Merge tag 'rtc-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[platform/kernel/linux-starfive.git] / drivers / cpufreq / acpi-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
23
24 #include <linux/acpi.h>
25 #include <linux/io.h>
26 #include <linux/delay.h>
27 #include <linux/uaccess.h>
28
29 #include <acpi/processor.h>
30 #include <acpi/cppc_acpi.h>
31
32 #include <asm/msr.h>
33 #include <asm/processor.h>
34 #include <asm/cpufeature.h>
35 #include <asm/cpu_device_id.h>
36
37 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
38 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
39 MODULE_LICENSE("GPL");
40
41 enum {
42         UNDEFINED_CAPABLE = 0,
43         SYSTEM_INTEL_MSR_CAPABLE,
44         SYSTEM_AMD_MSR_CAPABLE,
45         SYSTEM_IO_CAPABLE,
46 };
47
48 #define INTEL_MSR_RANGE         (0xffff)
49 #define AMD_MSR_RANGE           (0x7)
50 #define HYGON_MSR_RANGE         (0x7)
51
52 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
53
54 struct acpi_cpufreq_data {
55         unsigned int resume;
56         unsigned int cpu_feature;
57         unsigned int acpi_perf_cpu;
58         cpumask_var_t freqdomain_cpus;
59         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
60         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
61 };
62
63 /* acpi_perf_data is a pointer to percpu data. */
64 static struct acpi_processor_performance __percpu *acpi_perf_data;
65
66 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
67 {
68         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
69 }
70
71 static struct cpufreq_driver acpi_cpufreq_driver;
72
73 static unsigned int acpi_pstate_strict;
74
75 static bool boost_state(unsigned int cpu)
76 {
77         u32 lo, hi;
78         u64 msr;
79
80         switch (boot_cpu_data.x86_vendor) {
81         case X86_VENDOR_INTEL:
82         case X86_VENDOR_CENTAUR:
83         case X86_VENDOR_ZHAOXIN:
84                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
85                 msr = lo | ((u64)hi << 32);
86                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
87         case X86_VENDOR_HYGON:
88         case X86_VENDOR_AMD:
89                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
90                 msr = lo | ((u64)hi << 32);
91                 return !(msr & MSR_K7_HWCR_CPB_DIS);
92         }
93         return false;
94 }
95
96 static int boost_set_msr(bool enable)
97 {
98         u32 msr_addr;
99         u64 msr_mask, val;
100
101         switch (boot_cpu_data.x86_vendor) {
102         case X86_VENDOR_INTEL:
103         case X86_VENDOR_CENTAUR:
104         case X86_VENDOR_ZHAOXIN:
105                 msr_addr = MSR_IA32_MISC_ENABLE;
106                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
107                 break;
108         case X86_VENDOR_HYGON:
109         case X86_VENDOR_AMD:
110                 msr_addr = MSR_K7_HWCR;
111                 msr_mask = MSR_K7_HWCR_CPB_DIS;
112                 break;
113         default:
114                 return -EINVAL;
115         }
116
117         rdmsrl(msr_addr, val);
118
119         if (enable)
120                 val &= ~msr_mask;
121         else
122                 val |= msr_mask;
123
124         wrmsrl(msr_addr, val);
125         return 0;
126 }
127
128 static void boost_set_msr_each(void *p_en)
129 {
130         bool enable = (bool) p_en;
131
132         boost_set_msr(enable);
133 }
134
135 static int set_boost(struct cpufreq_policy *policy, int val)
136 {
137         on_each_cpu_mask(policy->cpus, boost_set_msr_each,
138                          (void *)(long)val, 1);
139         pr_debug("CPU %*pbl: Core Boosting %s.\n",
140                  cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
141
142         return 0;
143 }
144
145 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
146 {
147         struct acpi_cpufreq_data *data = policy->driver_data;
148
149         if (unlikely(!data))
150                 return -ENODEV;
151
152         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
153 }
154
155 cpufreq_freq_attr_ro(freqdomain_cpus);
156
157 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
158 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
159                          size_t count)
160 {
161         int ret;
162         unsigned int val = 0;
163
164         if (!acpi_cpufreq_driver.set_boost)
165                 return -EINVAL;
166
167         ret = kstrtouint(buf, 10, &val);
168         if (ret || val > 1)
169                 return -EINVAL;
170
171         cpus_read_lock();
172         set_boost(policy, val);
173         cpus_read_unlock();
174
175         return count;
176 }
177
178 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
179 {
180         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
181 }
182
183 cpufreq_freq_attr_rw(cpb);
184 #endif
185
186 static int check_est_cpu(unsigned int cpuid)
187 {
188         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
189
190         return cpu_has(cpu, X86_FEATURE_EST);
191 }
192
193 static int check_amd_hwpstate_cpu(unsigned int cpuid)
194 {
195         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
196
197         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
198 }
199
200 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
201 {
202         struct acpi_cpufreq_data *data = policy->driver_data;
203         struct acpi_processor_performance *perf;
204         int i;
205
206         perf = to_perf_data(data);
207
208         for (i = 0; i < perf->state_count; i++) {
209                 if (value == perf->states[i].status)
210                         return policy->freq_table[i].frequency;
211         }
212         return 0;
213 }
214
215 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
216 {
217         struct acpi_cpufreq_data *data = policy->driver_data;
218         struct cpufreq_frequency_table *pos;
219         struct acpi_processor_performance *perf;
220
221         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
222                 msr &= AMD_MSR_RANGE;
223         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
224                 msr &= HYGON_MSR_RANGE;
225         else
226                 msr &= INTEL_MSR_RANGE;
227
228         perf = to_perf_data(data);
229
230         cpufreq_for_each_entry(pos, policy->freq_table)
231                 if (msr == perf->states[pos->driver_data].status)
232                         return pos->frequency;
233         return policy->freq_table[0].frequency;
234 }
235
236 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
237 {
238         struct acpi_cpufreq_data *data = policy->driver_data;
239
240         switch (data->cpu_feature) {
241         case SYSTEM_INTEL_MSR_CAPABLE:
242         case SYSTEM_AMD_MSR_CAPABLE:
243                 return extract_msr(policy, val);
244         case SYSTEM_IO_CAPABLE:
245                 return extract_io(policy, val);
246         default:
247                 return 0;
248         }
249 }
250
251 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
252 {
253         u32 val, dummy __always_unused;
254
255         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
256         return val;
257 }
258
259 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
260 {
261         u32 lo, hi;
262
263         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
264         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
265         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
266 }
267
268 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
269 {
270         u32 val, dummy __always_unused;
271
272         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
273         return val;
274 }
275
276 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
277 {
278         wrmsr(MSR_AMD_PERF_CTL, val, 0);
279 }
280
281 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
282 {
283         u32 val;
284
285         acpi_os_read_port(reg->address, &val, reg->bit_width);
286         return val;
287 }
288
289 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
290 {
291         acpi_os_write_port(reg->address, val, reg->bit_width);
292 }
293
294 struct drv_cmd {
295         struct acpi_pct_register *reg;
296         u32 val;
297         union {
298                 void (*write)(struct acpi_pct_register *reg, u32 val);
299                 u32 (*read)(struct acpi_pct_register *reg);
300         } func;
301 };
302
303 /* Called via smp_call_function_single(), on the target CPU */
304 static void do_drv_read(void *_cmd)
305 {
306         struct drv_cmd *cmd = _cmd;
307
308         cmd->val = cmd->func.read(cmd->reg);
309 }
310
311 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
312 {
313         struct acpi_processor_performance *perf = to_perf_data(data);
314         struct drv_cmd cmd = {
315                 .reg = &perf->control_register,
316                 .func.read = data->cpu_freq_read,
317         };
318         int err;
319
320         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
321         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
322         return cmd.val;
323 }
324
325 /* Called via smp_call_function_many(), on the target CPUs */
326 static void do_drv_write(void *_cmd)
327 {
328         struct drv_cmd *cmd = _cmd;
329
330         cmd->func.write(cmd->reg, cmd->val);
331 }
332
333 static void drv_write(struct acpi_cpufreq_data *data,
334                       const struct cpumask *mask, u32 val)
335 {
336         struct acpi_processor_performance *perf = to_perf_data(data);
337         struct drv_cmd cmd = {
338                 .reg = &perf->control_register,
339                 .val = val,
340                 .func.write = data->cpu_freq_write,
341         };
342         int this_cpu;
343
344         this_cpu = get_cpu();
345         if (cpumask_test_cpu(this_cpu, mask))
346                 do_drv_write(&cmd);
347
348         smp_call_function_many(mask, do_drv_write, &cmd, 1);
349         put_cpu();
350 }
351
352 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
353 {
354         u32 val;
355
356         if (unlikely(cpumask_empty(mask)))
357                 return 0;
358
359         val = drv_read(data, mask);
360
361         pr_debug("%s = %u\n", __func__, val);
362
363         return val;
364 }
365
366 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
367 {
368         struct acpi_cpufreq_data *data;
369         struct cpufreq_policy *policy;
370         unsigned int freq;
371         unsigned int cached_freq;
372
373         pr_debug("%s (%d)\n", __func__, cpu);
374
375         policy = cpufreq_cpu_get_raw(cpu);
376         if (unlikely(!policy))
377                 return 0;
378
379         data = policy->driver_data;
380         if (unlikely(!data || !policy->freq_table))
381                 return 0;
382
383         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
384         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
385         if (freq != cached_freq) {
386                 /*
387                  * The dreaded BIOS frequency change behind our back.
388                  * Force set the frequency on next target call.
389                  */
390                 data->resume = 1;
391         }
392
393         pr_debug("cur freq = %u\n", freq);
394
395         return freq;
396 }
397
398 static unsigned int check_freqs(struct cpufreq_policy *policy,
399                                 const struct cpumask *mask, unsigned int freq)
400 {
401         struct acpi_cpufreq_data *data = policy->driver_data;
402         unsigned int cur_freq;
403         unsigned int i;
404
405         for (i = 0; i < 100; i++) {
406                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
407                 if (cur_freq == freq)
408                         return 1;
409                 udelay(10);
410         }
411         return 0;
412 }
413
414 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
415                                unsigned int index)
416 {
417         struct acpi_cpufreq_data *data = policy->driver_data;
418         struct acpi_processor_performance *perf;
419         const struct cpumask *mask;
420         unsigned int next_perf_state = 0; /* Index into perf table */
421         int result = 0;
422
423         if (unlikely(!data)) {
424                 return -ENODEV;
425         }
426
427         perf = to_perf_data(data);
428         next_perf_state = policy->freq_table[index].driver_data;
429         if (perf->state == next_perf_state) {
430                 if (unlikely(data->resume)) {
431                         pr_debug("Called after resume, resetting to P%d\n",
432                                 next_perf_state);
433                         data->resume = 0;
434                 } else {
435                         pr_debug("Already at target state (P%d)\n",
436                                 next_perf_state);
437                         return 0;
438                 }
439         }
440
441         /*
442          * The core won't allow CPUs to go away until the governor has been
443          * stopped, so we can rely on the stability of policy->cpus.
444          */
445         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
446                 cpumask_of(policy->cpu) : policy->cpus;
447
448         drv_write(data, mask, perf->states[next_perf_state].control);
449
450         if (acpi_pstate_strict) {
451                 if (!check_freqs(policy, mask,
452                                  policy->freq_table[index].frequency)) {
453                         pr_debug("%s (%d)\n", __func__, policy->cpu);
454                         result = -EAGAIN;
455                 }
456         }
457
458         if (!result)
459                 perf->state = next_perf_state;
460
461         return result;
462 }
463
464 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
465                                              unsigned int target_freq)
466 {
467         struct acpi_cpufreq_data *data = policy->driver_data;
468         struct acpi_processor_performance *perf;
469         struct cpufreq_frequency_table *entry;
470         unsigned int next_perf_state, next_freq, index;
471
472         /*
473          * Find the closest frequency above target_freq.
474          */
475         if (policy->cached_target_freq == target_freq)
476                 index = policy->cached_resolved_idx;
477         else
478                 index = cpufreq_table_find_index_dl(policy, target_freq,
479                                                     false);
480
481         entry = &policy->freq_table[index];
482         next_freq = entry->frequency;
483         next_perf_state = entry->driver_data;
484
485         perf = to_perf_data(data);
486         if (perf->state == next_perf_state) {
487                 if (unlikely(data->resume))
488                         data->resume = 0;
489                 else
490                         return next_freq;
491         }
492
493         data->cpu_freq_write(&perf->control_register,
494                              perf->states[next_perf_state].control);
495         perf->state = next_perf_state;
496         return next_freq;
497 }
498
499 static unsigned long
500 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
501 {
502         struct acpi_processor_performance *perf;
503
504         perf = to_perf_data(data);
505         if (cpu_khz) {
506                 /* search the closest match to cpu_khz */
507                 unsigned int i;
508                 unsigned long freq;
509                 unsigned long freqn = perf->states[0].core_frequency * 1000;
510
511                 for (i = 0; i < (perf->state_count-1); i++) {
512                         freq = freqn;
513                         freqn = perf->states[i+1].core_frequency * 1000;
514                         if ((2 * cpu_khz) > (freqn + freq)) {
515                                 perf->state = i;
516                                 return freq;
517                         }
518                 }
519                 perf->state = perf->state_count-1;
520                 return freqn;
521         } else {
522                 /* assume CPU is at P0... */
523                 perf->state = 0;
524                 return perf->states[0].core_frequency * 1000;
525         }
526 }
527
528 static void free_acpi_perf_data(void)
529 {
530         unsigned int i;
531
532         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
533         for_each_possible_cpu(i)
534                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
535                                  ->shared_cpu_map);
536         free_percpu(acpi_perf_data);
537 }
538
539 static int cpufreq_boost_down_prep(unsigned int cpu)
540 {
541         /*
542          * Clear the boost-disable bit on the CPU_DOWN path so that
543          * this cpu cannot block the remaining ones from boosting.
544          */
545         return boost_set_msr(1);
546 }
547
548 /*
549  * acpi_cpufreq_early_init - initialize ACPI P-States library
550  *
551  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
552  * in order to determine correct frequency and voltage pairings. We can
553  * do _PDC and _PSD and find out the processor dependency for the
554  * actual init that will happen later...
555  */
556 static int __init acpi_cpufreq_early_init(void)
557 {
558         unsigned int i;
559         pr_debug("%s\n", __func__);
560
561         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
562         if (!acpi_perf_data) {
563                 pr_debug("Memory allocation error for acpi_perf_data.\n");
564                 return -ENOMEM;
565         }
566         for_each_possible_cpu(i) {
567                 if (!zalloc_cpumask_var_node(
568                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
569                         GFP_KERNEL, cpu_to_node(i))) {
570
571                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
572                         free_acpi_perf_data();
573                         return -ENOMEM;
574                 }
575         }
576
577         /* Do initialization in ACPI core */
578         acpi_processor_preregister_performance(acpi_perf_data);
579         return 0;
580 }
581
582 #ifdef CONFIG_SMP
583 /*
584  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
585  * or do it in BIOS firmware and won't inform about it to OS. If not
586  * detected, this has a side effect of making CPU run at a different speed
587  * than OS intended it to run at. Detect it and handle it cleanly.
588  */
589 static int bios_with_sw_any_bug;
590
591 static int sw_any_bug_found(const struct dmi_system_id *d)
592 {
593         bios_with_sw_any_bug = 1;
594         return 0;
595 }
596
597 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
598         {
599                 .callback = sw_any_bug_found,
600                 .ident = "Supermicro Server X6DLP",
601                 .matches = {
602                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
603                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
604                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
605                 },
606         },
607         { }
608 };
609
610 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
611 {
612         /* Intel Xeon Processor 7100 Series Specification Update
613          * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
614          * AL30: A Machine Check Exception (MCE) Occurring during an
615          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
616          * Both Processor Cores to Lock Up. */
617         if (c->x86_vendor == X86_VENDOR_INTEL) {
618                 if ((c->x86 == 15) &&
619                     (c->x86_model == 6) &&
620                     (c->x86_stepping == 8)) {
621                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
622                         return -ENODEV;
623                     }
624                 }
625         return 0;
626 }
627 #endif
628
629 #ifdef CONFIG_ACPI_CPPC_LIB
630 static u64 get_max_boost_ratio(unsigned int cpu)
631 {
632         struct cppc_perf_caps perf_caps;
633         u64 highest_perf, nominal_perf;
634         int ret;
635
636         if (acpi_pstate_strict)
637                 return 0;
638
639         ret = cppc_get_perf_caps(cpu, &perf_caps);
640         if (ret) {
641                 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
642                          cpu, ret);
643                 return 0;
644         }
645
646         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
647                 highest_perf = amd_get_highest_perf();
648         else
649                 highest_perf = perf_caps.highest_perf;
650
651         nominal_perf = perf_caps.nominal_perf;
652
653         if (!highest_perf || !nominal_perf) {
654                 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
655                 return 0;
656         }
657
658         if (highest_perf < nominal_perf) {
659                 pr_debug("CPU%d: nominal performance above highest\n", cpu);
660                 return 0;
661         }
662
663         return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
664 }
665 #else
666 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
667 #endif
668
669 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
670 {
671         struct cpufreq_frequency_table *freq_table;
672         struct acpi_processor_performance *perf;
673         struct acpi_cpufreq_data *data;
674         unsigned int cpu = policy->cpu;
675         struct cpuinfo_x86 *c = &cpu_data(cpu);
676         unsigned int valid_states = 0;
677         unsigned int result = 0;
678         u64 max_boost_ratio;
679         unsigned int i;
680 #ifdef CONFIG_SMP
681         static int blacklisted;
682 #endif
683
684         pr_debug("%s\n", __func__);
685
686 #ifdef CONFIG_SMP
687         if (blacklisted)
688                 return blacklisted;
689         blacklisted = acpi_cpufreq_blacklist(c);
690         if (blacklisted)
691                 return blacklisted;
692 #endif
693
694         data = kzalloc(sizeof(*data), GFP_KERNEL);
695         if (!data)
696                 return -ENOMEM;
697
698         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
699                 result = -ENOMEM;
700                 goto err_free;
701         }
702
703         perf = per_cpu_ptr(acpi_perf_data, cpu);
704         data->acpi_perf_cpu = cpu;
705         policy->driver_data = data;
706
707         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
708                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
709
710         result = acpi_processor_register_performance(perf, cpu);
711         if (result)
712                 goto err_free_mask;
713
714         policy->shared_type = perf->shared_type;
715
716         /*
717          * Will let policy->cpus know about dependency only when software
718          * coordination is required.
719          */
720         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
721             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
722                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
723         }
724         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
725
726 #ifdef CONFIG_SMP
727         dmi_check_system(sw_any_bug_dmi_table);
728         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
729                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
730                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
731         }
732
733         if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
734             !acpi_pstate_strict) {
735                 cpumask_clear(policy->cpus);
736                 cpumask_set_cpu(cpu, policy->cpus);
737                 cpumask_copy(data->freqdomain_cpus,
738                              topology_sibling_cpumask(cpu));
739                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
740                 pr_info_once("overriding BIOS provided _PSD data\n");
741         }
742 #endif
743
744         /* capability check */
745         if (perf->state_count <= 1) {
746                 pr_debug("No P-States\n");
747                 result = -ENODEV;
748                 goto err_unreg;
749         }
750
751         if (perf->control_register.space_id != perf->status_register.space_id) {
752                 result = -ENODEV;
753                 goto err_unreg;
754         }
755
756         switch (perf->control_register.space_id) {
757         case ACPI_ADR_SPACE_SYSTEM_IO:
758                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
759                     boot_cpu_data.x86 == 0xf) {
760                         pr_debug("AMD K8 systems must use native drivers.\n");
761                         result = -ENODEV;
762                         goto err_unreg;
763                 }
764                 pr_debug("SYSTEM IO addr space\n");
765                 data->cpu_feature = SYSTEM_IO_CAPABLE;
766                 data->cpu_freq_read = cpu_freq_read_io;
767                 data->cpu_freq_write = cpu_freq_write_io;
768                 break;
769         case ACPI_ADR_SPACE_FIXED_HARDWARE:
770                 pr_debug("HARDWARE addr space\n");
771                 if (check_est_cpu(cpu)) {
772                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
773                         data->cpu_freq_read = cpu_freq_read_intel;
774                         data->cpu_freq_write = cpu_freq_write_intel;
775                         break;
776                 }
777                 if (check_amd_hwpstate_cpu(cpu)) {
778                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
779                         data->cpu_freq_read = cpu_freq_read_amd;
780                         data->cpu_freq_write = cpu_freq_write_amd;
781                         break;
782                 }
783                 result = -ENODEV;
784                 goto err_unreg;
785         default:
786                 pr_debug("Unknown addr space %d\n",
787                         (u32) (perf->control_register.space_id));
788                 result = -ENODEV;
789                 goto err_unreg;
790         }
791
792         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
793                              GFP_KERNEL);
794         if (!freq_table) {
795                 result = -ENOMEM;
796                 goto err_unreg;
797         }
798
799         /* detect transition latency */
800         policy->cpuinfo.transition_latency = 0;
801         for (i = 0; i < perf->state_count; i++) {
802                 if ((perf->states[i].transition_latency * 1000) >
803                     policy->cpuinfo.transition_latency)
804                         policy->cpuinfo.transition_latency =
805                             perf->states[i].transition_latency * 1000;
806         }
807
808         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
809         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
810             policy->cpuinfo.transition_latency > 20 * 1000) {
811                 policy->cpuinfo.transition_latency = 20 * 1000;
812                 pr_info_once("P-state transition latency capped at 20 uS\n");
813         }
814
815         /* table init */
816         for (i = 0; i < perf->state_count; i++) {
817                 if (i > 0 && perf->states[i].core_frequency >=
818                     freq_table[valid_states-1].frequency / 1000)
819                         continue;
820
821                 freq_table[valid_states].driver_data = i;
822                 freq_table[valid_states].frequency =
823                     perf->states[i].core_frequency * 1000;
824                 valid_states++;
825         }
826         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
827
828         max_boost_ratio = get_max_boost_ratio(cpu);
829         if (max_boost_ratio) {
830                 unsigned int freq = freq_table[0].frequency;
831
832                 /*
833                  * Because the loop above sorts the freq_table entries in the
834                  * descending order, freq is the maximum frequency in the table.
835                  * Assume that it corresponds to the CPPC nominal frequency and
836                  * use it to set cpuinfo.max_freq.
837                  */
838                 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
839         } else {
840                 /*
841                  * If the maximum "boost" frequency is unknown, ask the arch
842                  * scale-invariance code to use the "nominal" performance for
843                  * CPU utilization scaling so as to prevent the schedutil
844                  * governor from selecting inadequate CPU frequencies.
845                  */
846                 arch_set_max_freq_ratio(true);
847         }
848
849         policy->freq_table = freq_table;
850         perf->state = 0;
851
852         switch (perf->control_register.space_id) {
853         case ACPI_ADR_SPACE_SYSTEM_IO:
854                 /*
855                  * The core will not set policy->cur, because
856                  * cpufreq_driver->get is NULL, so we need to set it here.
857                  * However, we have to guess it, because the current speed is
858                  * unknown and not detectable via IO ports.
859                  */
860                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
861                 break;
862         case ACPI_ADR_SPACE_FIXED_HARDWARE:
863                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
864                 break;
865         default:
866                 break;
867         }
868
869         /* notify BIOS that we exist */
870         acpi_processor_notify_smm(THIS_MODULE);
871
872         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
873         for (i = 0; i < perf->state_count; i++)
874                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
875                         (i == perf->state ? '*' : ' '), i,
876                         (u32) perf->states[i].core_frequency,
877                         (u32) perf->states[i].power,
878                         (u32) perf->states[i].transition_latency);
879
880         /*
881          * the first call to ->target() should result in us actually
882          * writing something to the appropriate registers.
883          */
884         data->resume = 1;
885
886         policy->fast_switch_possible = !acpi_pstate_strict &&
887                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
888
889         if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
890                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
891
892         if (acpi_cpufreq_driver.set_boost)
893                 set_boost(policy, acpi_cpufreq_driver.boost_enabled);
894
895         return result;
896
897 err_unreg:
898         acpi_processor_unregister_performance(cpu);
899 err_free_mask:
900         free_cpumask_var(data->freqdomain_cpus);
901 err_free:
902         kfree(data);
903         policy->driver_data = NULL;
904
905         return result;
906 }
907
908 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
909 {
910         struct acpi_cpufreq_data *data = policy->driver_data;
911
912         pr_debug("%s\n", __func__);
913
914         cpufreq_boost_down_prep(policy->cpu);
915         policy->fast_switch_possible = false;
916         policy->driver_data = NULL;
917         acpi_processor_unregister_performance(data->acpi_perf_cpu);
918         free_cpumask_var(data->freqdomain_cpus);
919         kfree(policy->freq_table);
920         kfree(data);
921
922         return 0;
923 }
924
925 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
926 {
927         struct acpi_cpufreq_data *data = policy->driver_data;
928
929         pr_debug("%s\n", __func__);
930
931         data->resume = 1;
932
933         return 0;
934 }
935
936 static struct freq_attr *acpi_cpufreq_attr[] = {
937         &cpufreq_freq_attr_scaling_available_freqs,
938         &freqdomain_cpus,
939 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
940         &cpb,
941 #endif
942         NULL,
943 };
944
945 static struct cpufreq_driver acpi_cpufreq_driver = {
946         .verify         = cpufreq_generic_frequency_table_verify,
947         .target_index   = acpi_cpufreq_target,
948         .fast_switch    = acpi_cpufreq_fast_switch,
949         .bios_limit     = acpi_processor_get_bios_limit,
950         .init           = acpi_cpufreq_cpu_init,
951         .exit           = acpi_cpufreq_cpu_exit,
952         .resume         = acpi_cpufreq_resume,
953         .name           = "acpi-cpufreq",
954         .attr           = acpi_cpufreq_attr,
955 };
956
957 static void __init acpi_cpufreq_boost_init(void)
958 {
959         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
960                 pr_debug("Boost capabilities not present in the processor\n");
961                 return;
962         }
963
964         acpi_cpufreq_driver.set_boost = set_boost;
965         acpi_cpufreq_driver.boost_enabled = boost_state(0);
966 }
967
968 static int __init acpi_cpufreq_init(void)
969 {
970         int ret;
971
972         if (acpi_disabled)
973                 return -ENODEV;
974
975         /* don't keep reloading if cpufreq_driver exists */
976         if (cpufreq_get_current_driver())
977                 return -EEXIST;
978
979         pr_debug("%s\n", __func__);
980
981         ret = acpi_cpufreq_early_init();
982         if (ret)
983                 return ret;
984
985 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
986         /* this is a sysfs file with a strange name and an even stranger
987          * semantic - per CPU instantiation, but system global effect.
988          * Lets enable it only on AMD CPUs for compatibility reasons and
989          * only if configured. This is considered legacy code, which
990          * will probably be removed at some point in the future.
991          */
992         if (!check_amd_hwpstate_cpu(0)) {
993                 struct freq_attr **attr;
994
995                 pr_debug("CPB unsupported, do not expose it\n");
996
997                 for (attr = acpi_cpufreq_attr; *attr; attr++)
998                         if (*attr == &cpb) {
999                                 *attr = NULL;
1000                                 break;
1001                         }
1002         }
1003 #endif
1004         acpi_cpufreq_boost_init();
1005
1006         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1007         if (ret) {
1008                 free_acpi_perf_data();
1009         }
1010         return ret;
1011 }
1012
1013 static void __exit acpi_cpufreq_exit(void)
1014 {
1015         pr_debug("%s\n", __func__);
1016
1017         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1018
1019         free_acpi_perf_data();
1020 }
1021
1022 module_param(acpi_pstate_strict, uint, 0644);
1023 MODULE_PARM_DESC(acpi_pstate_strict,
1024         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1025         "performed during frequency changes.");
1026
1027 late_initcall(acpi_cpufreq_init);
1028 module_exit(acpi_cpufreq_exit);
1029
1030 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
1031         X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
1032         X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
1033         {}
1034 };
1035 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1036
1037 static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1038         {ACPI_PROCESSOR_OBJECT_HID, },
1039         {ACPI_PROCESSOR_DEVICE_HID, },
1040         {},
1041 };
1042 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1043
1044 MODULE_ALIAS("acpi");