Merge tag 'sched-psi-2022-10-14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / drivers / counter / ti-ecap-capture.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ECAP Capture driver
4  *
5  * Copyright (C) 2022 Julien Panis <jpanis@baylibre.com>
6  */
7
8 #include <linux/atomic.h>
9 #include <linux/clk.h>
10 #include <linux/counter.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/module.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/mutex.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20
21 #define ECAP_DRV_NAME "ecap"
22
23 /* ECAP event IDs */
24 #define ECAP_CEVT1              0
25 #define ECAP_CEVT2              1
26 #define ECAP_CEVT3              2
27 #define ECAP_CEVT4              3
28 #define ECAP_CNTOVF             4
29
30 #define ECAP_CEVT_LAST          ECAP_CEVT4
31 #define ECAP_NB_CEVT            (ECAP_CEVT_LAST + 1)
32
33 #define ECAP_EVT_LAST           ECAP_CNTOVF
34 #define ECAP_NB_EVT             (ECAP_EVT_LAST + 1)
35
36 /* Registers */
37 #define ECAP_TSCNT_REG                  0x00
38
39 #define ECAP_CAP_REG(i)         (((i) << 2) + 0x08)
40
41 #define ECAP_ECCTL_REG                  0x28
42 #define ECAP_CAPPOL_BIT(i)              BIT((i) << 1)
43 #define ECAP_EV_MODE_MASK               GENMASK(7, 0)
44 #define ECAP_CAPLDEN_BIT                BIT(8)
45 #define ECAP_CONT_ONESHT_BIT            BIT(16)
46 #define ECAP_STOPVALUE_MASK             GENMASK(18, 17)
47 #define ECAP_TSCNTSTP_BIT               BIT(20)
48 #define ECAP_SYNCO_DIS_MASK             GENMASK(23, 22)
49 #define ECAP_CAP_APWM_BIT               BIT(25)
50 #define ECAP_ECCTL_EN_MASK              (ECAP_CAPLDEN_BIT | ECAP_TSCNTSTP_BIT)
51 #define ECAP_ECCTL_CFG_MASK             (ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK      \
52                                         | ECAP_ECCTL_EN_MASK | ECAP_CAP_APWM_BIT        \
53                                         | ECAP_CONT_ONESHT_BIT)
54
55 #define ECAP_ECINT_EN_FLG_REG           0x2c
56 #define ECAP_EVT_EN_MASK                GENMASK(ECAP_NB_EVT, ECAP_NB_CEVT)
57 #define ECAP_EVT_FLG_BIT(i)             BIT((i) + 17)
58
59 #define ECAP_ECINT_CLR_FRC_REG  0x30
60 #define ECAP_INT_CLR_BIT                BIT(0)
61 #define ECAP_EVT_CLR_BIT(i)             BIT((i) + 1)
62 #define ECAP_EVT_CLR_MASK               GENMASK(ECAP_NB_EVT, 0)
63
64 #define ECAP_PID_REG                    0x5c
65
66 /* ECAP signals */
67 #define ECAP_CLOCK_SIG 0
68 #define ECAP_INPUT_SIG 1
69
70 static const struct regmap_config ecap_cnt_regmap_config = {
71         .reg_bits = 32,
72         .reg_stride = 4,
73         .val_bits = 32,
74         .max_register = ECAP_PID_REG,
75 };
76
77 /**
78  * struct ecap_cnt_dev - device private data structure
79  * @enabled: device state
80  * @lock:    synchronization lock to prevent I/O race conditions
81  * @clk:     device clock
82  * @regmap:  device register map
83  * @nb_ovf:  number of overflows since capture start
84  * @pm_ctx:  device context for PM operations
85  * @pm_ctx.ev_mode:   event mode bits
86  * @pm_ctx.time_cntr: timestamp counter value
87  */
88 struct ecap_cnt_dev {
89         bool enabled;
90         struct mutex lock;
91         struct clk *clk;
92         struct regmap *regmap;
93         atomic_t nb_ovf;
94         struct {
95                 u8 ev_mode;
96                 u32 time_cntr;
97         } pm_ctx;
98 };
99
100 static u8 ecap_cnt_capture_get_evmode(struct counter_device *counter)
101 {
102         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
103         unsigned int regval;
104
105         pm_runtime_get_sync(counter->parent);
106         regmap_read(ecap_dev->regmap, ECAP_ECCTL_REG, &regval);
107         pm_runtime_put_sync(counter->parent);
108
109         return regval;
110 }
111
112 static void ecap_cnt_capture_set_evmode(struct counter_device *counter, u8 ev_mode)
113 {
114         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
115
116         pm_runtime_get_sync(counter->parent);
117         regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_EV_MODE_MASK, ev_mode);
118         pm_runtime_put_sync(counter->parent);
119 }
120
121 static void ecap_cnt_capture_enable(struct counter_device *counter)
122 {
123         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
124
125         pm_runtime_get_sync(counter->parent);
126
127         /* Enable interrupts on events */
128         regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG,
129                            ECAP_EVT_EN_MASK, ECAP_EVT_EN_MASK);
130
131         /* Run counter */
132         regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_CFG_MASK,
133                            ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK | ECAP_ECCTL_EN_MASK);
134 }
135
136 static void ecap_cnt_capture_disable(struct counter_device *counter)
137 {
138         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
139
140         /* Stop counter */
141         regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_EN_MASK, 0);
142
143         /* Disable interrupts on events */
144         regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, ECAP_EVT_EN_MASK, 0);
145
146         pm_runtime_put_sync(counter->parent);
147 }
148
149 static u32 ecap_cnt_count_get_val(struct counter_device *counter, unsigned int reg)
150 {
151         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
152         unsigned int regval;
153
154         pm_runtime_get_sync(counter->parent);
155         regmap_read(ecap_dev->regmap, reg, &regval);
156         pm_runtime_put_sync(counter->parent);
157
158         return regval;
159 }
160
161 static void ecap_cnt_count_set_val(struct counter_device *counter, unsigned int reg, u32 val)
162 {
163         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
164
165         pm_runtime_get_sync(counter->parent);
166         regmap_write(ecap_dev->regmap, reg, val);
167         pm_runtime_put_sync(counter->parent);
168 }
169
170 static int ecap_cnt_count_read(struct counter_device *counter,
171                                struct counter_count *count, u64 *val)
172 {
173         *val = ecap_cnt_count_get_val(counter, ECAP_TSCNT_REG);
174
175         return 0;
176 }
177
178 static int ecap_cnt_count_write(struct counter_device *counter,
179                                 struct counter_count *count, u64 val)
180 {
181         if (val > U32_MAX)
182                 return -ERANGE;
183
184         ecap_cnt_count_set_val(counter, ECAP_TSCNT_REG, val);
185
186         return 0;
187 }
188
189 static int ecap_cnt_function_read(struct counter_device *counter,
190                                   struct counter_count *count,
191                                   enum counter_function *function)
192 {
193         *function = COUNTER_FUNCTION_INCREASE;
194
195         return 0;
196 }
197
198 static int ecap_cnt_action_read(struct counter_device *counter,
199                                 struct counter_count *count,
200                                 struct counter_synapse *synapse,
201                                 enum counter_synapse_action *action)
202 {
203         *action = (synapse->signal->id == ECAP_CLOCK_SIG) ?
204                    COUNTER_SYNAPSE_ACTION_RISING_EDGE :
205                    COUNTER_SYNAPSE_ACTION_NONE;
206
207         return 0;
208 }
209
210 static int ecap_cnt_watch_validate(struct counter_device *counter,
211                                    const struct counter_watch *watch)
212 {
213         if (watch->channel > ECAP_CEVT_LAST)
214                 return -EINVAL;
215
216         switch (watch->event) {
217         case COUNTER_EVENT_CAPTURE:
218         case COUNTER_EVENT_OVERFLOW:
219                 return 0;
220         default:
221                 return -EINVAL;
222         }
223 }
224
225 static int ecap_cnt_clk_get_freq(struct counter_device *counter,
226                                  struct counter_signal *signal, u64 *freq)
227 {
228         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
229
230         *freq = clk_get_rate(ecap_dev->clk);
231
232         return 0;
233 }
234
235 static int ecap_cnt_pol_read(struct counter_device *counter,
236                              struct counter_signal *signal,
237                              size_t idx, enum counter_signal_polarity *pol)
238 {
239         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
240         int bitval;
241
242         pm_runtime_get_sync(counter->parent);
243         bitval = regmap_test_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
244         pm_runtime_put_sync(counter->parent);
245
246         *pol = bitval ? COUNTER_SIGNAL_POLARITY_NEGATIVE : COUNTER_SIGNAL_POLARITY_POSITIVE;
247
248         return 0;
249 }
250
251 static int ecap_cnt_pol_write(struct counter_device *counter,
252                               struct counter_signal *signal,
253                               size_t idx, enum counter_signal_polarity pol)
254 {
255         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
256
257         pm_runtime_get_sync(counter->parent);
258         if (pol == COUNTER_SIGNAL_POLARITY_NEGATIVE)
259                 regmap_set_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
260         else
261                 regmap_clear_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
262         pm_runtime_put_sync(counter->parent);
263
264         return 0;
265 }
266
267 static int ecap_cnt_cap_read(struct counter_device *counter,
268                              struct counter_count *count,
269                              size_t idx, u64 *cap)
270 {
271         *cap = ecap_cnt_count_get_val(counter, ECAP_CAP_REG(idx));
272
273         return 0;
274 }
275
276 static int ecap_cnt_cap_write(struct counter_device *counter,
277                               struct counter_count *count,
278                               size_t idx, u64 cap)
279 {
280         if (cap > U32_MAX)
281                 return -ERANGE;
282
283         ecap_cnt_count_set_val(counter, ECAP_CAP_REG(idx), cap);
284
285         return 0;
286 }
287
288 static int ecap_cnt_nb_ovf_read(struct counter_device *counter,
289                                 struct counter_count *count, u64 *val)
290 {
291         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
292
293         *val = atomic_read(&ecap_dev->nb_ovf);
294
295         return 0;
296 }
297
298 static int ecap_cnt_nb_ovf_write(struct counter_device *counter,
299                                  struct counter_count *count, u64 val)
300 {
301         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
302
303         if (val > U32_MAX)
304                 return -ERANGE;
305
306         atomic_set(&ecap_dev->nb_ovf, val);
307
308         return 0;
309 }
310
311 static int ecap_cnt_ceiling_read(struct counter_device *counter,
312                                  struct counter_count *count, u64 *val)
313 {
314         *val = U32_MAX;
315
316         return 0;
317 }
318
319 static int ecap_cnt_enable_read(struct counter_device *counter,
320                                 struct counter_count *count, u8 *enable)
321 {
322         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
323
324         *enable = ecap_dev->enabled;
325
326         return 0;
327 }
328
329 static int ecap_cnt_enable_write(struct counter_device *counter,
330                                  struct counter_count *count, u8 enable)
331 {
332         struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
333
334         mutex_lock(&ecap_dev->lock);
335
336         if (enable == ecap_dev->enabled)
337                 goto out;
338
339         if (enable)
340                 ecap_cnt_capture_enable(counter);
341         else
342                 ecap_cnt_capture_disable(counter);
343         ecap_dev->enabled = enable;
344
345 out:
346         mutex_unlock(&ecap_dev->lock);
347
348         return 0;
349 }
350
351 static const struct counter_ops ecap_cnt_ops = {
352         .count_read = ecap_cnt_count_read,
353         .count_write = ecap_cnt_count_write,
354         .function_read = ecap_cnt_function_read,
355         .action_read = ecap_cnt_action_read,
356         .watch_validate = ecap_cnt_watch_validate,
357 };
358
359 static const enum counter_function ecap_cnt_functions[] = {
360         COUNTER_FUNCTION_INCREASE,
361 };
362
363 static const enum counter_synapse_action ecap_cnt_clock_actions[] = {
364         COUNTER_SYNAPSE_ACTION_RISING_EDGE,
365 };
366
367 static const enum counter_synapse_action ecap_cnt_input_actions[] = {
368         COUNTER_SYNAPSE_ACTION_NONE,
369 };
370
371 static struct counter_comp ecap_cnt_clock_ext[] = {
372         COUNTER_COMP_SIGNAL_U64("frequency", ecap_cnt_clk_get_freq, NULL),
373 };
374
375 static const enum counter_signal_polarity ecap_cnt_pol_avail[] = {
376         COUNTER_SIGNAL_POLARITY_POSITIVE,
377         COUNTER_SIGNAL_POLARITY_NEGATIVE,
378 };
379
380 static DEFINE_COUNTER_ARRAY_POLARITY(ecap_cnt_pol_array, ecap_cnt_pol_avail, ECAP_NB_CEVT);
381
382 static struct counter_comp ecap_cnt_signal_ext[] = {
383         COUNTER_COMP_ARRAY_POLARITY(ecap_cnt_pol_read, ecap_cnt_pol_write, ecap_cnt_pol_array),
384 };
385
386 static struct counter_signal ecap_cnt_signals[] = {
387         {
388                 .id = ECAP_CLOCK_SIG,
389                 .name = "Clock Signal",
390                 .ext = ecap_cnt_clock_ext,
391                 .num_ext = ARRAY_SIZE(ecap_cnt_clock_ext),
392         },
393         {
394                 .id = ECAP_INPUT_SIG,
395                 .name = "Input Signal",
396                 .ext = ecap_cnt_signal_ext,
397                 .num_ext = ARRAY_SIZE(ecap_cnt_signal_ext),
398         },
399 };
400
401 static struct counter_synapse ecap_cnt_synapses[] = {
402         {
403                 .actions_list = ecap_cnt_clock_actions,
404                 .num_actions = ARRAY_SIZE(ecap_cnt_clock_actions),
405                 .signal = &ecap_cnt_signals[ECAP_CLOCK_SIG],
406         },
407         {
408                 .actions_list = ecap_cnt_input_actions,
409                 .num_actions = ARRAY_SIZE(ecap_cnt_input_actions),
410                 .signal = &ecap_cnt_signals[ECAP_INPUT_SIG],
411         },
412 };
413
414 static DEFINE_COUNTER_ARRAY_CAPTURE(ecap_cnt_cap_array, ECAP_NB_CEVT);
415
416 static struct counter_comp ecap_cnt_count_ext[] = {
417         COUNTER_COMP_ARRAY_CAPTURE(ecap_cnt_cap_read, ecap_cnt_cap_write, ecap_cnt_cap_array),
418         COUNTER_COMP_COUNT_U64("num_overflows", ecap_cnt_nb_ovf_read, ecap_cnt_nb_ovf_write),
419         COUNTER_COMP_CEILING(ecap_cnt_ceiling_read, NULL),
420         COUNTER_COMP_ENABLE(ecap_cnt_enable_read, ecap_cnt_enable_write),
421 };
422
423 static struct counter_count ecap_cnt_counts[] = {
424         {
425                 .name = "Timestamp Counter",
426                 .functions_list = ecap_cnt_functions,
427                 .num_functions = ARRAY_SIZE(ecap_cnt_functions),
428                 .synapses = ecap_cnt_synapses,
429                 .num_synapses = ARRAY_SIZE(ecap_cnt_synapses),
430                 .ext = ecap_cnt_count_ext,
431                 .num_ext = ARRAY_SIZE(ecap_cnt_count_ext),
432         },
433 };
434
435 static irqreturn_t ecap_cnt_isr(int irq, void *dev_id)
436 {
437         struct counter_device *counter_dev = dev_id;
438         struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
439         unsigned int clr = 0;
440         unsigned int flg;
441         int i;
442
443         regmap_read(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, &flg);
444
445         /* Check capture events */
446         for (i = 0 ; i < ECAP_NB_CEVT ; i++) {
447                 if (flg & ECAP_EVT_FLG_BIT(i)) {
448                         counter_push_event(counter_dev, COUNTER_EVENT_CAPTURE, i);
449                         clr |= ECAP_EVT_CLR_BIT(i);
450                 }
451         }
452
453         /* Check counter overflow */
454         if (flg & ECAP_EVT_FLG_BIT(ECAP_CNTOVF)) {
455                 atomic_inc(&ecap_dev->nb_ovf);
456                 for (i = 0 ; i < ECAP_NB_CEVT ; i++)
457                         counter_push_event(counter_dev, COUNTER_EVENT_OVERFLOW, i);
458                 clr |= ECAP_EVT_CLR_BIT(ECAP_CNTOVF);
459         }
460
461         clr |= ECAP_INT_CLR_BIT;
462         regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_CLR_FRC_REG, ECAP_EVT_CLR_MASK, clr);
463
464         return IRQ_HANDLED;
465 }
466
467 static void ecap_cnt_pm_disable(void *dev)
468 {
469         pm_runtime_disable(dev);
470 }
471
472 static int ecap_cnt_probe(struct platform_device *pdev)
473 {
474         struct device *dev = &pdev->dev;
475         struct ecap_cnt_dev *ecap_dev;
476         struct counter_device *counter_dev;
477         void __iomem *mmio_base;
478         unsigned long clk_rate;
479         int ret;
480
481         counter_dev = devm_counter_alloc(dev, sizeof(*ecap_dev));
482         if (IS_ERR(counter_dev))
483                 return PTR_ERR(counter_dev);
484
485         counter_dev->name = ECAP_DRV_NAME;
486         counter_dev->parent = dev;
487         counter_dev->ops = &ecap_cnt_ops;
488         counter_dev->signals = ecap_cnt_signals;
489         counter_dev->num_signals = ARRAY_SIZE(ecap_cnt_signals);
490         counter_dev->counts = ecap_cnt_counts;
491         counter_dev->num_counts = ARRAY_SIZE(ecap_cnt_counts);
492
493         ecap_dev = counter_priv(counter_dev);
494
495         mutex_init(&ecap_dev->lock);
496
497         ecap_dev->clk = devm_clk_get_enabled(dev, "fck");
498         if (IS_ERR(ecap_dev->clk))
499                 return dev_err_probe(dev, PTR_ERR(ecap_dev->clk), "failed to get clock\n");
500
501         clk_rate = clk_get_rate(ecap_dev->clk);
502         if (!clk_rate) {
503                 dev_err(dev, "failed to get clock rate\n");
504                 return -EINVAL;
505         }
506
507         mmio_base = devm_platform_ioremap_resource(pdev, 0);
508         if (IS_ERR(mmio_base))
509                 return PTR_ERR(mmio_base);
510
511         ecap_dev->regmap = devm_regmap_init_mmio(dev, mmio_base, &ecap_cnt_regmap_config);
512         if (IS_ERR(ecap_dev->regmap))
513                 return dev_err_probe(dev, PTR_ERR(ecap_dev->regmap), "failed to init regmap\n");
514
515         ret = platform_get_irq(pdev, 0);
516         if (ret < 0)
517                 return dev_err_probe(dev, ret, "failed to get irq\n");
518
519         ret = devm_request_irq(dev, ret, ecap_cnt_isr, 0, pdev->name, counter_dev);
520         if (ret)
521                 return dev_err_probe(dev, ret, "failed to request irq\n");
522
523         platform_set_drvdata(pdev, counter_dev);
524
525         pm_runtime_enable(dev);
526
527         /* Register a cleanup callback to care for disabling PM */
528         ret = devm_add_action_or_reset(dev, ecap_cnt_pm_disable, dev);
529         if (ret)
530                 return dev_err_probe(dev, ret, "failed to add pm disable action\n");
531
532         ret = devm_counter_add(dev, counter_dev);
533         if (ret)
534                 return dev_err_probe(dev, ret, "failed to add counter\n");
535
536         return 0;
537 }
538
539 static int ecap_cnt_remove(struct platform_device *pdev)
540 {
541         struct counter_device *counter_dev = platform_get_drvdata(pdev);
542         struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
543
544         if (ecap_dev->enabled)
545                 ecap_cnt_capture_disable(counter_dev);
546
547         return 0;
548 }
549
550 static int ecap_cnt_suspend(struct device *dev)
551 {
552         struct counter_device *counter_dev = dev_get_drvdata(dev);
553         struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
554
555         /* If eCAP is running, stop capture then save timestamp counter */
556         if (ecap_dev->enabled) {
557                 /*
558                  * Disabling capture has the following effects:
559                  * - interrupts are disabled
560                  * - loading of capture registers is disabled
561                  * - timebase counter is stopped
562                  */
563                 ecap_cnt_capture_disable(counter_dev);
564                 ecap_dev->pm_ctx.time_cntr = ecap_cnt_count_get_val(counter_dev, ECAP_TSCNT_REG);
565         }
566
567         ecap_dev->pm_ctx.ev_mode = ecap_cnt_capture_get_evmode(counter_dev);
568
569         clk_disable(ecap_dev->clk);
570
571         return 0;
572 }
573
574 static int ecap_cnt_resume(struct device *dev)
575 {
576         struct counter_device *counter_dev = dev_get_drvdata(dev);
577         struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
578
579         clk_enable(ecap_dev->clk);
580
581         ecap_cnt_capture_set_evmode(counter_dev, ecap_dev->pm_ctx.ev_mode);
582
583         /* If eCAP was running, restore timestamp counter then run capture */
584         if (ecap_dev->enabled) {
585                 ecap_cnt_count_set_val(counter_dev, ECAP_TSCNT_REG, ecap_dev->pm_ctx.time_cntr);
586                 ecap_cnt_capture_enable(counter_dev);
587         }
588
589         return 0;
590 }
591
592 static DEFINE_SIMPLE_DEV_PM_OPS(ecap_cnt_pm_ops, ecap_cnt_suspend, ecap_cnt_resume);
593
594 static const struct of_device_id ecap_cnt_of_match[] = {
595         { .compatible   = "ti,am62-ecap-capture" },
596         {},
597 };
598 MODULE_DEVICE_TABLE(of, ecap_cnt_of_match);
599
600 static struct platform_driver ecap_cnt_driver = {
601         .probe = ecap_cnt_probe,
602         .remove = ecap_cnt_remove,
603         .driver = {
604                 .name = "ecap-capture",
605                 .of_match_table = ecap_cnt_of_match,
606                 .pm = pm_sleep_ptr(&ecap_cnt_pm_ops),
607         },
608 };
609 module_platform_driver(ecap_cnt_driver);
610
611 MODULE_DESCRIPTION("ECAP Capture driver");
612 MODULE_AUTHOR("Julien Panis <jpanis@baylibre.com>");
613 MODULE_LICENSE("GPL");
614 MODULE_IMPORT_NS(COUNTER);