          * Both Processor Cores to Lock Up. */
618         if (c->x86_vendor == X86_VENDOR_INTEL) {
619                 if ((c->x86 == 15) &&
620                     (c->x86_model == 6) &&
621                     (c->x86_stepping == 8)) {
622                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
623                         return -ENODEV;
624                     }
625                 }
626         return 0;
627 }
628 #endif
629
630 #ifdef CONFIG_ACPI_CPPC_LIB
631 static u64 get_max_boost_ratio(unsigned int cpu)
632 {
633         struct cppc_perf_caps perf_caps;
634         u64 highest_perf, nominal_perf;
635         int ret;
636
637         if (acpi_pstate_strict)
638                 return 0;
639
640         ret = cppc_get_perf_caps(cpu, &perf_caps);
641         if (ret) {
642                 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
643                          cpu, ret);
644                 return 0;
645         }
646
647         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
648                 highest_perf = amd_get_highest_perf();
649         else
650                 highest_perf = perf_caps.highest_perf;
651
652         nominal_perf = perf_caps.nominal_perf;
653
654         if (!highest_perf || !nominal_perf) {
655                 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
656                 return 0;
657         }
658
659         if (highest_perf < nominal_perf) {
660                 pr_debug("CPU%d: nominal performance above highest\n", cpu);
661                 return 0;
662         }
663
664         return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
665 }
666 #else
667 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
668 #endif
669
670 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
671 {
672         struct cpufreq_frequency_table *freq_table;
673         struct acpi_processor_performance *perf;
674         struct acpi_cpufreq_data *data;
675         unsigned int cpu = policy->cpu;
676         struct cpuinfo_x86 *c = &cpu_data(cpu);
677         unsigned int valid_states = 0;
678         unsigned int result = 0;
679         u64 max_boost_ratio;
680         unsigned int i;
681 #ifdef CONFIG_SMP
682         static int blacklisted;
683 #endif
684
685         pr_debug("%s\n", __func__);
686
687 #ifdef CONFIG_SMP
688         if (blacklisted)
689                 return blacklisted;
690         blacklisted = acpi_cpufreq_blacklist(c);
691         if (blacklisted)
692                 return blacklisted;
693 #endif
694
695         data = kzalloc(sizeof(*data), GFP_KERNEL);
696         if (!data)
697                 return -ENOMEM;
698
699         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
700                 result = -ENOMEM;
701                 goto err_free;
702         }
703
704         perf = per_cpu_ptr(acpi_perf_data, cpu);
705         data->acpi_perf_cpu = cpu;
706         policy->driver_data = data;
707
708         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
709                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
710
711         result = acpi_processor_register_performance(perf, cpu);
712         if (result)
713                 goto err_free_mask;
714
715         policy->shared_type = perf->shared_type;
716
717         /*
718          * Will let policy->cpus know about dependency only when software
719          * coordination is required.
720          */
721         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
722             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
723                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
724         }
725         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
726
727 #ifdef CONFIG_SMP
728         dmi_check_system(sw_any_bug_dmi_table);
729         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
730                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
731                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
732         }
733
734         if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
735             !acpi_pstate_strict) {
736                 cpumask_clear(policy->cpus);
737                 cpumask_set_cpu(cpu, policy->cpus);
738                 cpumask_copy(data->freqdomain_cpus,
739                              topology_sibling_cpumask(cpu));
740                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
741                 pr_info_once("overriding BIOS provided _PSD data\n");
742         }
743 #endif
744
745         /* capability check */
746         if (perf->state_count <= 1) {
747                 pr_debug("No P-States\n");
748                 result = -ENODEV;
749                 goto err_unreg;
750         }
751
752         if (perf->control_register.space_id != perf->status_register.space_id) {
753                 result = -ENODEV;
754                 goto err_unreg;
755         }
756
757         switch (perf->control_register.space_id) {
758         case ACPI_ADR_SPACE_SYSTEM_IO:
759                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
760                     boot_cpu_data.x86 == 0xf) {
761                         pr_debug("AMD K8 systems must use native drivers.\n");
762                         result = -ENODEV;
763                         goto err_unreg;
764                 }
765                 pr_debug("SYSTEM IO addr space\n");
766                 data->cpu_feature = SYSTEM_IO_CAPABLE;
767                 data->cpu_freq_read = cpu_freq_read_io;
768                 data->cpu_freq_write = cpu_freq_write_io;
769                 break;
770         case ACPI_ADR_SPACE_FIXED_HARDWARE:
771                 pr_debug("HARDWARE addr space\n");
772                 if (check_est_cpu(cpu)) {
773                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
774                         data->cpu_freq_read = cpu_freq_read_intel;
775                         data->cpu_freq_write = cpu_freq_write_intel;
776                         break;
777                 }
778                 if (check_amd_hwpstate_cpu(cpu)) {
779                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
780                         data->cpu_freq_read = cpu_freq_read_amd;
781                         data->cpu_freq_write = cpu_freq_write_amd;
782                         break;
783                 }
784                 result = -ENODEV;
785                 goto err_unreg;
786         default:
787                 pr_debug("Unknown addr space %d\n",
788                         (u32) (perf->control_register.space_id));
789                 result = -ENODEV;
790                 goto err_unreg;
791         }
792
793         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
794                              GFP_KERNEL);
795         if (!freq_table) {
796                 result = -ENOMEM;
797                 goto err_unreg;
798         }
799
800         /* detect transition latency */
801         policy->cpuinfo.transition_latency = 0;
802         for (i = 0; i < perf->state_count; i++) {
803                 if ((perf->states[i].transition_latency * 1000) >
804                     policy->cpuinfo.transition_latency)
805                         policy->cpuinfo.transition_latency =
806                             perf->states[i].transition_latency * 1000;
807         }
808
809         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
810         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
811             policy->cpuinfo.transition_latency > 20 * 1000) {
812                 policy->cpuinfo.transition_latency = 20 * 1000;
813                 pr_info_once("P-state transition latency capped at 20 uS\n");
814         }
815
816         /* table init */
817         for (i = 0; i < perf->state_count; i++) {
818                 if (i > 0 && perf->states[i].core_frequency >=
819                     freq_table[valid_states-1].frequency / 1000)
820                         continue;
821
822                 freq_table[valid_states].driver_data = i;
823                 freq_table[valid_states].frequency =
824                     perf->states[i].core_frequency * 1000;
825                 valid_states++;
826         }
827         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
828
829         max_boost_ratio = get_max_boost_ratio(cpu);
830         if (max_boost_ratio) {
831                 unsigned int freq = freq_table[0].frequency;
832
833                 /*
834                  * Because the loop above sorts the freq_table entries in the
835                  * descending order, freq is the maximum frequency in the table.
836                  * Assume that it corresponds to the CPPC nominal frequency and
837                  * use it to set cpuinfo.max_freq.
838                  */
839                 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
840         } else {
841                 /*
842                  * If the maximum "boost" frequency is unknown, ask the arch
843                  * scale-invariance code to use the "nominal" performance for
844                  * CPU utilization scaling so as to prevent the schedutil
845                  * governor from selecting inadequate CPU frequencies.
846                  */
847                 arch_set_max_freq_ratio(true);
848         }
849
850         policy->freq_table = freq_table;
851         perf->state = 0;
852
853         switch (perf->control_register.space_id) {
854         case ACPI_ADR_SPACE_SYSTEM_IO:
855                 /*
856                  * The core will not set policy->cur, because
857                  * cpufreq_driver->get is NULL, so we need to set it here.
858                  * However, we have to guess it, because the current speed is
859                  * unknown and not detectable via IO ports.
860                  */
861                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
862                 break;
863         case ACPI_ADR_SPACE_FIXED_HARDWARE:
864                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
865                 break;
866         default:
867                 break;
868         }
869
870         /* notify BIOS that we exist */
871         acpi_processor_notify_smm(THIS_MODULE);
872
873         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
874         for (i = 0; i < perf->state_count; i++)
875                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
876                         (i == perf->state ? '*' : ' '), i,
877                         (u32) perf->states[i].core_frequency,
878                         (u32) perf->states[i].power,
879                         (u32) perf->states[i].transition_latency);
880
881         /*
882          * the first call to ->target() should result in us actually
883          * writing something to the appropriate registers.
884          */
885         data->resume = 1;
886
887         policy->fast_switch_possible = !acpi_pstate_strict &&
888                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
889
890         if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
891                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
892
893         if (acpi_cpufreq_driver.set_boost)
894                 set_boost(policy, acpi_cpufreq_driver.boost_enabled);
895
896         return result;
897
898 err_unreg:
899         acpi_processor_unregister_performance(cpu);
900 err_free_mask:
901         free_cpumask_var(data->freqdomain_cpus);
902 err_free:
903         kfree(data);
904         policy->driver_data = NULL;
905
906         return result;
907 }
908
909 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
910 {
911         struct acpi_cpufreq_data *data = policy->driver_data;
912
913         pr_debug("%s\n", __func__);
914
915         cpufreq_boost_down_prep(policy->cpu);
916         policy->fast_switch_possible = false;
917         policy->driver_data = NULL;
918         acpi_processor_unregister_performance(data->acpi_perf_cpu);
919         free_cpumask_var(data->freqdomain_cpus);
920         kfree(policy->freq_table);
921         kfree(data);
922
923         return 0;
924 }
925
926 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
927 {
928         struct acpi_cpufreq_data *data = policy->driver_data;
929
930         pr_debug("%s\n", __func__);
931
932         data->resume = 1;
933
934         return 0;
935 }
936
937 static struct freq_attr *acpi_cpufreq_attr[] = {
938         &cpufreq_freq_attr_scaling_available_freqs,
939         &freqdomain_cpus,
940 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
941         &cpb,
942 #endif
943         NULL,
944 };
945
946 static struct cpufreq_driver acpi_cpufreq_driver = {
947         .verify         = cpufreq_generic_frequency_table_verify,
948         .target_index   = acpi_cpufreq_target,
949         .fast_switch    = acpi_cpufreq_fast_switch,
950         .bios_limit     = acpi_processor_get_bios_limit,
951         .init           = acpi_cpufreq_cpu_init,
952         .exit           = acpi_cpufreq_cpu_exit,
953         .resume         = acpi_cpufreq_resume,
954         .name           = "acpi-cpufreq",
955         .attr           = acpi_cpufreq_attr,
956 };
957
958 static void __init acpi_cpufreq_boost_init(void)
959 {
960         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
961                 pr_debug("Boost capabilities not present in the processor\n");
962                 return;
963         }
964
965         acpi_cpufreq_driver.set_boost = set_boost;
966         acpi_cpufreq_driver.boost_enabled = boost_state(0);
967 }
968
969 static int __init acpi_cpufreq_probe(struct platform_device *pdev)
970 {
971         int ret;
972
973         if (acpi_disabled)
974                 return -ENODEV;
975
976         /* don't keep reloading if cpufreq_driver exists */
977         if (cpufreq_get_current_driver())
978                 return -ENODEV;
979
980         pr_debug("%s\n", __func__);
981
982         ret = acpi_cpufreq_early_init();
983         if (ret)
984                 return ret;
985
986 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
987         /* this is a sysfs file with a strange name and an even stranger
988          * semantic - per CPU instantiation, but system global effect.
989          * Lets enable it only on AMD CPUs for compatibility reasons and
990          * only if configured. This is considered legacy code, which
991          * will probably be removed at some point in the future.
992          */
993         if (!check_amd_hwpstate_cpu(0)) {
994                 struct freq_attr **attr;
995
996                 pr_debug("CPB unsupported, do not expose it\n");
997
998                 for (attr = acpi_cpufreq_attr; *attr; attr++)
999                         if (*attr == &cpb) {
1000                                 *attr = NULL;
1001                                 break;
1002                         }
1003         }
1004 #endif
1005         acpi_cpufreq_boost_init();
1006
1007         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1008         if (ret) {
1009                 free_acpi_perf_data();
1010         }
1011         return ret;
1012 }
1013
1014 static int acpi_cpufreq_remove(struct platform_device *pdev)
1015 {
1016         pr_debug("%s\n", __func__);
1017
1018         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1019
1020         free_acpi_perf_data();
1021
1022         return 0;
1023 }
1024
1025 static struct platform_driver acpi_cpufreq_platdrv = {
1026         .driver = {
1027                 .name   = "acpi-cpufreq",
1028         },
1029         .remove         = acpi_cpufreq_remove,
1030 };
1031
1032 static int __init acpi_cpufreq_init(void)
1033 {
1034         return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1035 }
1036
1037 static void __exit acpi_cpufreq_exit(void)
1038 {
1039         platform_driver_unregister(&acpi_cpufreq_platdrv);
1040 }
1041
1042 module_param(acpi_pstate_strict, uint, 0644);
1043 MODULE_PARM_DESC(acpi_pstate_strict,
1044         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1045         "performed during frequency changes.");
1046
1047 late_initcall(acpi_cpufreq_init);
1048 module_exit(acpi_cpufreq_exit);
1049
1050 MODULE_ALIAS("platform:acpi-cpufreq");