1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2010 Google, Inc.
6 * Colin Cross <ccross@google.com>
9 #define pr_fmt(fmt) "tegra-timer: " fmt
11 #include <linux/clk.h>
12 #include <linux/clockchips.h>
13 #include <linux/cpu.h>
14 #include <linux/cpumask.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/percpu.h>
21 #include <linux/sched_clock.h>
22 #include <linux/time.h>
26 #define RTC_SECONDS 0x08
27 #define RTC_SHADOW_SECONDS 0x0c
28 #define RTC_MILLISECONDS 0x10
30 #define TIMERUS_CNTR_1US 0x10
31 #define TIMERUS_USEC_CFG 0x14
32 #define TIMERUS_CNTR_FREEZE 0x4c
35 #define TIMER_PTV_EN BIT(31)
36 #define TIMER_PTV_PER BIT(30)
38 #define TIMER_PCR_INTR_CLR BIT(30)
40 #define TIMER1_BASE 0x00
41 #define TIMER2_BASE 0x08
42 #define TIMER3_BASE 0x50
43 #define TIMER4_BASE 0x58
44 #define TIMER10_BASE 0x90
46 #define TIMER1_IRQ_IDX 0
47 #define TIMER10_IRQ_IDX 10
49 #define TIMER_1MHz 1000000
51 static u32 usec_config;
52 static void __iomem *timer_reg_base;
54 static int tegra_timer_set_next_event(unsigned long cycles,
55 struct clock_event_device *evt)
57 void __iomem *reg_base = timer_of_base(to_timer_of(evt));
60 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will
61 * fire after one tick if 0 is loaded.
63 * The minimum and maximum numbers of oneshot ticks are defined
64 * by clockevents_config_and_register(1, 0x1fffffff + 1) invocation
65 * below in the code. Hence the cycles (ticks) can't be outside of
66 * a range supportable by hardware.
68 writel_relaxed(TIMER_PTV_EN | (cycles - 1), reg_base + TIMER_PTV);
73 static int tegra_timer_shutdown(struct clock_event_device *evt)
75 void __iomem *reg_base = timer_of_base(to_timer_of(evt));
77 writel_relaxed(0, reg_base + TIMER_PTV);
82 static int tegra_timer_set_periodic(struct clock_event_device *evt)
84 void __iomem *reg_base = timer_of_base(to_timer_of(evt));
85 unsigned long period = timer_of_period(to_timer_of(evt));
87 writel_relaxed(TIMER_PTV_EN | TIMER_PTV_PER | (period - 1),
88 reg_base + TIMER_PTV);
93 static irqreturn_t tegra_timer_isr(int irq, void *dev_id)
95 struct clock_event_device *evt = dev_id;
96 void __iomem *reg_base = timer_of_base(to_timer_of(evt));
98 writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR);
99 evt->event_handler(evt);
104 static void tegra_timer_suspend(struct clock_event_device *evt)
106 void __iomem *reg_base = timer_of_base(to_timer_of(evt));
108 writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR);
111 static void tegra_timer_resume(struct clock_event_device *evt)
113 writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG);
116 static DEFINE_PER_CPU(struct timer_of, tegra_to) = {
117 .flags = TIMER_OF_CLOCK | TIMER_OF_BASE,
120 .name = "tegra_timer",
121 .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
122 .set_next_event = tegra_timer_set_next_event,
123 .set_state_shutdown = tegra_timer_shutdown,
124 .set_state_periodic = tegra_timer_set_periodic,
125 .set_state_oneshot = tegra_timer_shutdown,
126 .tick_resume = tegra_timer_shutdown,
127 .suspend = tegra_timer_suspend,
128 .resume = tegra_timer_resume,
132 static int tegra_timer_setup(unsigned int cpu)
134 struct timer_of *to = per_cpu_ptr(&tegra_to, cpu);
136 writel_relaxed(0, timer_of_base(to) + TIMER_PTV);
137 writel_relaxed(TIMER_PCR_INTR_CLR, timer_of_base(to) + TIMER_PCR);
139 irq_force_affinity(to->clkevt.irq, cpumask_of(cpu));
140 enable_irq(to->clkevt.irq);
143 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will
144 * fire after one tick if 0 is loaded and thus minimum number of
145 * ticks is 1. In result both of the clocksource's tick limits are
146 * higher than a minimum and maximum that hardware register can
147 * take by 1, this is then taken into account by set_next_event
150 clockevents_config_and_register(&to->clkevt, timer_of_rate(to),
152 0x1fffffff + 1); /* max 29 bits + 1 */
157 static int tegra_timer_stop(unsigned int cpu)
159 struct timer_of *to = per_cpu_ptr(&tegra_to, cpu);
161 to->clkevt.set_state_shutdown(&to->clkevt);
162 disable_irq_nosync(to->clkevt.irq);
167 static u64 notrace tegra_read_sched_clock(void)
169 return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US);
173 static unsigned long tegra_delay_timer_read_counter_long(void)
175 return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US);
178 static struct delay_timer tegra_delay_timer = {
179 .read_current_timer = tegra_delay_timer_read_counter_long,
184 static struct timer_of suspend_rtc_to = {
185 .flags = TIMER_OF_BASE | TIMER_OF_CLOCK,
189 * tegra_rtc_read - Reads the Tegra RTC registers
190 * Care must be taken that this function is not called while the
191 * tegra_rtc driver could be executing to avoid race conditions
192 * on the RTC shadow register
194 static u64 tegra_rtc_read_ms(struct clocksource *cs)
196 void __iomem *reg_base = timer_of_base(&suspend_rtc_to);
198 u32 ms = readl_relaxed(reg_base + RTC_MILLISECONDS);
199 u32 s = readl_relaxed(reg_base + RTC_SHADOW_SECONDS);
201 return (u64)s * MSEC_PER_SEC + ms;
204 static struct clocksource suspend_rtc_clocksource = {
205 .name = "tegra_suspend_timer",
207 .read = tegra_rtc_read_ms,
208 .mask = CLOCKSOURCE_MASK(32),
209 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
212 static inline unsigned int tegra_base_for_cpu(int cpu, bool tegra20)
227 return TIMER10_BASE + cpu * 8;
230 static inline unsigned int tegra_irq_idx_for_cpu(int cpu, bool tegra20)
233 return TIMER1_IRQ_IDX + cpu;
235 return TIMER10_IRQ_IDX + cpu;
238 static inline unsigned long tegra_rate_for_timer(struct timer_of *to,
242 * TIMER1-9 are fixed to 1MHz, TIMER10-13 are running off the
248 return timer_of_rate(to);
251 static int __init tegra_init_timer(struct device_node *np, bool tegra20,
257 to = this_cpu_ptr(&tegra_to);
258 ret = timer_of_init(np, to);
262 timer_reg_base = timer_of_base(to);
265 * Configure microsecond timers to have 1MHz clock
266 * Config register is 0xqqww, where qq is "dividend", ww is "divisor"
269 switch (timer_of_rate(to)) {
271 usec_config = 0x000b; /* (11+1)/(0+1) */
274 usec_config = 0x043f; /* (63+1)/(4+1) */
277 usec_config = 0x000c; /* (12+1)/(0+1) */
280 usec_config = 0x0453; /* (83+1)/(4+1) */
283 usec_config = 0x045f; /* (95+1)/(4+1) */
286 usec_config = 0x0019; /* (25+1)/(0+1) */
289 usec_config = 0x04bf; /* (191+1)/(4+1) */
292 usec_config = 0x002f; /* (47+1)/(0+1) */
299 writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG);
301 for_each_possible_cpu(cpu) {
302 struct timer_of *cpu_to = per_cpu_ptr(&tegra_to, cpu);
303 unsigned long flags = IRQF_TIMER | IRQF_NOBALANCING;
304 unsigned long rate = tegra_rate_for_timer(to, tegra20);
305 unsigned int base = tegra_base_for_cpu(cpu, tegra20);
306 unsigned int idx = tegra_irq_idx_for_cpu(cpu, tegra20);
307 unsigned int irq = irq_of_parse_and_map(np, idx);
310 pr_err("failed to map irq for cpu%d\n", cpu);
315 cpu_to->clkevt.irq = irq;
316 cpu_to->clkevt.rating = rating;
317 cpu_to->clkevt.cpumask = cpumask_of(cpu);
318 cpu_to->of_base.base = timer_reg_base + base;
319 cpu_to->of_clk.period = rate / HZ;
320 cpu_to->of_clk.rate = rate;
322 irq_set_status_flags(cpu_to->clkevt.irq, IRQ_NOAUTOEN);
324 ret = request_irq(cpu_to->clkevt.irq, tegra_timer_isr, flags,
325 cpu_to->clkevt.name, &cpu_to->clkevt);
327 pr_err("failed to set up irq for cpu%d: %d\n",
329 irq_dispose_mapping(cpu_to->clkevt.irq);
330 cpu_to->clkevt.irq = 0;
335 sched_clock_register(tegra_read_sched_clock, 32, TIMER_1MHz);
337 ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US,
338 "timer_us", TIMER_1MHz, 300, 32,
339 clocksource_mmio_readl_up);
341 pr_err("failed to register clocksource: %d\n", ret);
344 register_current_timer_delay(&tegra_delay_timer);
347 ret = cpuhp_setup_state(CPUHP_AP_TEGRA_TIMER_STARTING,
348 "AP_TEGRA_TIMER_STARTING", tegra_timer_setup,
351 pr_err("failed to set up cpu hp state: %d\n", ret);
356 for_each_possible_cpu(cpu) {
357 struct timer_of *cpu_to;
359 cpu_to = per_cpu_ptr(&tegra_to, cpu);
360 if (cpu_to->clkevt.irq) {
361 free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt);
362 irq_dispose_mapping(cpu_to->clkevt.irq);
366 to->of_base.base = timer_reg_base;
368 timer_of_cleanup(to);
373 static int __init tegra210_init_timer(struct device_node *np)
376 * Arch-timer can't survive across power cycle of CPU core and
377 * after CPUPORESET signal due to a system design shortcoming,
378 * hence tegra-timer is more preferable on Tegra210.
380 return tegra_init_timer(np, false, 460);
382 TIMER_OF_DECLARE(tegra210_timer, "nvidia,tegra210-timer", tegra210_init_timer);
384 static int __init tegra20_init_timer(struct device_node *np)
389 * Tegra20 and Tegra30 have Cortex A9 CPU that has a TWD timer,
390 * that timer runs off the CPU clock and hence is subjected to
391 * a jitter caused by DVFS clock rate changes. Tegra-timer is
392 * more preferable for older Tegra's, while later SoC generations
393 * have arch-timer as a main per-CPU timer and it is not affected
396 if (of_machine_is_compatible("nvidia,tegra20") ||
397 of_machine_is_compatible("nvidia,tegra30"))
402 return tegra_init_timer(np, true, rating);
404 TIMER_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra20_init_timer);
406 static int __init tegra20_init_rtc(struct device_node *np)
410 ret = timer_of_init(np, &suspend_rtc_to);
414 return clocksource_register_hz(&suspend_rtc_clocksource, 1000);
416 TIMER_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc);