Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / counter / intel-qep.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Intel Quadrature Encoder Peripheral driver
4  *
5  * Copyright (C) 2019-2021 Intel Corporation
6  *
7  * Author: Felipe Balbi (Intel)
8  * Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
9  * Author: Raymond Tan <raymond.tan@intel.com>
10  */
11 #include <linux/counter.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/pci.h>
16 #include <linux/pm_runtime.h>
17
18 #define INTEL_QEPCON                    0x00
19 #define INTEL_QEPFLT                    0x04
20 #define INTEL_QEPCOUNT                  0x08
21 #define INTEL_QEPMAX                    0x0c
22 #define INTEL_QEPWDT                    0x10
23 #define INTEL_QEPCAPDIV                 0x14
24 #define INTEL_QEPCNTR                   0x18
25 #define INTEL_QEPCAPBUF                 0x1c
26 #define INTEL_QEPINT_STAT               0x20
27 #define INTEL_QEPINT_MASK               0x24
28
29 /* QEPCON */
30 #define INTEL_QEPCON_EN                 BIT(0)
31 #define INTEL_QEPCON_FLT_EN             BIT(1)
32 #define INTEL_QEPCON_EDGE_A             BIT(2)
33 #define INTEL_QEPCON_EDGE_B             BIT(3)
34 #define INTEL_QEPCON_EDGE_INDX          BIT(4)
35 #define INTEL_QEPCON_SWPAB              BIT(5)
36 #define INTEL_QEPCON_OP_MODE            BIT(6)
37 #define INTEL_QEPCON_PH_ERR             BIT(7)
38 #define INTEL_QEPCON_COUNT_RST_MODE     BIT(8)
39 #define INTEL_QEPCON_INDX_GATING_MASK   GENMASK(10, 9)
40 #define INTEL_QEPCON_INDX_GATING(n)     (((n) & 3) << 9)
41 #define INTEL_QEPCON_INDX_PAL_PBL       INTEL_QEPCON_INDX_GATING(0)
42 #define INTEL_QEPCON_INDX_PAL_PBH       INTEL_QEPCON_INDX_GATING(1)
43 #define INTEL_QEPCON_INDX_PAH_PBL       INTEL_QEPCON_INDX_GATING(2)
44 #define INTEL_QEPCON_INDX_PAH_PBH       INTEL_QEPCON_INDX_GATING(3)
45 #define INTEL_QEPCON_CAP_MODE           BIT(11)
46 #define INTEL_QEPCON_FIFO_THRE_MASK     GENMASK(14, 12)
47 #define INTEL_QEPCON_FIFO_THRE(n)       ((((n) - 1) & 7) << 12)
48 #define INTEL_QEPCON_FIFO_EMPTY         BIT(15)
49
50 /* QEPFLT */
51 #define INTEL_QEPFLT_MAX_COUNT(n)       ((n) & 0x1fffff)
52
53 /* QEPINT */
54 #define INTEL_QEPINT_FIFOCRIT           BIT(5)
55 #define INTEL_QEPINT_FIFOENTRY          BIT(4)
56 #define INTEL_QEPINT_QEPDIR             BIT(3)
57 #define INTEL_QEPINT_QEPRST_UP          BIT(2)
58 #define INTEL_QEPINT_QEPRST_DOWN        BIT(1)
59 #define INTEL_QEPINT_WDT                BIT(0)
60
61 #define INTEL_QEPINT_MASK_ALL           GENMASK(5, 0)
62
63 #define INTEL_QEP_CLK_PERIOD_NS         10
64
65 struct intel_qep {
66         struct mutex lock;
67         struct device *dev;
68         void __iomem *regs;
69         bool enabled;
70         /* Context save registers */
71         u32 qepcon;
72         u32 qepflt;
73         u32 qepmax;
74 };
75
76 static inline u32 intel_qep_readl(struct intel_qep *qep, u32 offset)
77 {
78         return readl(qep->regs + offset);
79 }
80
81 static inline void intel_qep_writel(struct intel_qep *qep,
82                                     u32 offset, u32 value)
83 {
84         writel(value, qep->regs + offset);
85 }
86
87 static void intel_qep_init(struct intel_qep *qep)
88 {
89         u32 reg;
90
91         reg = intel_qep_readl(qep, INTEL_QEPCON);
92         reg &= ~INTEL_QEPCON_EN;
93         intel_qep_writel(qep, INTEL_QEPCON, reg);
94         qep->enabled = false;
95         /*
96          * Make sure peripheral is disabled by flushing the write with
97          * a dummy read
98          */
99         reg = intel_qep_readl(qep, INTEL_QEPCON);
100
101         reg &= ~(INTEL_QEPCON_OP_MODE | INTEL_QEPCON_FLT_EN);
102         reg |= INTEL_QEPCON_EDGE_A | INTEL_QEPCON_EDGE_B |
103                INTEL_QEPCON_EDGE_INDX | INTEL_QEPCON_COUNT_RST_MODE;
104         intel_qep_writel(qep, INTEL_QEPCON, reg);
105         intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
106 }
107
108 static int intel_qep_count_read(struct counter_device *counter,
109                                 struct counter_count *count, u64 *val)
110 {
111         struct intel_qep *const qep = counter_priv(counter);
112
113         pm_runtime_get_sync(qep->dev);
114         *val = intel_qep_readl(qep, INTEL_QEPCOUNT);
115         pm_runtime_put(qep->dev);
116
117         return 0;
118 }
119
120 static const enum counter_function intel_qep_count_functions[] = {
121         COUNTER_FUNCTION_QUADRATURE_X4,
122 };
123
124 static int intel_qep_function_read(struct counter_device *counter,
125                                    struct counter_count *count,
126                                    enum counter_function *function)
127 {
128         *function = COUNTER_FUNCTION_QUADRATURE_X4;
129
130         return 0;
131 }
132
133 static const enum counter_synapse_action intel_qep_synapse_actions[] = {
134         COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
135 };
136
137 static int intel_qep_action_read(struct counter_device *counter,
138                                  struct counter_count *count,
139                                  struct counter_synapse *synapse,
140                                  enum counter_synapse_action *action)
141 {
142         *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
143         return 0;
144 }
145
146 static const struct counter_ops intel_qep_counter_ops = {
147         .count_read = intel_qep_count_read,
148         .function_read = intel_qep_function_read,
149         .action_read = intel_qep_action_read,
150 };
151
152 #define INTEL_QEP_SIGNAL(_id, _name) {                          \
153         .id = (_id),                                            \
154         .name = (_name),                                        \
155 }
156
157 static struct counter_signal intel_qep_signals[] = {
158         INTEL_QEP_SIGNAL(0, "Phase A"),
159         INTEL_QEP_SIGNAL(1, "Phase B"),
160         INTEL_QEP_SIGNAL(2, "Index"),
161 };
162
163 #define INTEL_QEP_SYNAPSE(_signal_id) {                         \
164         .actions_list = intel_qep_synapse_actions,              \
165         .num_actions = ARRAY_SIZE(intel_qep_synapse_actions),   \
166         .signal = &intel_qep_signals[(_signal_id)],             \
167 }
168
169 static struct counter_synapse intel_qep_count_synapses[] = {
170         INTEL_QEP_SYNAPSE(0),
171         INTEL_QEP_SYNAPSE(1),
172         INTEL_QEP_SYNAPSE(2),
173 };
174
175 static int intel_qep_ceiling_read(struct counter_device *counter,
176                                   struct counter_count *count, u64 *ceiling)
177 {
178         struct intel_qep *qep = counter_priv(counter);
179
180         pm_runtime_get_sync(qep->dev);
181         *ceiling = intel_qep_readl(qep, INTEL_QEPMAX);
182         pm_runtime_put(qep->dev);
183
184         return 0;
185 }
186
187 static int intel_qep_ceiling_write(struct counter_device *counter,
188                                    struct counter_count *count, u64 max)
189 {
190         struct intel_qep *qep = counter_priv(counter);
191         int ret = 0;
192
193         /* Intel QEP ceiling configuration only supports 32-bit values */
194         if (max != (u32)max)
195                 return -ERANGE;
196
197         mutex_lock(&qep->lock);
198         if (qep->enabled) {
199                 ret = -EBUSY;
200                 goto out;
201         }
202
203         pm_runtime_get_sync(qep->dev);
204         intel_qep_writel(qep, INTEL_QEPMAX, max);
205         pm_runtime_put(qep->dev);
206
207 out:
208         mutex_unlock(&qep->lock);
209         return ret;
210 }
211
212 static int intel_qep_enable_read(struct counter_device *counter,
213                                  struct counter_count *count, u8 *enable)
214 {
215         struct intel_qep *qep = counter_priv(counter);
216
217         *enable = qep->enabled;
218
219         return 0;
220 }
221
222 static int intel_qep_enable_write(struct counter_device *counter,
223                                   struct counter_count *count, u8 val)
224 {
225         struct intel_qep *qep = counter_priv(counter);
226         u32 reg;
227         bool changed;
228
229         mutex_lock(&qep->lock);
230         changed = val ^ qep->enabled;
231         if (!changed)
232                 goto out;
233
234         pm_runtime_get_sync(qep->dev);
235         reg = intel_qep_readl(qep, INTEL_QEPCON);
236         if (val) {
237                 /* Enable peripheral and keep runtime PM always on */
238                 reg |= INTEL_QEPCON_EN;
239                 pm_runtime_get_noresume(qep->dev);
240         } else {
241                 /* Let runtime PM be idle and disable peripheral */
242                 pm_runtime_put_noidle(qep->dev);
243                 reg &= ~INTEL_QEPCON_EN;
244         }
245         intel_qep_writel(qep, INTEL_QEPCON, reg);
246         pm_runtime_put(qep->dev);
247         qep->enabled = val;
248
249 out:
250         mutex_unlock(&qep->lock);
251         return 0;
252 }
253
254 static int intel_qep_spike_filter_ns_read(struct counter_device *counter,
255                                           struct counter_count *count,
256                                           u64 *length)
257 {
258         struct intel_qep *qep = counter_priv(counter);
259         u32 reg;
260
261         pm_runtime_get_sync(qep->dev);
262         reg = intel_qep_readl(qep, INTEL_QEPCON);
263         if (!(reg & INTEL_QEPCON_FLT_EN)) {
264                 pm_runtime_put(qep->dev);
265                 return 0;
266         }
267         reg = INTEL_QEPFLT_MAX_COUNT(intel_qep_readl(qep, INTEL_QEPFLT));
268         pm_runtime_put(qep->dev);
269
270         *length = (reg + 2) * INTEL_QEP_CLK_PERIOD_NS;
271
272         return 0;
273 }
274
275 static int intel_qep_spike_filter_ns_write(struct counter_device *counter,
276                                            struct counter_count *count,
277                                            u64 length)
278 {
279         struct intel_qep *qep = counter_priv(counter);
280         u32 reg;
281         bool enable;
282         int ret = 0;
283
284         /*
285          * Spike filter length is (MAX_COUNT + 2) clock periods.
286          * Disable filter when userspace writes 0, enable for valid
287          * nanoseconds values and error out otherwise.
288          */
289         do_div(length, INTEL_QEP_CLK_PERIOD_NS);
290         if (length == 0) {
291                 enable = false;
292                 length = 0;
293         } else if (length >= 2) {
294                 enable = true;
295                 length -= 2;
296         } else {
297                 return -EINVAL;
298         }
299
300         if (length > INTEL_QEPFLT_MAX_COUNT(length))
301                 return -ERANGE;
302
303         mutex_lock(&qep->lock);
304         if (qep->enabled) {
305                 ret = -EBUSY;
306                 goto out;
307         }
308
309         pm_runtime_get_sync(qep->dev);
310         reg = intel_qep_readl(qep, INTEL_QEPCON);
311         if (enable)
312                 reg |= INTEL_QEPCON_FLT_EN;
313         else
314                 reg &= ~INTEL_QEPCON_FLT_EN;
315         intel_qep_writel(qep, INTEL_QEPFLT, length);
316         intel_qep_writel(qep, INTEL_QEPCON, reg);
317         pm_runtime_put(qep->dev);
318
319 out:
320         mutex_unlock(&qep->lock);
321         return ret;
322 }
323
324 static int intel_qep_preset_enable_read(struct counter_device *counter,
325                                         struct counter_count *count,
326                                         u8 *preset_enable)
327 {
328         struct intel_qep *qep = counter_priv(counter);
329         u32 reg;
330
331         pm_runtime_get_sync(qep->dev);
332         reg = intel_qep_readl(qep, INTEL_QEPCON);
333         pm_runtime_put(qep->dev);
334
335         *preset_enable = !(reg & INTEL_QEPCON_COUNT_RST_MODE);
336
337         return 0;
338 }
339
340 static int intel_qep_preset_enable_write(struct counter_device *counter,
341                                          struct counter_count *count, u8 val)
342 {
343         struct intel_qep *qep = counter_priv(counter);
344         u32 reg;
345         int ret = 0;
346
347         mutex_lock(&qep->lock);
348         if (qep->enabled) {
349                 ret = -EBUSY;
350                 goto out;
351         }
352
353         pm_runtime_get_sync(qep->dev);
354         reg = intel_qep_readl(qep, INTEL_QEPCON);
355         if (val)
356                 reg &= ~INTEL_QEPCON_COUNT_RST_MODE;
357         else
358                 reg |= INTEL_QEPCON_COUNT_RST_MODE;
359
360         intel_qep_writel(qep, INTEL_QEPCON, reg);
361         pm_runtime_put(qep->dev);
362
363 out:
364         mutex_unlock(&qep->lock);
365
366         return ret;
367 }
368
369 static struct counter_comp intel_qep_count_ext[] = {
370         COUNTER_COMP_ENABLE(intel_qep_enable_read, intel_qep_enable_write),
371         COUNTER_COMP_CEILING(intel_qep_ceiling_read, intel_qep_ceiling_write),
372         COUNTER_COMP_PRESET_ENABLE(intel_qep_preset_enable_read,
373                                    intel_qep_preset_enable_write),
374         COUNTER_COMP_COUNT_U64("spike_filter_ns",
375                                intel_qep_spike_filter_ns_read,
376                                intel_qep_spike_filter_ns_write),
377 };
378
379 static struct counter_count intel_qep_counter_count[] = {
380         {
381                 .id = 0,
382                 .name = "Channel 1 Count",
383                 .functions_list = intel_qep_count_functions,
384                 .num_functions = ARRAY_SIZE(intel_qep_count_functions),
385                 .synapses = intel_qep_count_synapses,
386                 .num_synapses = ARRAY_SIZE(intel_qep_count_synapses),
387                 .ext = intel_qep_count_ext,
388                 .num_ext = ARRAY_SIZE(intel_qep_count_ext),
389         },
390 };
391
392 static int intel_qep_probe(struct pci_dev *pci, const struct pci_device_id *id)
393 {
394         struct counter_device *counter;
395         struct intel_qep *qep;
396         struct device *dev = &pci->dev;
397         void __iomem *regs;
398         int ret;
399
400         counter = devm_counter_alloc(dev, sizeof(*qep));
401         if (!counter)
402                 return -ENOMEM;
403         qep = counter_priv(counter);
404
405         ret = pcim_enable_device(pci);
406         if (ret)
407                 return ret;
408
409         pci_set_master(pci);
410
411         ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
412         if (ret)
413                 return ret;
414
415         regs = pcim_iomap_table(pci)[0];
416         if (!regs)
417                 return -ENOMEM;
418
419         qep->dev = dev;
420         qep->regs = regs;
421         mutex_init(&qep->lock);
422
423         intel_qep_init(qep);
424         pci_set_drvdata(pci, qep);
425
426         counter->name = pci_name(pci);
427         counter->parent = dev;
428         counter->ops = &intel_qep_counter_ops;
429         counter->counts = intel_qep_counter_count;
430         counter->num_counts = ARRAY_SIZE(intel_qep_counter_count);
431         counter->signals = intel_qep_signals;
432         counter->num_signals = ARRAY_SIZE(intel_qep_signals);
433         qep->enabled = false;
434
435         pm_runtime_put(dev);
436         pm_runtime_allow(dev);
437
438         ret = devm_counter_add(&pci->dev, counter);
439         if (ret < 0)
440                 return dev_err_probe(&pci->dev, ret, "Failed to add counter\n");
441
442         return 0;
443 }
444
445 static void intel_qep_remove(struct pci_dev *pci)
446 {
447         struct intel_qep *qep = pci_get_drvdata(pci);
448         struct device *dev = &pci->dev;
449
450         pm_runtime_forbid(dev);
451         if (!qep->enabled)
452                 pm_runtime_get(dev);
453
454         intel_qep_writel(qep, INTEL_QEPCON, 0);
455 }
456
457 static int __maybe_unused intel_qep_suspend(struct device *dev)
458 {
459         struct pci_dev *pdev = to_pci_dev(dev);
460         struct intel_qep *qep = pci_get_drvdata(pdev);
461
462         qep->qepcon = intel_qep_readl(qep, INTEL_QEPCON);
463         qep->qepflt = intel_qep_readl(qep, INTEL_QEPFLT);
464         qep->qepmax = intel_qep_readl(qep, INTEL_QEPMAX);
465
466         return 0;
467 }
468
469 static int __maybe_unused intel_qep_resume(struct device *dev)
470 {
471         struct pci_dev *pdev = to_pci_dev(dev);
472         struct intel_qep *qep = pci_get_drvdata(pdev);
473
474         /*
475          * Make sure peripheral is disabled when restoring registers and
476          * control register bits that are writable only when the peripheral
477          * is disabled
478          */
479         intel_qep_writel(qep, INTEL_QEPCON, 0);
480         intel_qep_readl(qep, INTEL_QEPCON);
481
482         intel_qep_writel(qep, INTEL_QEPFLT, qep->qepflt);
483         intel_qep_writel(qep, INTEL_QEPMAX, qep->qepmax);
484         intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
485
486         /* Restore all other control register bits except enable status */
487         intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon & ~INTEL_QEPCON_EN);
488         intel_qep_readl(qep, INTEL_QEPCON);
489
490         /* Restore enable status */
491         intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon);
492
493         return 0;
494 }
495
496 static UNIVERSAL_DEV_PM_OPS(intel_qep_pm_ops,
497                             intel_qep_suspend, intel_qep_resume, NULL);
498
499 static const struct pci_device_id intel_qep_id_table[] = {
500         /* EHL */
501         { PCI_VDEVICE(INTEL, 0x4bc3), },
502         { PCI_VDEVICE(INTEL, 0x4b81), },
503         { PCI_VDEVICE(INTEL, 0x4b82), },
504         { PCI_VDEVICE(INTEL, 0x4b83), },
505         {  } /* Terminating Entry */
506 };
507 MODULE_DEVICE_TABLE(pci, intel_qep_id_table);
508
509 static struct pci_driver intel_qep_driver = {
510         .name = "intel-qep",
511         .id_table = intel_qep_id_table,
512         .probe = intel_qep_probe,
513         .remove = intel_qep_remove,
514         .driver = {
515                 .pm = &intel_qep_pm_ops,
516         }
517 };
518
519 module_pci_driver(intel_qep_driver);
520
521 MODULE_AUTHOR("Felipe Balbi (Intel)");
522 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
523 MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
524 MODULE_LICENSE("GPL");
525 MODULE_DESCRIPTION("Intel Quadrature Encoder Peripheral driver");
526 MODULE_IMPORT_NS(COUNTER);