Merge tag 'fbdev-for-6.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[platform/kernel/linux-starfive.git] / drivers / counter / ti-ecap-capture.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ECAP Capture driver
4  *
5  * Copyright (C) 2022 Julien Panis <jpanis@baylibre.com>
6  */
7
8 #include <linux/atomic.h>
9 #include <linux/clk.h>
10 #include <linux/counter.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/module.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/mutex.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20
21 #define ECAP_DRV_NAME "ecap"
22
23 /* ECAP event IDs */
24 #define ECAP_CEVT1              0
25 #define ECAP_CEVT2              1
26 #define ECAP_CEVT3              2
27 #define ECAP_CEVT4              3
28 #define ECAP_CNTOVF             4
29
30 #define ECAP_CEVT_LAST          ECAP_CEVT4
31 #define ECAP_NB_CEVT            (ECAP_CEVT_LAST + 1)
32
33 #define ECAP_EVT_LAST           ECAP_CNTOVF
34 #define ECAP_NB_EVT             (ECAP_EVT_LAST + 1)
35
36 /* Registers */
37 #define ECAP_TSCNT_REG                  0x00
38
39 #define ECAP_CAP_REG(i)         (((i) << 2) + 0x08)
40
41 #define ECAP_ECCTL_REG                  0x28
42 #define ECAP_CAPPOL_BIT(i)              BIT((i) << 1)
43 #define ECAP_EV_MODE_MASK               GENMASK(7, 0)
44 #define ECAP_CAPLDEN_BIT                BIT(8)
45 #define ECAP_CONT_ONESHT_BIT            BIT(16)
46 #define ECAP_STOPVALUE_MASK             GENMASK(18, 17)
47 #define ECAP_TSCNTSTP_BIT               BIT(20)
48 #define ECAP_SYNCO_DIS_MASK             GENMASK(23, 22)
49 #define ECAP_CAP_APWM_BIT               BIT(25)
50 #define ECAP_ECCTL_EN_MASK              (ECAP_CAPLDEN_BIT | ECAP_TSCNTSTP_BIT)
51 #define ECAP_ECCTL_CFG_MASK             (ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK      \
52                                         | ECAP_ECCTL_EN_MASK | ECAP_CAP_APWM_BIT        \
53                                         | ECAP_CONT_ONESHT_BIT)
54
55 #define ECAP_ECINT_EN_FLG_REG           0x2c
56 #define ECAP_EVT_EN_MASK                GENMASK(ECAP_NB_EVT, ECAP_NB_CEVT)
57 #define ECAP_EVT_FLG_BIT(i)             BIT((i) + 17)
58
59 #define ECAP_ECINT_CLR_FRC_REG  0x30
60 #define ECAP_INT_CLR_BIT                BIT(0)
61 #define ECAP_EVT_CLR_BIT(i)             BIT((i) + 1)
62 #define ECAP_EVT_CLR_MASK               GENMASK(ECAP_NB_EVT, 0)
63
64 #define ECAP_PID_REG                    0x5c
65
66 /* ECAP signals */
67 #define ECAP_CLOCK_SIG 0
68 #define ECAP_INPUT_SIG 1
69
70 static const struct regmap_config ecap_cnt_regmap_config = {
71         .reg_bits = 32,
72         .reg_stride = 4,
73         .val_bits = 32,
74         .max_register = ECAP_PID_REG,
75 };
76
77 /**
78  * struct ecap_cnt_dev - device private data structure
79  * @enabled: device state
80  * @lock:    synchronization lock to prevent I/O race conditions
81  * @clk:     device clock
82  * @regmap:  device register map
83  * @nb_ovf:  number of overflows since capture start
84  * @pm_ctx:  device context for PM operations
85  * @pm_ctx.ev_mode:   event mode bits
86  * @pm_ctx.time_cntr: timestamp counter value
87  */
88 struct ecap_cnt_dev {
89         bool enabled;
90         struct mutex lock;
91         struct clk *clk;
92         struct regmap *regmap;
93         atomic_t nb_ovf;
94         struct {
95                 u8 ev_mode;
96                 u32 time_cntr;
97         } pm_ctx;
98 };
99
100 static u8 ecap_cnt_capture_get_evmode(struct counter_device *counter)
101 {
102         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
103         unsigned int regval;
104
105         pm_runtime_get_sync(counter->parent);
106         regmap_read(ecap_dev->regmap, ECAP_ECCTL_REG, &regval);
107         pm_runtime_put_sync(counter->parent);
108
109         return regval;
110 }
111
112 static void ecap_cnt_capture_set_evmode(struct counter_device *counter, u8 ev_mode)
113 {
114         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
115
116         pm_runtime_get_sync(counter->parent);
117         regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_EV_MODE_MASK, ev_mode);
118         pm_runtime_put_sync(counter->parent);
119 }
120
121 static void ecap_cnt_capture_enable(struct counter_device *counter)
122 {
123         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
124
125         pm_runtime_get_sync(counter->parent);
126
127         /* Enable interrupts on events */
128         regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG,
129                            ECAP_EVT_EN_MASK, ECAP_EVT_EN_MASK);
130
131         /* Run counter */
132         regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_CFG_MASK,
133                            ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK | ECAP_ECCTL_EN_MASK);
134 }
135
136 static void ecap_cnt_capture_disable(struct counter_device *counter)
137 {
138         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
139
140         /* Stop counter */
141         regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_EN_MASK, 0);
142
143         /* Disable interrupts on events */
144         regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, ECAP_EVT_EN_MASK, 0);
145
146         pm_runtime_put_sync(counter->parent);
147 }
148
149 static u32 ecap_cnt_count_get_val(struct counter_device *counter, unsigned int reg)
150 {
151         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
152         unsigned int regval;
153
154         pm_runtime_get_sync(counter->parent);
155         regmap_read(ecap_dev->regmap, reg, &regval);
156         pm_runtime_put_sync(counter->parent);
157
158         return regval;
159 }
160
161 static void ecap_cnt_count_set_val(struct counter_device *counter, unsigned int reg, u32 val)
162 {
163         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
164
165         pm_runtime_get_sync(counter->parent);
166         regmap_write(ecap_dev->regmap, reg, val);
167         pm_runtime_put_sync(counter->parent);
168 }
169
170 static int ecap_cnt_count_read(struct counter_device *counter,
171                                struct counter_count *count, u64 *val)
172 {
173         *val = ecap_cnt_count_get_val(counter, ECAP_TSCNT_REG);
174
175         return 0;
176 }
177
178 static int ecap_cnt_count_write(struct counter_device *counter,
179                                 struct counter_count *count, u64 val)
180 {
181         if (val > U32_MAX)
182                 return -ERANGE;
183
184         ecap_cnt_count_set_val(counter, ECAP_TSCNT_REG, val);
185
186         return 0;
187 }
188
189 static int ecap_cnt_function_read(struct counter_device *counter,
190                                   struct counter_count *count,
191                                   enum counter_function *function)
192 {
193         *function = COUNTER_FUNCTION_INCREASE;
194
195         return 0;
196 }
197
198 static int ecap_cnt_action_read(struct counter_device *counter,
199                                 struct counter_count *count,
200                                 struct counter_synapse *synapse,
201                                 enum counter_synapse_action *action)
202 {
203         *action = (synapse->signal->id == ECAP_CLOCK_SIG) ?
204                    COUNTER_SYNAPSE_ACTION_RISING_EDGE :
205                    COUNTER_SYNAPSE_ACTION_NONE;
206
207         return 0;
208 }
209
210 static int ecap_cnt_watch_validate(struct counter_device *counter,
211                                    const struct counter_watch *watch)
212 {
213         if (watch->channel > ECAP_CEVT_LAST)
214                 return -EINVAL;
215
216         switch (watch->event) {
217         case COUNTER_EVENT_CAPTURE:
218         case COUNTER_EVENT_OVERFLOW:
219                 return 0;
220         default:
221                 return -EINVAL;
222         }
223 }
224
225 static int ecap_cnt_clk_get_freq(struct counter_device *counter,
226                                  struct counter_signal *signal, u64 *freq)
227 {
228         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
229
230         *freq = clk_get_rate(ecap_dev->clk);
231
232         return 0;
233 }
234
235 static int ecap_cnt_pol_read(struct counter_device *counter,
236                              struct counter_signal *signal,
237                              size_t idx, enum counter_signal_polarity *pol)
238 {
239         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
240         int bitval;
241
242         pm_runtime_get_sync(counter->parent);
243         bitval = regmap_test_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
244         pm_runtime_put_sync(counter->parent);
245
246         *pol = bitval ? COUNTER_SIGNAL_POLARITY_NEGATIVE : COUNTER_SIGNAL_POLARITY_POSITIVE;
247
248         return 0;
249 }
250
251 static int ecap_cnt_pol_write(struct counter_device *counter,
252                               struct counter_signal *signal,
253                               size_t idx, enum counter_signal_polarity pol)
254 {
255         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
256
257         pm_runtime_get_sync(counter->parent);
258         if (pol == COUNTER_SIGNAL_POLARITY_NEGATIVE)
259                 regmap_set_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
260         else
261                 regmap_clear_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
262         pm_runtime_put_sync(counter->parent);
263
264         return 0;
265 }
266
267 static int ecap_cnt_cap_read(struct counter_device *counter,
268                              struct counter_count *count,
269                              size_t idx, u64 *cap)
270 {
271         *cap = ecap_cnt_count_get_val(counter, ECAP_CAP_REG(idx));
272
273         return 0;
274 }
275
276 static int ecap_cnt_cap_write(struct counter_device *counter,
277                               struct counter_count *count,
278                               size_t idx, u64 cap)
279 {
280         if (cap > U32_MAX)
281                 return -ERANGE;
282
283         ecap_cnt_count_set_val(counter, ECAP_CAP_REG(idx), cap);
284
285         return 0;
286 }
287
288 static int ecap_cnt_nb_ovf_read(struct counter_device *counter,
289                                 struct counter_count *count, u64 *val)
290 {
291         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
292
293         *val = atomic_read(&ecap_dev->nb_ovf);
294
295         return 0;
296 }
297
298 static int ecap_cnt_nb_ovf_write(struct counter_device *counter,
299                                  struct counter_count *count, u64 val)
300 {
301         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
302
303         if (val > U32_MAX)
304                 return -ERANGE;
305
306         atomic_set(&ecap_dev->nb_ovf, val);
307
308         return 0;
309 }
310
311 static int ecap_cnt_ceiling_read(struct counter_device *counter,
312                                  struct counter_count *count, u64 *val)
313 {
314         *val = U32_MAX;
315
316         return 0;
317 }
318
319 static int ecap_cnt_enable_read(struct counter_device *counter,
320                                 struct counter_count *count, u8 *enable)
321 {
322         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
323
324         *enable = ecap_dev->enabled;
325
326         return 0;
327 }
328
329 static int ecap_cnt_enable_write(struct counter_device *counter,
330                                  struct counter_count *count, u8 enable)
331 {
332         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
333
334         mutex_lock(&ecap_dev->lock);
335
336         if (enable == ecap_dev->enabled)
337                 goto out;
338
339         if (enable)
340                 ecap_cnt_capture_enable(counter);
341         else
342                 ecap_cnt_capture_disable(counter);
343         ecap_dev->enabled = enable;
344
345 out:
346         mutex_unlock(&ecap_dev->lock);
347
348         return 0;
349 }
350
351 static const struct counter_ops ecap_cnt_ops = {
352         .count_read = ecap_cnt_count_read,
353         .count_write = ecap_cnt_count_write,
354         .function_read = ecap_cnt_function_read,
355         .action_read = ecap_cnt_action_read,
356         .watch_validate = ecap_cnt_watch_validate,
357 };
358
359 static const enum counter_function ecap_cnt_functions[] = {
360         COUNTER_FUNCTION_INCREASE,
361 };
362
363 static const enum counter_synapse_action ecap_cnt_clock_actions[] = {
364         COUNTER_SYNAPSE_ACTION_RISING_EDGE,
365 };
366
367 static const enum counter_synapse_action ecap_cnt_input_actions[] = {
368         COUNTER_SYNAPSE_ACTION_NONE,
369 };
370
371 static struct counter_comp ecap_cnt_clock_ext[] = {
372         COUNTER_COMP_SIGNAL_U64("frequency", ecap_cnt_clk_get_freq, NULL),
373 };
374
375 static const enum counter_signal_polarity ecap_cnt_pol_avail[] = {
376         COUNTER_SIGNAL_POLARITY_POSITIVE,
377         COUNTER_SIGNAL_POLARITY_NEGATIVE,
378 };
379
380 static DEFINE_COUNTER_AVAILABLE(ecap_cnt_pol_available, ecap_cnt_pol_avail);
381 static DEFINE_COUNTER_ARRAY_POLARITY(ecap_cnt_pol_array, ecap_cnt_pol_available, ECAP_NB_CEVT);
382
383 static struct counter_comp ecap_cnt_signal_ext[] = {
384         COUNTER_COMP_ARRAY_POLARITY(ecap_cnt_pol_read, ecap_cnt_pol_write, ecap_cnt_pol_array),
385 };
386
387 static struct counter_signal ecap_cnt_signals[] = {
388         {
389                 .id = ECAP_CLOCK_SIG,
390                 .name = "Clock Signal",
391                 .ext = ecap_cnt_clock_ext,
392                 .num_ext = ARRAY_SIZE(ecap_cnt_clock_ext),
393         },
394         {
395                 .id = ECAP_INPUT_SIG,
396                 .name = "Input Signal",
397                 .ext = ecap_cnt_signal_ext,
398                 .num_ext = ARRAY_SIZE(ecap_cnt_signal_ext),
399         },
400 };
401
402 static struct counter_synapse ecap_cnt_synapses[] = {
403         {
404                 .actions_list = ecap_cnt_clock_actions,
405                 .num_actions = ARRAY_SIZE(ecap_cnt_clock_actions),
406                 .signal = &ecap_cnt_signals[ECAP_CLOCK_SIG],
407         },
408         {
409                 .actions_list = ecap_cnt_input_actions,
410                 .num_actions = ARRAY_SIZE(ecap_cnt_input_actions),
411                 .signal = &ecap_cnt_signals[ECAP_INPUT_SIG],
412         },
413 };
414
415 static DEFINE_COUNTER_ARRAY_CAPTURE(ecap_cnt_cap_array, ECAP_NB_CEVT);
416
417 static struct counter_comp ecap_cnt_count_ext[] = {
418         COUNTER_COMP_ARRAY_CAPTURE(ecap_cnt_cap_read, ecap_cnt_cap_write, ecap_cnt_cap_array),
419         COUNTER_COMP_COUNT_U64("num_overflows", ecap_cnt_nb_ovf_read, ecap_cnt_nb_ovf_write),
420         COUNTER_COMP_CEILING(ecap_cnt_ceiling_read, NULL),
421         COUNTER_COMP_ENABLE(ecap_cnt_enable_read, ecap_cnt_enable_write),
422 };
423
424 static struct counter_count ecap_cnt_counts[] = {
425         {
426                 .name = "Timestamp Counter",
427                 .functions_list = ecap_cnt_functions,
428                 .num_functions = ARRAY_SIZE(ecap_cnt_functions),
429                 .synapses = ecap_cnt_synapses,
430                 .num_synapses = ARRAY_SIZE(ecap_cnt_synapses),
431                 .ext = ecap_cnt_count_ext,
432                 .num_ext = ARRAY_SIZE(ecap_cnt_count_ext),
433         },
434 };
435
436 static irqreturn_t ecap_cnt_isr(int irq, void *dev_id)
437 {
438         struct counter_device *counter_dev = dev_id;
439         struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
440         unsigned int clr = 0;
441         unsigned int flg;
442         int i;
443
444         regmap_read(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, &flg);
445
446         /* Check capture events */
447         for (i = 0 ; i < ECAP_NB_CEVT ; i++) {
448                 if (flg & ECAP_EVT_FLG_BIT(i)) {
449                         counter_push_event(counter_dev, COUNTER_EVENT_CAPTURE, i);
450                         clr |= ECAP_EVT_CLR_BIT(i);
451                 }
452         }
453
454         /* Check counter overflow */
455         if (flg & ECAP_EVT_FLG_BIT(ECAP_CNTOVF)) {
456                 atomic_inc(&ecap_dev->nb_ovf);
457                 for (i = 0 ; i < ECAP_NB_CEVT ; i++)
458                         counter_push_event(counter_dev, COUNTER_EVENT_OVERFLOW, i);
459                 clr |= ECAP_EVT_CLR_BIT(ECAP_CNTOVF);
460         }
461
462         clr |= ECAP_INT_CLR_BIT;
463         regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_CLR_FRC_REG, ECAP_EVT_CLR_MASK, clr);
464
465         return IRQ_HANDLED;
466 }
467
468 static void ecap_cnt_pm_disable(void *dev)
469 {
470         pm_runtime_disable(dev);
471 }
472
473 static int ecap_cnt_probe(struct platform_device *pdev)
474 {
475         struct device *dev = &pdev->dev;
476         struct ecap_cnt_dev *ecap_dev;
477         struct counter_device *counter_dev;
478         void __iomem *mmio_base;
479         unsigned long clk_rate;
480         int ret;
481
482         counter_dev = devm_counter_alloc(dev, sizeof(*ecap_dev));
483         if (!counter_dev)
484                 return -ENOMEM;
485
486         counter_dev->name = ECAP_DRV_NAME;
487         counter_dev->parent = dev;
488         counter_dev->ops = &ecap_cnt_ops;
489         counter_dev->signals = ecap_cnt_signals;
490         counter_dev->num_signals = ARRAY_SIZE(ecap_cnt_signals);
491         counter_dev->counts = ecap_cnt_counts;
492         counter_dev->num_counts = ARRAY_SIZE(ecap_cnt_counts);
493
494         ecap_dev = counter_priv(counter_dev);
495
496         mutex_init(&ecap_dev->lock);
497
498         ecap_dev->clk = devm_clk_get_enabled(dev, "fck");
499         if (IS_ERR(ecap_dev->clk))
500                 return dev_err_probe(dev, PTR_ERR(ecap_dev->clk), "failed to get clock\n");
501
502         clk_rate = clk_get_rate(ecap_dev->clk);
503         if (!clk_rate) {
504                 dev_err(dev, "failed to get clock rate\n");
505                 return -EINVAL;
506         }
507
508         mmio_base = devm_platform_ioremap_resource(pdev, 0);
509         if (IS_ERR(mmio_base))
510                 return PTR_ERR(mmio_base);
511
512         ecap_dev->regmap = devm_regmap_init_mmio(dev, mmio_base, &ecap_cnt_regmap_config);
513         if (IS_ERR(ecap_dev->regmap))
514                 return dev_err_probe(dev, PTR_ERR(ecap_dev->regmap), "failed to init regmap\n");
515
516         ret = platform_get_irq(pdev, 0);
517         if (ret < 0)
518                 return dev_err_probe(dev, ret, "failed to get irq\n");
519
520         ret = devm_request_irq(dev, ret, ecap_cnt_isr, 0, pdev->name, counter_dev);
521         if (ret)
522                 return dev_err_probe(dev, ret, "failed to request irq\n");
523
524         platform_set_drvdata(pdev, counter_dev);
525
526         pm_runtime_enable(dev);
527
528         /* Register a cleanup callback to care for disabling PM */
529         ret = devm_add_action_or_reset(dev, ecap_cnt_pm_disable, dev);
530         if (ret)
531                 return dev_err_probe(dev, ret, "failed to add pm disable action\n");
532
533         ret = devm_counter_add(dev, counter_dev);
534         if (ret)
535                 return dev_err_probe(dev, ret, "failed to add counter\n");
536
537         return 0;
538 }
539
540 static int ecap_cnt_remove(struct platform_device *pdev)
541 {
542         struct counter_device *counter_dev = platform_get_drvdata(pdev);
543         struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
544
545         if (ecap_dev->enabled)
546                 ecap_cnt_capture_disable(counter_dev);
547
548         return 0;
549 }
550
551 static int ecap_cnt_suspend(struct device *dev)
552 {
553         struct counter_device *counter_dev = dev_get_drvdata(dev);
554         struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
555
556         /* If eCAP is running, stop capture then save timestamp counter */
557         if (ecap_dev->enabled) {
558                 /*
559                  * Disabling capture has the following effects:
560                  * - interrupts are disabled
561                  * - loading of capture registers is disabled
562                  * - timebase counter is stopped
563                  */
564                 ecap_cnt_capture_disable(counter_dev);
565                 ecap_dev->pm_ctx.time_cntr = ecap_cnt_count_get_val(counter_dev, ECAP_TSCNT_REG);
566         }
567
568         ecap_dev->pm_ctx.ev_mode = ecap_cnt_capture_get_evmode(counter_dev);
569
570         clk_disable(ecap_dev->clk);
571
572         return 0;
573 }
574
575 static int ecap_cnt_resume(struct device *dev)
576 {
577         struct counter_device *counter_dev = dev_get_drvdata(dev);
578         struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
579
580         clk_enable(ecap_dev->clk);
581
582         ecap_cnt_capture_set_evmode(counter_dev, ecap_dev->pm_ctx.ev_mode);
583
584         /* If eCAP was running, restore timestamp counter then run capture */
585         if (ecap_dev->enabled) {
586                 ecap_cnt_count_set_val(counter_dev, ECAP_TSCNT_REG, ecap_dev->pm_ctx.time_cntr);
587                 ecap_cnt_capture_enable(counter_dev);
588         }
589
590         return 0;
591 }
592
593 static DEFINE_SIMPLE_DEV_PM_OPS(ecap_cnt_pm_ops, ecap_cnt_suspend, ecap_cnt_resume);
594
595 static const struct of_device_id ecap_cnt_of_match[] = {
596         { .compatible   = "ti,am62-ecap-capture" },
597         {},
598 };
599 MODULE_DEVICE_TABLE(of, ecap_cnt_of_match);
600
601 static struct platform_driver ecap_cnt_driver = {
602         .probe = ecap_cnt_probe,
603         .remove = ecap_cnt_remove,
604         .driver = {
605                 .name = "ecap-capture",
606                 .of_match_table = ecap_cnt_of_match,
607                 .pm = pm_sleep_ptr(&ecap_cnt_pm_ops),
608         },
609 };
610 module_platform_driver(ecap_cnt_driver);
611
612 MODULE_DESCRIPTION("ECAP Capture driver");
613 MODULE_AUTHOR("Julien Panis <jpanis@baylibre.com>");
614 MODULE_LICENSE("GPL");
615 MODULE_IMPORT_NS(COUNTER);